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Abstract

The coherent sheaves defined on a separated noetherian scheme X reflect the underlying
geometry, and they play a central role in modern algebraic geometry. Recent results have
indicated that there are subtle relationships between projective varieties that are apparent
in the properties of bounded complexes of coherent sheaves, and so far the most promising
way to organize this information is in the bounded derived category of coherent sheaves,
which is a triangulated category. There are several other triangulated categories that one
can associate to a variety, including the triangulated category of perfect complexes and
the triangulated category of singularities.

In this thesis we introduce a compactly generated triangulated category Km(ProjX),
called the mock homotopy category of projectives, which extends the derived category of
quasi-coherent sheaves by adjoining the acyclic complexes of flat quasi-coherent sheaves.
These acyclic complexes carry the same information about the singularities of the scheme
as the triangulated category of singularities. Moreover, bounded complexes of coherent
sheaves can be viewed as compact objects in the mock homotopy category of projectives,
as we establish a duality between the compact objects in this category and the bounded
derived category of coherent sheaves on the scheme.

There is another triangulated category, the homotopy category K(InjX) of injective
quasi-coherent sheaves, which was introduced earlier by Krause and plays a dual role. In
the presence of a dualizing complex we give an equivalence of the mock homotopy category
of projectives with the homotopy category of injective quasi-coherent sheaves, interpreting
Grothendieck duality as an equivalence of categories of unbounded complexes.
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Chapter 1

Introduction

The philosophy of derived categories is that we should work with complexes rather than
their cohomology, which contains less information. This insight continues to be influential,
and derived categories now pervade mathematics. As examples of important developments
that use the language we quote the duality theory of Grothendieck [Har66], the Riemann-
Roch theorem [SGA6], the Riemann-Hilbert correspondence [Kas84], the Kazhdan-Lusztig
conjecture [BK81], the Broué conjecture [Bro90], the McKay correspondence [BKR01], the
geometric Langlands conjecture [Fre07], homological mirror symmetry [Kon95] and the
study of algebraic varieties via their derived categories of coherent sheaves [BO02, Bri06].

However, there is a problem with the derived category, which arises from singularities.
Not all invariants must come from cohomology groups: in fact, it has been known for a long
time in commutative algebra that there is information about singularities in complexes
with no cohomology at all (such complexes are said to be acyclic). The relevant invariants
occur as syzygies (i.e. modules of cocycles) in acyclic complexes. In the derived category it
is not possible to talk about such complexes, because we have identified them all with zero.
In this thesis we will study a compactly generated triangulated category, which we call the
mock homotopy category of projectives, that extends the derived category of quasi-coherent
sheaves on a scheme by including the acyclic complexes of interest. This builds on earlier
work of Krause [Kra05], Jørgensen [Jør05], Iyengar-Krause [IK06] and Neeman [Nee06a].

We begin this introduction with modules over a ring (all our rings are commutative)
where it is easier to convince the reader that there is something interesting about acyclic
complexes. After explaining the theory in the affine case, which is due to other authors, we
state our results which concern the generalization to schemes. Let A be a local Gorenstein
ring, and suppose we are given an acyclic complex of finitely generated free A-modules

· · · −→ L−2 −→ L−1 −→ L0 −→ L1 −→ L2 −→ · · ·

The syzygy M = Ker(L0 −→ L1) is such that depth(M) = dim(A), and finitely generated
modules with this property are known as maximal Cohen-Macaulay (MCM) modules. In
fact, every MCM module over A occurs in this way, as the syzygy of some acyclic complex
of finitely generated free A-modules, called the complete resolution; see Lemma 5.11. The
category of MCM modules measures the complexity of the singularity of the local ring,
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and there is a rich algebraic literature on the study of these modules. Let us quote some
of the results in the field (suppressing various details):

• Any MCM module over a singularity can be decomposed into a direct sum of inde-
composable MCM modules, and a ring has finite Cohen-Macaulay type if there are
only finitely many indecomposable MCM modules.

• A hypersurface singularity has finite Cohen-Macaulay type if and only if it is a simple
singularity; see [Knö87] and [BGS87].

• A surface singularity has finite Cohen-Macaulay type if and only if it is a quotient
singularity; this is due independently to Ésnault [Esn85] and Auslander [Aus86].

A lovely survey of rings of finite Cohen-Macaulay type is given in Yoshino’s book [Yos90],
and see [Dro04, BD06, Ene07] for surveys of more recent work. Having briefly suggested
the way in which MCM modules contain information about the nature of singularities, it
now remains to argue that the relationship between MCM modules and acyclic complexes
is more than a curiousity. This connection is best understood in the context of a body of
results now known as Gorenstein homological algebra; see [EJ06, Chr00] for background.

Results of Auslander, Auslander-Bridger [AB69] and Auslander-Buchweitz [AB89] on
maximal Cohen-Macaulay modules led to the study by Enochs and Jenda of Gorenstein
projective modules in [EJ95]. A Gorenstein projective module over the local Gorenstein
ring A is a module occurring as a syzygy of an acyclic complex of projective A-modules
(see [Chr00, §4.2] and [IK06, Corollary 5.5])

· · · −→ P−2 −→ P−1 −→ P 0 −→ P 1 −→ P 2 −→ · · ·

One motivation for introducing Gorenstein projective modules is that the MCM A-modules
can now be understood as the Gorenstein analogues of vector bundles: a finitely generated
A-module is MCM if and only if it is Gorenstein projective (see Lemma 5.11). To formalize
the relationship between Gorenstein projectives and acyclic complexes, we introduce two
categories:

• The homotopy category Kac(ProjA) of acyclic complexes of projective A-modules.
The objects are the acyclic complexes, and the morphisms are homotopy equivalence
classes of cochain maps.

• The stable module category Gproj(ModA) of Gorenstein projective A-modules. The
objects are the Gorenstein projective A-modules, and the morphisms are morphisms
of A-modules modulo the relation that identifies two morphisms if their difference
factors via a projective module.

By the definition of Gorenstein projective modules, there is an essentially surjective functor
sending an acyclic complex of projective A-modules to its syzygy in degree zero

Z0(−) : Kac(ProjA) −→ Gproj(ModA) (1.1)
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It turns out that this functor, which pairs a module with its so-called complete projective
resolution, is an equivalence of categories (see Proposition 5.10). Since the MCM modules
are precisely the finitely generated Gorenstein projective modules, the equivalence (1.1)
clarifies the relationship between MCM modules and acyclic complexes: the stable module
category of MCM modules is equivalent to a full subcategory of the homotopy category of
acyclic complexes of projective modules. We call the triangulated category Kac(ProjA)
the (projective) stable derived category ; this terminology is explained at length in Krause’s
paper [Kra05] which had a large influence on how we view the subject.

The information about singularities present in the stable derived category is orthogonal
to the information in the ordinary derived category D(A) of A-modules, where acyclic com-
plexes vanish. To reconcile the two, we need a way of glueing the triangulated categories
Kac(ProjA) and D(A) together; phenomenon such as the Cohen-Macaulay approximation
of Auslander and Buchweitz [AB89] suggest that it is fruitful to let the two types of derived
category interact. Fortunately, the notion of a glueing or recollement of two triangulated
categories has already been worked out by Bĕılinson, Bernstein and Deligne [BBD82].

The triangulated category that glues Kac(ProjA) and D(A) is the homotopy category
K(ProjA) of projective A-modules, which has arbitrary complexes of projective A-modules
as objects, and the homotopy equivalence classes of cochain maps as morphisms. There is
a recollement (for any ring, not necessarily local or Gorenstein, see Theorem 5.15)

Kac(ProjA) // K(ProjA)oo
oo // D(A)oo

oo
(1.2)

in which the six functors describe how to glue the outside objects within the central one.
The derived category D(A) embeds as a subcategory of K(ProjA) by identifying a complex
with its projective resolution (which makes sense even for unbounded complexes) and as
part of the glueing we obtain, for any complex X of projective A-modules, a unique triangle

P −→ X −→ Z −→ ΣP (1.3)

in which P is the projective resolution of an object of D(A) and Z belongs to Kac(ProjA).
The triangle (1.3) associates X with two kinds of invariants: the cohomology groups of P
and the degree zero syzygy of Z, which is a Gorenstein projective module.

The recollement (1.2) gives the desired extension K(ProjA) of the derived category
by the objects of the projective stable derived category. However, homological algebra is
about more than projective resolutions, and the theory we are describing is not complete
without its injective aspect: the homotopy category K(InjA) of injective A-modules and
the injective stable derived category Kac(InjA). In what follows we review the results
of Krause [Kra05], Jørgensen [Jør05], Iyengar-Krause [IK06] and Neeman [Nee06a] which
describe the structure of K(ProjA) and K(InjA) in more detail. In a surprising twist, we
can deduce from Grothendieck’s theory of duality that these two extensions of the derived
category are equivalent. First, a brief reminder about compact objects.

1.1. Compact objects in triangulated categories. A triangulated category does not
have a lot of structure, so it can be difficult to identify interesting objects without resorting
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to an underlying model. In a triangulated category T with infinite coproducts, the most
interesting objects are the “finite” ones, known as the compact objects. These are objects
x ∈ T with the property that any morphism from x into an infinite coproduct

x −→
⊕
i∈I

Ti

factors via a finite subcoproduct, indexed by a subset of indices {i0, . . . , in} ⊆ I

x −→ Ti0 ⊕ · · · ⊕ Tin −→
⊕
i∈I

Ti

We denote the full subcategory of compact objects by T c ⊆ T . This notion makes sense
for any category with coproducts, and applied to abelian categories it identifies the finite
objects in the usual sense (for example, finitely generated modules or coherent sheaves).

It is by now a complete triviality to observe that in order to study finitely generated
modules, or coherent sheaves, it is worthwhile to study all modules, and all quasi-coherent
sheaves. In many contexts it is appropriate to replace coherent sheaves (and thus abelian
categories) by bounded complexes of coherent sheaves (and triangulated categories) and it
becomes important to know the “infinite completion” which is the triangulated category
where such complexes are the compact objects. Moreover, the infinite completion should
be generated by these compact objects, just as the category of quasi-coherent sheaves is
generated by the coherent sheaves (abelian and triangulated categories are quite different,
and the sense in which objects generate also differs, see Chapter 2).

The emphasis on compact objects, and compactly generated triangulated categories,
was motivated by topology and introduced to the algebraists by Neeman in [Nee92, Nee96].
The main feature of these triangulated categories is that Brown representability theorems
and other infinite techniques of homotopy theory are available to study them. There are
many applications and we direct the reader to the surveys in [CKN01] and [Nee07].

Given a ring A, the compact objects in the derived category D(A) are those complexes
quasi-isomorphic to a bounded complex of finitely generated projective A-modules. Thus,
in the derived category, every “finite” object has finite projective dimension. This seems
to be at odds with our intuitive understanding of what a finite complex should be: surely
any bounded complex of finitely generated modules

0 −→M0 −→M1 −→ · · · −→Mn −→ 0 (1.4)

deserves to be a “finite” object. If A is a regular noetherian ring of finite Krull dimension
then this is actually true in the derived category: complexes of the form (1.4) are compact
in D(A). But in the presence of singularities this no longer holds. In order to make every
bounded complex of finitely generated modules a compact object, that is, in order to find
the infinite completion of the bounded derived category of finitely generated modules, we
have to extend the derived category by adjoining acyclic complexes. In other words, we
pass to homotopy category K(ProjA), or its injective analogue K(InjA).
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1.2. The homotopy category of injective modules. Let A be a noetherian ring. The
homotopy category K(InjA) of injective A-modules has as objects arbitrary complexes of
injective A-modules

· · · −→ I−2 −→ I−1 −→ I0 −→ I1 −→ I2 −→ · · ·

and as morphisms the homotopy equivalence classes of cochain maps. This is a triangulated
category, first studied by Krause in his paper [Kra05]. Apart from the homotopy category
of injectives, the central object of this paper is the homotopy category Kac(InjA) of acyclic
complexes of injective A-modules, which Krause calls the (injective) stable derived category
of A1. The relationship between these two categories is given by a fundamental recollement
[Kra05, Corollary 4.3]

Kac(InjA) // K(InjA)oo
oo // D(A)oo

oo

which glues the derived category D(A) together with the stable derived category Kac(InjA)
by identifying objects of the derived category with their injective resolution. Adjoining the
acyclic complexes of injectives to D(A) has the effect of making every bounded complex of
finitely generated A-modules into a compact object: there is an equivalence of triangulated
categories [Kra05, Proposition 2.3]

Db(modA) ∼−→ Kc(InjA) (1.5)

sending a complex on the left to its injective resolution, where Db(modA) is the bounded
derived category of finitely generated A-modules. Since K(InjA) is compactly generated it
has the necessary properties to play the role of the infinite completion of Db(modA). The
stable derived category Kac(InjA) is compactly generated and contains, in its subcategory
of compact objects, the bounded stable derived category Db

sg(A) described by Buchweitz in
[Buc87]. There is an equivalence up to direct factors [Kra05, Corollary 5.4]

Db
sg(A) = Db(modA)/Kb(projA) ∼−→ Kc

ac(InjA) (1.6)

where Kb(projA) is the subcategory of bounded complexes of finitely generated projectives.
The quotient in (1.6) describes the additional compact objects that appear in the passage
from D(A) to its extension K(InjA), where the injective resolution of any bounded complex
of finitely generated modules is a compact object. There is a second approach to embedding
the objects of Db(modA) as compact objects, which goes via projective resolutions.

1.3. The homotopy category of projective modules. Given a noetherian ring A, we
have already defined the homotopy category K(ProjA) of projective A-modules: it has as
objects arbitrary complexes of projective A-modules

· · · −→ P−2 −→ P−1 −→ P 0 −→ P 1 −→ P 2 −→ · · ·
1Krause’s results are more general, and also apply to schemes; we will discuss the general results shortly.
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and as morphisms the homotopy equivalence classes of cochain maps. This is a triangulated
category, studied by Jørgensen [Jør05], Iyengar and Krause [IK06] and Neeman [Nee06a].
As discussed above, there is a recollement (Theorem 5.15)

Kac(ProjA) // K(ProjA)oo
oo // D(A)oo

oo

and after adjoining the acyclic complexes of projectives to D(A) we can identify bounded
complexes of finitely generated A-modules with compact objects, but the details are more
subtle than in the injective case, because the compact object of K(ProjA) corresponding
to a finitely generated A-module is not its projective resolution (if this were compact, the
module would be compact already in the derived category, and thus have finite projective
dimension). Instead, there is an equivalence of triangulated categories

Db(modA)op ∼−→ Kc(ProjA) (1.7)

sending a bounded complex of finitely generated A-modules to the dual HomA(P,A) of
its resolution P by finitely generated projectives; see [Jør05, Theorem 3.2] and a related,
more general, result of Neeman [Nee06a, Proposition 6.12]. Since K(ProjA) is compactly
generated (see Theorem 2.30) it is the infinite completion of Db(modA)op. The stable de-
rived category Kac(ProjA) follows the same pattern; this category is compactly generated
and there is an equivalence up to direct factors [IK06, Theorem 5.3]

Db
sg(A)op ∼−→ Kc

ac(ProjA) (1.8)

In D(A) there is no difference between a module and its projective or injective resolutions;
this is the point of inverting the quasi-isomorphisms. However, in the extensions K(ProjA)
and K(InjA) of the derived category that we are describing, the projective and injective
resolutions of a module exist in completely different categories. The equivalences (1.5),
(1.6), (1.7) and (1.8) hint that these categories are related, and in fact the connection is
a manifestation of Grothendieck duality.

1.4. Grothendieck duality. Let A be a noetherian ring of finite Krull dimension. The
duality theory of Grothendieck describes a special complex D, called the dualizing complex,
which exists for many rings one encounters in algebraic geometry, including any finitely
generated algebra over a field; see [Har66, §II.10] and [Con00, Lemma 3.1.4]. The existence
of a dualizing complex for A tells us that the bounded derived category of finitely generated
A-modules is self-dual; there is an equivalence

RHomA(−, D) : Db(modA)op ∼−→ Db(modA) (1.9)

We recognize the two categories involved in this equivalence as the compacts in K(ProjA)
and K(InjA), respectively, from (1.5) and (1.7). It is natural to ask if the equivalence of
Grothendieck duality extends to an equivalence of the infinite completions, and a theorem
of Iyengar and Krause asserts that it does; there is an equivalence [IK06, Theorem 4.2]

−⊗AD : K(ProjA) ∼−→ K(InjA) (1.10)
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which restricts on compact objects to the equivalence of (1.9). Over a regular ring this is
essentially trivial, since K(ProjA) and K(InjA) are both equivalent to the derived category
(Section 9.2) but in general it gives a new perspective on the role of the dualizing complex.
For example, we can apply −⊗A D to acyclic complexes, which are certainly not subject
to classical Grothendieck duality; some consequences are discussed in [IK06].

This completes our discussion of the affine case, which involved three main actors: the
homotopy category of injectives, the homotopy category of projectives, and Grothendieck
duality which relates them. The first of these generalizes immediately to arbitrary schemes,
as described by Krause in [Kra05]. In the rest of this introduction we describe our results,
which generalize the remaining two.

Setup. For the rest of this introduction, X denotes a separated noetherian scheme,
and all quasi-coherent sheaves are defined over X.

1.5. The generalization to schemes. In modern algebraic geometry the study of X is
largely the study of the coherent sheaves that live on it. We now know that some interesting
relationships between varieties only become visible once we enlarge the class of objects
under consideration from single coherent sheaves to complexes, and in this connection the
bounded derived category Db

coh(QcoX) of coherent sheaves2 becomes a natural object of
study; see [BO02, HdB04, Bri06]. A fundamental property of this triangulated category
is Grothendieck duality, which describes a special complex D , the dualizing complex, with
the property that there is an equivalence

RHomqc(−,D) : Db
coh(QcoX)op ∼−→ Db

coh(QcoX) (1.11)

Many schemes admit dualizing complexes, including any variety over a field [Har66, §II.10].
Over a noetherian ring there is an extension of Grothendieck duality (1.9) to the infinite
completions (1.10). From the work of Krause we know the infinite completion of the right
hand side of (1.11): the homotopy category K(InjX) of injective quasi-coherent sheaves3

is compactly generated, and there is an equivalence [Kra05, Proposition 2.3]

Db
coh(QcoX) ∼−→ Kc(InjX) (1.12)

For an affine scheme K(ProjA) is the infinite completion of the left hand side of (1.11),
but over general schemes there is a gaping hole on the “projective” side of the equivalence,
because there is no good notion of a projective quasi-coherent sheaf: to give an example,
for a field k the only projective quasi-coherent sheaf over P1(k) is the zero sheaf [EEGO04,
Corollary 2.3]. This is the problem that is solved in this thesis.

2There are several equivalent definitions of this category, and the expert can find a comparison of our

notation to her favourite definition in Remark 7.1.
3In fact, Krause works with K(InjA) for an arbitrary locally noetherian abelian category A, so he treats

the affine case and the generalization to schemes simultaneously.
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We define a triangulated category Km(ProjX), referred to as the mock homotopy cat-
egory of projectives on X, which generalizes the homotopy category of projective modules
over a ring. Objects of this category are not complexes of projective quasi-coherent sheaves;
rather, they are complexes of flat quasi-coherent sheaves. A description of morphisms in
this category is a little more subtle, so we delay it until after stating our theorems. The
characterization of the compact objects is the first sign that this generalization is correct,
as combining Theorem 4.10 and Theorem 7.4 yields:

Theorem I. The category Km(ProjX) is compactly generated and there is an equivalence

Db
coh(QcoX)op ∼−→ Kc

m(ProjX)

When X has enough vector bundles, for example when it is a quasi-projective variety,
this equivalence identifies a coherent sheaf G with the dual complex Hom(V ,OX) where
V is a resolution of G by vector bundles (see Remark 7.5). The next theorem describes the
relationship between the mock homotopy category of projectives and the derived category
D(QcoX) of quasi-coherent sheaves. The objects of Km(ProjX) are all complexes of flat
quasi-coherent sheaves, so it makes sense to define the subcategory Km,ac(ProjX) of acyclic
complexes, which we call the mock stable derived category of X. Theorem 5.5 then asserts:

Theorem II. There is a recollement

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

We have seen that there is information about singularities in the category Kac(ProjA).
In the special case of a local Gorenstein ring this arises from the fact that MCM modules
can be identified with their complete resolutions, which are acyclic complexes of projective
modules. This is precisely the information present in the bounded stable derived category,
because there is an equivalence up to direct factors (1.8)

Db
sg(A)op ∼−→ Kc

ac(ProjA)

This connection is treated in [Buc87], which has unfortunately never been published. Over
a scheme the bounded stable derived category also goes by the name of the triangulated
category of singularities, as studied by Orlov [Orl04]

Db
sg(X) = Db

coh(QcoX)/Perf(X)

where Perf(X) is the full subcategory of perfect complexes. The properties of singularities
reflected in this quotient are also visible in the compact objects of the triangulated category
Km,ac(ProjX), as Theorem 5.5 and Theorem 7.9 state:

Theorem III. The category Km,ac(ProjX) is compactly generated, and there is (up to
direct factors) an equivalence

Db
sg(X)op ∼−→ Kc

m,ac(ProjX)
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In the case where X admits a dualizing complex D (which we may always assume is a
bounded complex of injective quasi-coherent sheaves) Theorem 8.4 gives the extension of
Grothendieck duality to the infinite completions:

Theorem IV. The equivalence of Grothendieck duality

RHomqc(−,D) : Db
coh(QcoX)op ∼−→ Db

coh(QcoX)

extends to an equivalence of triangulated categories

−⊗D : Km(ProjX) ∼−→ K(InjX)

Many triangulated categories are closed monoidal categories. For example, the derived
category of modules over a ring with the derived tensor product and derived Hom is a
closed monoidal category. In Proposition 6.2 we prove that:

Proposition V. The triangulated category Km(ProjX) is closed symmetric monoidal: it
has a tensor product and function object RFlat(−,−) compatible with the triangulation.

From the equivalence of Theorem IV and the closed monoidal structure on Km(ProjX)
we obtain a closed monoidal structure on K(InjX), which has the surprising property that
the dualizing complex is the unit object of the tensor product (Proposition B.6). Finally,
the role of Km,ac(ProjX) as an invariant of singularities is expressed by Proposition 9.11,
which states that passing to an open subset with the same singularities leaves the mock
stable derived category unchanged. This restricts on compact objects to a result of Orlov
[Orl04, Proposition 1.14] and gives the projective analogue of [Kra05, Corollary 6.10].

Proposition VI. If U ⊆ X is an open subset containing every singularity of X then the
restriction functor is an equivalence

(−)|U : Km,ac(ProjX) ∼−→ Km,ac(ProjU)

It follows from this result that Km,ac(ProjX) vanishes over regular schemes, in which
case we deduce from Theorem II that there is a canonical equivalence of Km(ProjX) with
the derived category D(QcoX) of quasi-coherent sheaves. In fact, this is an equivalence of
closed monoidal categories; the structure described in Proposition V above reduces to the
usual derived tensor and Hom over a regular scheme (Remark 9.8).

This completes our description of the major results. Next we give the definition of the
mock homotopy category Km(ProjX). The full details can be found in Chapter 3.

1.6. Defining the mock homotopy category of projectives. In the situations where
there are not enough projectives one turns to some kind of flat objects, and this is certainly
true in algebraic geometry where resolutions by locally free sheaves play a significant role.
We define Km(ProjX) by taking these flat resolutions seriously. What is it that makes
flat resolutions so inferior to projective resolutions? Their main problem is that they fail
to be unique in the homotopy category, but fortunately the theory of Verdier quotients or
localizations of triangulated categories gives us a natural way to remedy this defect.
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In order to make flat resolutions unique, we have to kill the difference between any
two competing resolutions. This difference will take the form of a special type of complex,
but before we can describe these “enemy” complexes we need to explain exactly what a
flat resolution of a complex is. A complex F of quasi-coherent sheaves is K-flat if F ⊗C

is acyclic whenever C is an acyclic complex of quasi-coherent sheaves. Given an arbitrary
complex X of quasi-coherent sheaves, a K-flat resolution is a quasi-isomorphism F −→X

with F a K-flat complex. Let us agree that all our K-flat resolutions are complexes of flat
quasi-coherent sheaves (such resolutions always exist, by Corollary 3.22). Now suppose
that we have two K-flat resolutions F ,F ′ of the same complex X , as in the diagram

F

ϕ

��

&&MMMMMMMMMM

X

F ′

88qqqqqqqqqq

(1.13)

If F were a K-projective resolution (the analogue of a projective resolution for complexes)
then by a standard argument we could find a morphism of complexes ϕ making the above
diagram commute, up to homotopy. Suppose, for the sake of argument, that ϕ exists and
connects our two K-flat resolutions via a commutative diagram (1.13) in the homotopy cat-
egory K(QcoX) of quasi-coherent sheaves. It is clear that ϕ must be a quasi-isomorphism,
and extending to a triangle in the homotopy category, we have

F
ϕ−→ F ′ −→ E −→ ΣF

We deduce that E is acyclic and K-flat, because K-flatness is stable under mapping cones.
Here is our enemy: the difference between two K-flat resolutions of the same object is an
acyclic K-flat complex of flat quasi-coherent sheaves. Denoting by K(FlatX) the homotopy
category of flat quasi-coherent sheaves (the natural home of K-flat resolutions) we set

E(X) = {E ∈ K(FlatX) |E is acyclic and K-flat}

and define Km(ProjX) to be the Verdier quotient where such complexes are zero

Km(ProjX) = K(FlatX)/E(X)

This definition is speculative, because the morphism ϕ in (1.13) will not exist in general,
but it turns out that K-flat resolutions really are unique and functorial in this category;
see Remark 5.9. Our simple demand, that flat resolutions should behave like projective
resolutions, defines a triangulated category Km(ProjX) with many nice properties.

As often happens in mathematics, this exposition is not historically correct. The affine
case was understood first, by Neeman, from a different direction not motivated by solving
any problems with flat resolutions. In [Nee06a] and [Nee06c] Neeman studies, for a ring A,
the homotopy category K(ProjA) as a subcategory of the homotopy category K(FlatA) of
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flat modules, and he discovers many intriguing relationships. Some of these relationships
are summarized in a recollement [Nee06c, Remark 3.2]

E(A) // K(FlatA)oo
oo // K(ProjA)oo

oo
(1.14)

where E(A) is the triangulated subcategory of complexes E ∈ K(FlatA) with the property
that HomA(P,E) is acyclic for every complex P of projective modules; in a more compact
notation, E(A) is the orthogonal4 K(ProjA)⊥. It follows almost immediately from one of
Neeman’s results [Nee06a, Corollary 8.4] that the objects of E(A) are precisely the acyclic
K-flat complexes; see Proposition 3.4. One consequence of the recollement (1.14) is that
the following composite is an equivalence [Nee06a, Remark 1.12]

K(ProjA) inc−→ K(FlatA) can−→ K(FlatA)/E(A) (1.15)

This equivalence is very interesting, because the right hand side makes no explicit mention
of projective modules. The categories K(FlatA) and E(A) both generalize to schemes, so
this result of Neeman gives us a way to generalize K(ProjA), and it was the starting point
for the research contained in this thesis.

SettingX = Spec(A) in (1.15) gives an equivalence K(ProjA) ∼−→ Km(ProjX), so that
the mock homotopy category Km(ProjX) reduces to the homotopy category of projective
modules over an affine scheme.

1.7. Contents. We begin in Chapter 2 with a review of background material on triangu-
lated categories, resolutions of complexes and relative homological algebra. In Chapter 3
we define the mock homotopy category Km(ProjX) of projectives and establish the tools
needed to work with it effectively. In particular, we prove that it has small Homs. Chapter
4 contains our proof that this category is compactly generated. In Chapter 5 we study the
mock stable derived category Km,ac(ProjX) and prove Theorem II. In Chapter 6 we give
the closed monoidal structure on Km(ProjX), described above in Proposition V, which
is immediately applied in Chapter 7 to classify the compact objects in Km(ProjX) and
Km,ac(ProjX). This will complete the proofs of Theorem I and Theorem III. In Chapter
8 we prove Theorem IV, which gives the equivalence Km(ProjX) ∼= K(InjX) extending
Grothendieck duality. In Chapter 9 we study two vignettes on the themes of earlier chap-
ters: the analogue of local cohomology for the mock homotopy category of projectives,
and Proposition VI, which involves a new characterization of regular schemes in terms of
the existence of complexes of flat quasi-coherent sheaves that are not K-flat.

This brings us to the appendices. In Appendix A we prove that the inclusion of the
homotopy category K(FlatX) of flat quasi-coherent sheaves into the homotopy category
K(QcoX) of arbitrary quasi-coherent sheaves has a right adjoint. In Appendix B this fact
is applied to define a closed monoidal structure on K(FlatX) and K(InjX). Appendix C
is more interesting: we communicate a result of Neeman which says that in any triangu-
lated category with coproducts that you are likely to encounter, the existence of tensor

4We put the orthogonal ⊥ on the opposite side to Neeman, see Chapter 2 for our conventions.
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products automatically implies the existence of function objects which respect the trian-
gulation. This fact is used in Chapter 6 to give a quick construction of function objects
in Km(ProjX) and D(QcoX).

Setup. In this thesis schemes are all quasi-compact and separated and rings are
commutative with identity, unless specified otherwise. The interested reader will note
that “separated” can be replaced throughout with “semi-separated”.

A note on some foundational issues: we work in a fixed Grothendieck universe U, so a
class is a subset of U and a set is an element of U. For the sake of the present discussion,
anything else is called a conglomerate. Apart from the exceptions we are about to name,
all categories have a class of objects and between each pair of objects, a set of morphisms.

Exceptions arise by taking the Verdier quotient of two triangulated categories. Such a
construction has a class of objects, but the morphisms between a pair of objects may not
form a set, or even be small (i.e. bijective to a set). If in such a quotient the conglomerate
of morphisms between every pair of objects is small, then we say it has small Homs and
treat it as a normal category with complete safety. The Verdier quotients arising here are
all of this type.



Chapter 2

Background and Notation

In this chapter we review some background material, which is not intended to be read
linearly: the reader can skip to Chapter 3 and refer back as needed. We begin with trian-
gulated categories, focusing on recollements, Bousfield localization and standard properties
of compactly generated triangulated categories. Then we recall in Section 2.1 and Section
2.2 some properties of homotopy categories, including a review of K-projective, K-injective
and K-flat resolutions. In Section 2.3 we translate some theorems of relative homological
algebra into the language of homotopy categories, which is the form in which we will use
it in the body of the thesis.

For background on general triangulated categories our references are Neeman [Nee01b]
and Verdier [Ver96] while for homotopy categories we refer the reader to Weibel [Wei94].
In a triangulated category T we always denote the suspension functor by Σ.

Adjunctions. Let F,G : T −→ S be triangulated functors. A trinatural transformation
η : F −→ G is a natural transformation such that for every X ∈ T the following diagram
commutes in S

FΣ(X)

ηΣX

��

∼ // ΣF (X)

ΣηX
��

GΣ(X) ∼
// ΣG(X)

Given triangulated functors F : A −→ B and G : B −→ A a triadjunction G � F is an
adjunction between G and F , with G left adjoint to F , in which the unit η : 1 −→ FG and
counit ε : GF −→ 1 are trinatural transformations. In fact, one of these transformations
is trinatural if and only if both are. A triangulated functor has a right (left) adjoint if
and only if it has a right (left) triadjoint [Nee01b, Lemma 5.3.6]. Between triangulated
functors we only ever consider trinatural transformations, and all our adjunctions between
triangulated functors are triadjunctions, so we drop the prefix “tri” from the notation.
Given a triangulated functor F : A −→ B, we write Fλ for the left adjoint and Fρ for the
right adjoint, when they exist.

Localizing subcategories. A triangulated subcategory S ⊆ T is thick if every direct
summand of an object of S lies in S, localizing if it is closed under coproducts in T , and
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colocalizing if it is closed under products. Given a class of objects C ⊆ T we denote by
Thick(C) the smallest thick triangulated subcategory of T containing the objects of C.

Given a triangulated functor F : T −→ S the kernel Ker(F ) is the thick triangulated
subcategory of T consisting of those Y ∈ T with F (Y ) = 0. The essential image Im(F )
is the full subcategory of objects in S isomorphic to F (Y ) for some Y ∈ T . Provided F is
full, the essential image Im(F ) is a triangulated subcategory of S. A triangulated functor
F : T −→ S is an equivalence up to direct factors if it is fully faithful and every X ∈ S is
a direct summand of F (Y ) for some Y ∈ T .

We say that idempotents split in a triangulated category T if every endomorphism
e : X −→ X with ee = e admits a factorisation e = gf for some f : X −→ Y, g : Y −→ X

with fg = 1Y . If T has countable coproducts then idempotents automatically split in T
[Nee01b, Proposition 1.6.8].

Lemma 2.1. Let T be a triangulated category with countable coproducts, and S a trian-
gulated subcategory closed under countable coproducts in T . Then S is thick.

Proof. Since S is a triangulated category with countable coproducts, idempotents split in
S. Suppose X⊕Y ∈ S for X,Y ∈ T and let u : X −→ X⊕Y, p : X⊕Y −→ X be canonical.
Then θ = up is idempotent in S and therefore splits; let g : X⊕Y −→ Q, f : Q −→ X⊕Y
be a splitting with Q ∈ S, so θ = fg and gf = 1. We have (1 − θ)f = 0, so there is
t : Q −→ X with ut = f . One checks that t is an isomorphism, so X ∈ S as required.

In light of this lemma, most of the triangulated subcategories that we encounter are
automatically thick.

Orthogonals. For a triangulated subcategory S of a triangulated category T , the follow-
ing triangulated subcategories of T are called the left and right orthogonals, respectively

⊥S = {X ∈ T | HomT (X,S) = 0 for all S ∈ S}

S⊥ = {X ∈ T | HomT (S,X) = 0 for all S ∈ S}

Both are thick subcategories of T , with S⊥ colocalizing and ⊥S localizing. Given a class
of objects C ⊆ T we write ⊥C for ⊥Thick(C) and C⊥ for Thick(C)⊥. It is clear that C⊥ is
the full subcategory of all X ∈ T with HomT (ΣiC,X) = 0 for every i ∈ Z and C ∈ C, and
similarly for ⊥C.

Verdier sums. Let T be a triangulated category with triangulated subcategories S,Q
and denote by S ?Q the full subcategory of T consisting of objects X ∈ T that fit into a
triangle with S ∈ S and Q ∈ Q

S −→ X −→ Q −→ ΣS

This subcategory is called the Verdier sum of S and Q. If HomT (S,Q) = 0 for every pair
S ∈ S, Q ∈ Q then it is an exercise using [BBD82, Proposition 1.1.11] to check that S ?Q
is a triangulated subcategory of T .
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Verdier quotients. Recall from [Ver96] or [Nee01b, Chapter 2] the construction of the
Verdier quotient of a triangulated category D by a triangulated subcategory C. We will
need a slightly weaker notion: a weak Verdier quotient of D by C is a triangulated functor
F : D −→ T that satisfies C ⊆ Ker(F ) and is “weakly” universal with this property, in
the sense that given any triangulated functor G : D −→ S with C ⊆ Ker(G) there exists a
triangulated functor H : T −→ S together with a natural equivalence HF ∼= G. Moreover,
we require that any two factorizations H,H ′ with this property be naturally equivalent.

A triangulated functor F : D −→ T is a weak Verdier quotient of D by C if and only
if it factors as the Verdier quotient D −→ D/C followed by an equivalence of triangulated
categories D/C ∼−→ T . We have the following properties: let F : D −→ T be a weak
Verdier quotient of D by C. Then

(i) Given X,Y ∈ D the canonical map HomD(X,Y ) −→ HomT (FX,FY ) is an isomor-
phism if either X ∈ ⊥C or Y ∈ C⊥.

(ii) Given triangulated functors H,H ′ : T −→ S and a natural transformation Φ :
HF −→ H ′F , there is a unique natural transformation φ : H −→ H ′ with φF = Φ.

(iii) Suppose we have a diagram of triangulated functors D F //T G //Q . If GF has a
right adjoint H then G has right adjoint FH.

For proofs of these statements see [Nee01b, Lemma 9.1.5] and [AJS00, Lemma 5.5].

The notion of a recollement or glueing of triangulated categories was introduced by
Beilinson, Bernstein and Deligne in their influential paper [BBD82, §1.4]. In our study of
homotopy categories, (co)localization sequences and recollements will provide a powerful
organizing principle.

Recollements. We often encounter pairs of functors that, up to equivalence, are the inclu-
sion of, and Verdier quotient by, a triangulated subcategory. This situation is axiomatized
as follows: a sequence of triangulated functors

T ′ F // T G // T ′′ (2.1)

is an quotient sequence if the following holds

(E1) The functor F is fully faithful.

(E2) The functor G is a weak Verdier quotient.

(E3) There is an equality of triangulated subcategories Im(F ) = Ker(G).

In this case G is a weak Verdier quotient of T by Im(F ). The sequence (2.1) is a quotient
sequence if and only if (T ′)op −→ T op −→ (T ′′)op is a quotient sequence. We say that the
sequence of triangulated functors (2.1) is a localization sequence if

(L1) The functor F is fully faithful and has a right adjoint.
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(L2) The functor G has a fully faithful right adjoint.

(L3) There is an equality of triangulated subcategories Im(F ) = Ker(G).

On the other hand, we say that (2.1) is a colocalization sequence if the pair (F op, Gop) of
opposite functors is a localization sequence, which is equivalent to replacing “right” by
“left” in (L1) and (L2). A sequence of functors is a recollement if it is both a localization
sequence and a colocalization sequence. In this case, the various adjoints are often arranged
in a diagram of the following form:

T ′ // Too
oo // T ′′oo

oo

The original reference for localization sequences is Verdier’s thesis; see [Ver96, §II.2] and
[Ver77, §I.2 no.6]. The results were rediscovered by Bousfield [Bou79] and the reader can
find more recent expositions in [AJS00, §1], [Nee01b, §9.2] and [Kra05, §3]. The next easy
lemma tells us that any (co)localization sequence is a quotient sequence; in particular we
have an equivalence T /T ′ ∼−→ T ′′.

Lemma 2.2. Every localization or colocalization sequence is a quotient sequence.

Proof. It is enough to show that every localization sequence (2.1) is a quotient sequence.
We prove that the induced functor M : T /Im(F ) −→ T ′′ is an equivalence. Let Gρ be the
right adjoint of G with unit η : 1 −→ GρG and set N = Q◦Gρ where Q : T −→ T /Im(F )
is the Verdier quotient. Then MN = MQGρ = GGρ ∼= 1 and it is not difficult to check
that Qη : Q −→ QGρG is a natural equivalence. Therefore NMQ = NG = QGρG ∼= Q

from which we deduce that NM ∼= 1, as claimed.

The following lemma gives a useful list of characterizations of localization sequences.

Lemma 2.3. Suppose we have a quotient sequence of triangulated functors

T ′ F // T G // T ′′ (2.2)

The following are equivalent:

(i) The sequence (2.2) is a localization sequence.

(ii) F has a right adjoint.

(iii) G has a right adjoint.

(iv) The composite Im(F )⊥ −→ T −→ T ′′ is an equivalence.

(v) For every X ∈ T there is a triangle

L −→ X −→ R −→ ΣL

with L ∈ Im(F ) and R ∈ Im(F )⊥.
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Proof. Up to equivalence a quotient sequence is of the form S −→ T −→ T /S for some
triangulated subcategory S, so (i)⇔ (ii)⇔ (iii) is [Kra05, Lemma 3.2]. For (v)⇔ (iv)⇔
(i) see [AJS00, Proposition 1.6].

Remark 2.4. The dual of Lemma 2.3 characterizes colocalization sequences. To be pre-
cise, we replace “right” by “left” in (ii) and (iii), replace Im(F )⊥ by ⊥Im(F ) in (iv), and
replace (v) by the condition that for every X ∈ T there is a triangle L −→ X −→ R −→
ΣL with L ∈ ⊥Im(F ) and R ∈ Im(F ).

Remark 2.5. In a quotient sequence C −→ D −→ D/C the Verdier quotient D/C may
not have small Homs. But if the quotient sequence is a (co)localization sequence, then
D/C is equivalent to a subcategory of D, and thus has small Homs if D does.

We say that a triangulated functor G : T −→ S induces a localization sequence (resp.
colocalization sequence, recollement) if the pair Ker(G) −→ T −→ S is a localization
sequence (resp. colocalization sequence, recollement).

Lemma 2.6. A triangulated functor G : T −→ S with a fully faithful right adjoint (resp.
fully faithful left adjoint) induces a localization sequence (resp. colocalization sequence).

Proof. We only prove the statement about localization sequences, as the statement about
colocalization sequences is dual. Given X ∈ T extend the unit morphism X −→ GρG(X)
to a triangle in T

Y −→ X −→ GρG(X) −→ ΣY

The counit of adjunction is a natural equivalence because Gρ is fully faithful, so applying
G to the triangle we infer that G(Y ) = 0 (using εG ◦ Gη = 1). That is, Y ∈ Ker(G).
One checks that GρG(X) ∈ Ker(G)⊥ so the inclusion Ker(G) −→ T has a right adjoint
[AJS00, Proposition 1.6]. Now, by definition, we have a localization sequence.

Compactness. Let T be a triangulated category with coproducts. An object C ∈ T is
said to be compact if every morphism C −→

⊕
i∈I Xi to a coproduct in T factors through

a finite subcoproduct
C −→ Xi0 ⊕ · · · ⊕Xin −→

⊕
i∈I

Xi

The triangulated category T is compactly generated if there is a set Q of compact objects
with the property that any nonzero X in T admits a nonzero morphism q −→ X from
some q ∈ Q. In this case Q is called a compact generating set for T . For any triangulated
category T we write T c ⊆ T for the thick subcategory of compact objects; if T is compactly
generated with compact generating set Q then T c is the smallest thick subcategory of T
containing Q and a localizing subcategory of T containing Q must be all of T . For proofs
of these statements see [Nee01b] or [Kra02].

Many deep questions about triangulated categories involve the existence of adjoints,
so the next result explains the relevance of compactly generated triangulated categories.
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Proposition 2.7. Let F : T −→ Q be a triangulated functor with T compactly generated.

(i) F has a right adjoint if and only if it preserves coproducts.

(ii) F has a left adjoint if and only if it preserves products.

Proof. See [Nee96, Theorem 4.1], [Nee01b, Theorem 8.6.1] and [Kra02]. Note that it is
crucial that T ,Q have small Homs; this result will not necessarily hold if Q is a “category”
where the morphisms between pairs of objects do not form a set.

Let T be a triangulated category with coproducts. A localizing subcategory S ⊆ T
is compactly generated in T if S admits a compact generating set consisting of objects
compact in the larger category T . In this case the inclusion S −→ T has a right adjoint
by Proposition 2.7, so there is a localization sequence S −→ T −→ T /S.

Theorem 2.8. Let T be a compactly generated triangulated category and S a localizing
subcategory compactly generated in T . Then Sc = S ∩T c and T /S is compactly generated
(with small Homs). Moreover, there is an equivalence up to direct factors

T c/Sc ∼−→ (T /S)c (2.3)

Proof. This is the Neeman-Ravenel-Thomason localization theorem; for the history of this
result see [Nee06b]. We apply [Nee92] and [Nee01b, Chapter 4] to deduce that the compact
objects in S are precisely the compact objects of T that happen to lie in S, that the Verdier
quotient Q : T −→ T /S preserves compactness, and that the canonical functor (2.3) is an
equivalence up to direct factors. Observe that by Lemma 2.3 the pair S −→ T −→ T /S is
a localization sequence and in particular the right adjoint Qρ : T /S −→ T is fully faithful.
This shows that T /S has small Homs. Finally, it is not difficult to check that Q sends a
compact generating set for T to a compact generating set for T /S, which proves that the
latter category is compactly generated.

Lemma 2.9. Let F : T −→ S be a triangulated functor with right adjoint G. Then

(i) If G preserves coproducts then F preserves compactness.

(ii) If T is compactly generated and F sends compact objects to compact objects, then G

preserves coproducts.

Proof. See [Nee96, Theorem 5.1].

Corollary 2.10. Suppose that we have a recollement with T compactly generated

S // Too
oo // Qoo

oo
(2.4)

Then S is compactly generated, and provided Q is also compactly generated there is an
equivalence up to direct factors T c/Qc ∼−→ Sc.
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Proof. Let F : S −→ T and G : T −→ Q be the pair of triangulated functors that forms
the recollement, and denote the left adjoints of F and G by Fλ and Gλ respectively. There
is a localization sequence

Q
Gλ // T

Fλ // S

Since Gλ, Fλ both have coproduct preserving right adjoints it follows from Lemma 2.9 that
they preserve compactness. It is not difficult to check that Fλ sends a compact generating
set for T to a compact generating set for S, which is therefore compactly generated. Now
assume that Q is compactly generated. If we identify Q with a triangulated subcategory
of T via the fully faithful functor Gλ, then Q is compactly generated in T . From Theorem
2.8 and the equivalence T /Q ∼−→ S induced by the weak Verdier quotient Fλ : T −→ S
we obtain an equivalence up to direct factors T c/Qc −→ Sc, where we identify Qc with a
subcategory of T c via Gλ.

When triangulated categories T and S are equivalent, the full subcategories of compact
objects are equivalent. The next result proves a kind of converse, provided we know that
the equivalence on compacts lifts to a functor on the whole category.

Proposition 2.11. Let F : T −→ S be a coproduct preserving triangulated functor between
compactly generated triangulated categories. Provided F preserves compactness, it is an
equivalence if and only if the induced functor F c : T c −→ Sc is an equivalence.

Proof. This is straightforward to check; see for example [Miy07, Proposition 6].

Bousfield subcategories. A Bousfield subcategory S of a triangulated category T is a
thick subcategory S ⊆ T with the property that the inclusion S −→ T has a right adjoint
(a Bousfield subcategory is automatically localizing). By Lemma 2.3 this is the same as a
thick subcategory S that admits for each X ∈ T a triangle with L ∈ S and R ∈ S⊥

L −→ X −→ R −→ ΣL (2.5)

We note that triangles of this form are unique up to isomorphism; see [BBD82, Proposition
1.1.9]. There is an equivalence S⊥ ∼−→ T /S, so the quotient has small Homs.

Rouquier introduced in [Rou03, (5.3.3)] the concept of a cocovering of T by a family
of Bousfield subcategories {S0, . . . ,Sd}. Thinking of the subcategories Si as closed subsets
and the quotients T /Si as open subsets, he shows how to prove statements about T by
arguing over each element T /Si of the “open cover”. This idea will be crucial in the proof
of one of our major theorems in Chapter 4, so we give the definitions here in some detail.

Elements of a cocovering (defined below) are required to satisfy a technical condition
that is automatically satisfied in most examples. Let T be a triangulated category and
let I1, I2 ⊆ T be Bousfield subcategories. We say that I1 and I2 intersect properly if for
every pair of objects M1 ∈ I1 and M2 ∈ I2 any morphism in T of the form

M1 −→M2 or M2 −→M1

factors through an object of the intersection I1∩I2. Given a triangulated category T and
Bousfield subcategories I1, I2 we follow the notation of Rouquier and denote the inclusions
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by i1∗ : I1 −→ T and i2∗ : I2 −→ T with right adjoints i!1, i
!
2. Let j∗1 : T −→ T /I1 and

j∗2 : T −→ T /I2 be the Verdier quotients with right adjoints j1∗, j2∗.

Lemma 2.12. Let T be a triangulated category with Bousfield subcategories I1, I2. The
following conditions are equivalent:

(i) The subcategories I1 and I2 intersect properly.

(ii) i1∗i
!
1(I2) ⊆ I2 and i2∗i!2(I1) ⊆ I1.

(iii) j1∗j
∗
1(I2) ⊆ I2 and j2∗j∗2(I1) ⊆ I1.

Proof. See [Rou03, Lemma 5.7].

Let T be a triangulated category with coproducts. A cocovering of T is a nonempty
finite set F = {T0, . . . , Td} of Bousfield subcategories of T with the property that any pair
Ti, Tj of objects in F intersect properly and T0 ∩ · · · ∩ Td contains only zero objects.

Theorem 2.13. Let T be a triangulated category with coproducts and a cocovering F by
Bousfield subcategories. Assume that for all I ∈ F and F ′ ⊆ F \ {I} the quotient( ⋂

I′∈F ′
I ′
)
/

 ⋂
I′∈F ′∪{I}

I ′


is compactly generated in T /I. Then T is compactly generated and X ∈ T is compact if
and only if it is compact in T /I for all I ∈ F . Moreover, if J is a Bousfield subcategory
of T intersecting properly every element of F with the property that for every I ∈ F and
F ′ ⊆ F \ {I} the subcategory(

J ∩
⋂
I′∈F ′

I ′
)
/

J ∩ ⋂
I′∈F ′∪{I}

I ′


is compactly generated in T /I, then J is compactly generated in T .

Proof. See [Rou03, Theorem 5.15]. Note that the subset F ′ is allowed to be empty, so in
particular the quotients T /I must be compactly generated for I ∈ F .

2.1 Homotopy Categories

The triangulated categories of interest to us are homotopy categories and their quotients.
Let X be an additive category and denote by C(X ) the category of all complexes in X .
Complexes are usually written cohomologically, as in the following diagram

· · · // Xn ∂n // Xn+1 ∂n+1
// Xn+2 // · · ·

The homotopy category K(X ) has as objects the complexes in X and as morphisms the
homotopy equivalence classes of morphisms of complexes. Given an abelian category A we
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denote by Kac(A) the triangulated subcategory of K(A) consisting of the complexes X with
Hn(X) = 0 for all n ∈ Z. Such complexes are called exact or acyclic. The (unbounded)
derived category D(A) is defined to be the Verdier quotient of K(A) by the triangulated
subcategory Kac(A), with the quotient usually denoted by q : K(A) −→ D(A).

Let A be a ring and denote by ModA the abelian category of A-modules. We write
K(A) for K(ModA) and D(A) for D(ModA). Let X be an additive subcategory of ModA.
Then we can form the homotopy category K(X ), which is a triangulated subcategory (not
closed under isomorphism) of K(A). This defines homotopy categories K(ProjA),K(InjA)
and K(FlatA) of projective, injective and flat A-modules, respectively.

If X is a ringed space and Mod(X) the category of sheaves of modules on X, then K(X)
denotes K(ModX) and D(X) denotes D(ModX). If X is a scheme then Qco(X) denotes
the category of quasi-coherent sheaves, D(QcoX) the derived category of quasi-coherent
sheaves and Dqc(X) the triangulated subcategory of D(X) consisting of the complexes
with quasi-coherent cohomology.

Given an abelian category A an important operation on complexes in A is truncation.
For a complex X in A and n ∈ Z our notation for the standard truncations are:

X≤n : · · · −→ Xn−2 −→ Xn−1 −→ Ker∂nX −→ 0 −→ 0 −→ · · ·

X≥n : · · · −→ 0 −→ 0 −→ Coker∂n−1
X −→ Xn+1 −→ Xn+2 −→ · · ·

bX≤n : · · · −→ Xn−2 −→ Xn−1 −→ Xn −→ 0 −→ 0 −→ · · ·

bX≥n : · · · −→ 0 −→ 0 −→ Xn −→ Xn+1 −→ Xn+2 −→ · · ·

The complexes bX≤n and bX≥n are called the brutal or stupid truncations.

Remark 2.14. Let X,Y be complexes in an abelian category A and suppose that Y i = 0
for i ≥ n. Composition with the canonical morphism X −→ bX≤n defines an isomorphism

HomK(A)(bX≤n, Y ) ∼−→ HomK(A)(X,Y )

On the other hand, if Y i = 0 for i ≤ n then composition with the canonical morphism
of complexes bX≥n −→ X gives an isomorphism HomK(A)(X,Y ) ∼−→ HomK(A)(bX≥n, Y ).
There are analogous results where we truncate in the second variable.

Given a morphism f : X −→ Y of complexes we define the mapping cone complex
cone(f) with the sign conventions of Conrad [Con00, §1.3]. For a morphism f : X −→ Y

in an arbitrary triangulated category T we refer to any object C completing f to a triangle
X −→ Y −→ C −→ ΣX in T as the mapping cone of f , by a standard abuse of notation.

Lemma 2.15. Let A be an abelian category and suppose that we have a degree-wise split
exact sequence of complexes in A

0 // X
f // Y

g // Z // 0 (2.6)

There exists a canonical morphism z : Z −→ ΣX in K(A) fitting into a triangle in K(A)

X
f // Y

g // Z
−z // ΣX (2.7)
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Proof. There is a factorization Y −→ cone(f) −→ Z of g through the mapping cone, and
the degree-wise split exactness of (2.6) makes the factorization µ : cone(f) −→ Z into a
homotopy equivalence. Consider the canonical mapping cone triangle in K(A)

X
f // Y

v // cone(f) w // ΣX (2.8)

and set z = −w◦µ−1. The candidate triangle (2.7) is isomorphic to (2.8) and is therefore a
triangle. The sign on z exists to ensure compatibility ofHn(z) with the classical connecting
morphism.

It is often useful to write a complex as the limit or colimit of bounded complexes, and
in triangulated categories these limits and colimits become homotopy limits and colimits;
see [Nee01b, §1.6] and [BN93] for relevant background. Since we are often working in
homotopy categories, we will most often write complexes as homotopy (co)limits of their
brutal truncations.

Remark 2.16. Let A be a cocomplete abelian category and suppose that we are given a
sequence of degree-wise split monomorphisms of complexes in A

X1
// X2

// X3
// · · · (2.9)

We have a degree-wise split exact sequence, in the notation of [Nee01b, Definition 1.6.4]

0 // ⊕i≥1Xi
1−shift // ⊕i≥1Xi // lim−→Xi // 0

From Lemma 2.15 we deduce that the direct limit lim−→Xi is isomorphic, in K(A), to the
homotopy colimit of the sequence (2.9). There is an important special case: let W be a
complex in A and for arbitrary n ∈ Z write W as the direct limit of the following sequence
of brutal truncations

bW≥n −→ bW≥(n−1) −→ bW≥(n−2) −→ · · · (2.10)

Each of these morphisms is a degree-wise split monomorphism, so W is isomorphic in K(A)
to the homotopy colimit of the sequence (2.10). If A is complete rather than cocomplete,
then W is the inverse limit of the following sequence of brutal truncations

· · · −→ bW≤(n+2) −→ bW≤(n+1) −→ bW≤n (2.11)

and W is the homotopy limit in K(A) of this sequence.

Bicomplexes. Let A be a cocomplete abelian category. A bicomplex in A is a complex of
complexes: it is a collection of objects {Bij}i,j∈Z and morphisms ∂ij1 : Bij −→ B(i+1)j , ∂ij2 :
Bij −→ Bi(j+1) for i, j ∈ Z such that ∂1 ◦ ∂1 = 0, ∂2 ◦ ∂2 = 0 and ∂1 ◦ ∂2 = ∂2 ◦ ∂1.
Represented on the page the first index is the column and the second the row; indices
increase going to the right and upwards. The totalization of a bicomplex B is the complex
Tot(B) defined by

Tot(B)n = ⊕i+j=nBij with differential ∂nuij = u(i+1)j∂
ij
1 + (−1)iui(j+1)∂

ij
2
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where uij is the injection of Bij into the coproduct. A morphism of bicomplexes ϕ : B −→
C is a collection of morphisms {ϕij : Bij −→ Cij}i,j∈Z with ϕ◦∂1 = ∂1◦ϕ and ϕ◦∂2 = ∂2◦ϕ.
Any such morphism induces a morphism of the totalizations Tot(ϕ) : Tot(B) −→ Tot(C)
defined in degree n by Tot(ϕ)n = ⊕i+j=nϕij , making the totalization into an additive
functor from bicomplexes to complexes. The next lemma proves that this functor is exact.

Lemma 2.17. Suppose that we have a short exact sequence of bicomplexes, split exact in
each bidegree 0 −→ B −→ C −→ D −→ 0. The sequence of totalizations

0 −→ Tot(B) −→ Tot(C) −→ Tot(D) −→ 0 (2.12)

is split exact in each degree, and there is a canonical triangle in K(A)

Tot(B) −→ Tot(C) −→ Tot(D) −→ Σ Tot(B)

Proof. Saying that the sequence is split exact in each bidegree means that for every i, j ∈ Z
the sequence 0 −→ Bij −→ Cij −→ Dij −→ 0 is split exact. In this case it is not difficult
to check that (2.12) is split exact in each degree, so from Lemma 2.15 we deduce the
desired triangle.

Next we review some standard facts that tell us how to assemble the totalization of
a bicomplex from its columns, or rows, via triangles in K(A). Let B be a bicomplex in
A. Given k ∈ Z we write B•k for the kth row of the bicomplex and Bk• for the kth
column. Let Brows≥k denote the bicomplex B with rows < k deleted. Graphically, this is
the following diagram

...
...

...

· · · // B(i−1)(k+1)

OO

// Bi(k+1)

OO

// B(i+1)(k+1) //

OO

· · ·

· · · // B(i−1)k

OO

// Bik

OO

// B(i+1)k

OO

// · · ·

· · · // 0

OO

// 0

OO

// 0 //

OO

· · ·

(2.13)

There is a morphism of bicomplexes Brows≥k+1 −→ Brows≥k with cokernel B•k. If we agree
that this row is placed in the correct vertical degree, then we have an exact sequence of
bicomplexes 0 −→ Brows≥k+1 −→ Brows≥k −→ B•k −→ 0 which is split exact in each
bidegree. This yields by Lemma 2.17 an exact sequence of the totalizations, split exact in
each degree

0 −→ Tot(Brows≥k+1) −→ Tot(Brows≥k) −→ Σ−kB•k −→ 0

from which we infer a canonical triangle in K(A)

Tot(Brows≥k+1) −→ Tot(Brows≥k) −→ Σ−kB•k −→ Σ Tot(Brows≥k+1) (2.14)
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and a sequence of morphisms of complexes, all degree-wise split monomorphisms

Tot(Brows≥k) −→ Tot(Brows≥k−1) −→ Tot(Brows≥k−2) −→ · · · (2.15)

The totalization of B is the direct limit of the totalizations Tot(B) = lim−→Tot(Brows≥k−i).
By Remark 2.16 this agrees with the homotopy colimit in K(A), so we have a triangle⊕

i≥0

Tot(Brows≥k−i) −→
⊕
i≥0

Tot(Brows≥k−i) −→ Tot(B) −→ Σ
⊕
i≥0

Tot(Brows≥k−i)

Remark 2.18. Suppose for example that B vanishes in rows > k. Then Brows≥k = B•k

and we have constructed Tot(B) as the homotopy colimit of a sequence (2.15) beginning
with the kth row and adding at each stage a new row, via the triangle of (2.14). In
particular, if there is some localizing subcategory of K(A) (or D(A), provided A has exact
coproducts) containing each row of B, then it must contain the totalization Tot(B).

We say that B is bounded vertically if there exist integers s, t with the row B•k equal to
zero unless s ≤ k ≤ t. In this case Tot(Brows≥i) = Tot(B) for i� 0, and a finite sequence
of triangles (2.14) connects the row B•k to the complex Tot(B). Hence, if any triangulated
subcategory of K(A) or D(A) contains the rows of B, it contains the totalization Tot(B).

There is a similar technique for columns. Denote by Bcols≥k the result of deleting all
columns< k in B. There is a morphism of bicomplexes Bcols≥k+1 −→ Bcols≥k with cokernel
Bk• and an exact sequence of bicomplexes 0 −→ Bcols≥k+1 −→ Bcols≥k −→ Bk• −→ 0
split exact in each bidegree, which yields a triangle in K(A)

Tot(Bcols≥k+1) −→ Tot(Bcols≥k) −→ Σ−kBk• −→ Σ Tot(Bcols≥k+1) (2.16)

Lemma 2.19. Let A be a cocomplete abelian category and B a bicomplex in A that is
bounded vertically and has contractible (acyclic) columns. Then Tot(B) is a contractible
(acyclic) complex.

Proof. Both claims are standard; we prove the statement about contractibility, since it is
probably less well-known. Exactly the same argument shows that if the columns of B are
acyclic then Tot(B) is acyclic. We observe that complex X in A is contractible if and only
if it is acyclic and for every n ∈ Z the following short exact sequences is split exact

0 −→ Ker(∂nX) −→ Xn −→ Ker(∂n+1
X ) −→ 0

Since B is bounded vertically, the totalization complex Tot(B) in degree n only “sees” a
horizontally bounded region of the bicomplex. To be precise, let s, t be integers such that
the row B•k is the zero complex unless s ≤ k ≤ t. Then

Tot(B)n = ⊕i+j=nBij = B(n−s)s ⊕ · · · ⊕B(n−t)t

Thus in checking contractibility of Tot(B) we may as well assume that B is horizontally
bounded as well as vertically bounded. In that case, there is an integer n such that the
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column Bk• is zero for k > n. Using (2.16) we have a series of triangles in K(A), beginning
with Bcols≥n = Bn•

Σ−nBn• −→ Tot(Bcols≥n−1) −→ Σ−n+1B(n−1)• −→ Σ1−nBn•

Tot(Bcols≥n−1) −→ Tot(Bcols≥n−2) −→ Σ−n+2B(n−2)• −→ Σ Tot(Bcols≥n−1)
...

Since the columns are all contractible, we deduce that Tot(Bcols≥n−i) is contractible for
i ≥ 0. But for i � 0 this totalization is equal to Tot(B), because B is horizontally
bounded, which proves that Tot(B) is contractible.

2.2 Resolutions of Complexes

Given an abelian category A the correct notion of injective and projective resolutions for
complexes was first elaborated by Spaltenstein [Spa88]. Following his notation, complexes
in the orthogonal ⊥Kac(A) ⊆ K(A) are called K-projective, and those in Kac(A)⊥ ⊆ K(A)
are called K-injective. Using the isomorphism Hn HomA(X,Y ) ∼= HomK(A)(X,ΣnY ), we
have the following alternative characterization:

A complex P is K-projective ⇐⇒ HomA(P,Z) is acyclic for every acyclic complex Z

A complex I is K-injective ⇐⇒ HomA(Z, I) is acyclic for every acyclic complex Z

Any bounded above complex of projectives is K-projective, and any bounded below com-
plex of injectives is K-injective. A K-projective resolution of a complex X is a quasi-
isomorphism P −→ X from a K-projective complex P , and a K-injective resolution is a
quasi-isomorphism X −→ I to a K-injective complex I.

If A is a category of modules over a ring, or sheaves of modules over a ringed space, a
complex X in A is called K-flat if X ⊗ E is acyclic for any acyclic complex E in A. The
K-flat complexes form a localizing subcategory of K(A), any bounded above complex of
flats is K-flat and the class of K-flat complexes is closed under direct limits and homotopy
colimits in K(A); see [Spa88, §5] and [Lip, §2.5]. A K-flat resolution of X is a quasi-
isomorphism F −→ X from a K-flat complex F . Let us clear up a possible point of
confusion: given a scheme X and a complex X of quasi-coherent sheaves, we say that X

is K-flat when it is K-flat as a complex of sheaves of modules in the sense just defined.

Be careful to observe that the definitions of K-projectivity and K-injectivity are relative
to the abelian category A. If we have an abelian subcategory B ⊆ A the K-injectives in
the two categories may differ, and this is a distinction to keep in mind when we come to
study categories of quasi-coherent sheaves Qco(X) ⊆Mod(X) for a scheme X.

Remark 2.20. A complex X has a K-injective resolution if it fits into a triangle in K(A)

C −→ X −→ I −→ ΣC (2.17)
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with C ∈ Kac(A) and I ∈ Kac(A)⊥. If this triangle exists for every complex X we say
that A has K-injective resolutions. By Lemma 2.3 it is equivalent to say that the Verdier
quotient q : K(A) −→ D(A) has a right adjoint, or that there is a localization sequence

Kac(A) // K(A)oo
q // D(A)
qρ

oo

The right adjoint qρ sends X ∈ D(A) to the complex I fitting into a triangle (2.17), which is
unique up to homotopy equivalence. To be perfectly clear, the adjoint qρ takes K-injective
resolutions. It is well-known that K-injective resolutions exist for any Grothendieck abelian
category A; see [Spa88] and [AJS00]. There is a dual discussion of K-projective resolutions,
when they exist.

There is a standard construction of resolutions of unbounded complexes that we review
below. In what follows A denotes a Grothendieck abelian category; see [Ste75, Chapter 5]
for the definition. Let P ⊆ A be a class of objects that is closed under isomorphism and
arbitrary coproducts, contains the zero objects, and has the property that every X ∈ A
admits an epimorphism P −→ X with P ∈ P. We say that a complex P is in P when
P i ∈ P for every i ∈ Z. The dual of [Har66, Lemma 4.6] constructs, for any bounded
above complex X in A, a quasi-isomorphism P −→ X with P a bounded above complex
in P. The next lemma proves that, if we choose our resolutions correctly, we can make
this process functorial. This seems to be due to Spaltenstein; see [Spa88, Lemma 3.3].

Lemma 2.21. Let X −→ Y be a morphism of bounded above complexes in A, and suppose
P −→ X is a quasi-isomorphism with P a bounded above complex in P. There exists a
commutative diagram in K(A)

P

��

// Q

��
X // Y

(2.18)

with Q −→ Y a quasi-isomorphism and Q a bounded above complex in P.

Proof. Let T be the mapping cone of P −→ X −→ Y . There is a canonical morphism
Σ−1T −→ P and we can find a quasi-isomorphism P ′ −→ Σ−1T with P ′ a bounded above
complex in P. Take Q to be the mapping cone of P ′ −→ Σ−1T −→ P .

Using homotopy colimits, we can construct a resolution for any complex.

Lemma 2.22. Any complex X in A admits a quasi-isomorphism P −→ X with P a
complex in P that is the homotopy colimit in K(A) of a sequence

P0 −→ P1 −→ P2 −→ P3 −→ · · ·

of bounded above complexes in P.
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Proof. By the dual of [Har66, Lemma 4.6] we can find a quasi-isomorphism P0 −→ X≤0

with P0 a bounded above complex in P and, using Lemma 2.21, construct a commutative
diagram in K(A)

P0

��

// P1

��

// P2

��

// · · ·

X≤0 // X≤1 // X≤2 // · · ·

(2.19)

in which every vertical morphism is a quasi-isomorphism, and each Pi is a bounded above
complex in P. Taking the homotopy colimit of the rows of the diagram (2.19) in K(A)
we obtain a quasi-isomorphism holim−−−→n≥0Pn −→ X (using exactness of coproducts in A).
Since P = holim−−−→n≥0Pn is, by definition, the mapping cone of a morphism of two complexes
in P, it is also a complex in P.

2.3 Relative Homological Algebra

Throughout this section A is a ring (commutative, as usual) and modules are defined over
A by default. For a variety of reasons, we are interested in the homotopy categories of
injective, projective and flat modules

K(InjA), K(ProjA), K(FlatA)

so it is worthwhile studying ways to construct compact objects in these categories. The
subject of relative homological algebra provides a rich set of tools for this purpose: there
is a unified way of constructing, from a finitely generated module M , a compact object in
K(X ) for X one of Inj(A),Proj(A),Flat(A).

In this section we introduce some relevant concepts from the literature, and explain how
to view results of relative homological algebra in the context of homotopy categories. Many
of these ideas have now appeared in a comprehensive paper of Holm and Jørgensen [HJ07]
which treats the material in greater generality than we need to here. The observations of
this section were obtained independently of their paper.

Setup. In this section X denotes a class of modules closed under isomorphism, finite direct
sums and direct summands. In practice, X will be one of the classes Inj(A),Proj(A) or
Flat(A). We denote by K(X ) the corresponding homotopy category.

In constructing objects of K(X ) the key concept is that of a preenvelope, which has
been studied extensively in the literature; we recall the basic definitions from [Xu96, §1.2].

Definition 2.23. An X -preenvelope of a module M is a morphism φ : M −→ X with
X ∈ X such that any morphism f : M −→ X ′ where X ′ ∈ X factors as f = gφ for some
morphism g : X −→ X ′. We do not require the factorization to be unique. Taking X to be
the classes Inj(A),Proj(A) and Flat(A) we obtain, respectively, the notion of a injective,
projective and flat preenvelope. Some observations:

• An injective preenvelope is precisely a monomorphism φ : M −→ X with X injective,
so every module M has an injective preenvelope.
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• Over a noetherian ring every module has a flat preenvelope [Xu96, Theorem 2.5.1]
and every finitely generated module has a projective preenvelope (see Remark 2.26).

Even over a noetherian ring not every module has a projective preenvelope, and those
projective or flat preenvelopes that exist are not always monomorphisms; for example, see
[AM93, Corollary 3.6] and [Din96, Corollary 3.9].

A flat resolution of a module M is an exact sequence with each F i flat

· · · −→ F−1 −→ F 0 −→M −→ 0 (2.20)

Over a noetherian ring we can take flat preenvelopes and cokernels repeatedly to construct
a complex (not necessarily exact) extending to the right with each F i flat

0 −→M −→ F 0 −→ F 1 −→ F 2 −→ · · · (2.21)

This is called a proper right flat resolution of M (see below for the precise definition). Such
resolutions were introduced by Enochs in [Eno81] where they were known as resolvents. In
this article, we use the notation of Holm [Hol04, §2.1]; see also [Xu96, §3.6] and [EJ00, §8.1].
We prove that applying the construction (2.21) to finitely generated modules produces
compact objects in K(FlatA) (resp. K(ProjA), when we use projective preenvelopes).

Definition 2.24. An augmented proper right X -resolution of a module M is a complex

S : 0 −→M −→ X0 −→ X1 −→ X2 −→ · · · (2.22)

with Xi ∈ X such that HomA(S,X) is acyclic for every X ∈ X . We call the complex X

consisting of just the objects Xi a proper right X -resolution of M . Note that the complex
S in (2.22) need not be exact.

A proper right injective resolution is simply an injective resolution. Over a noetherian
ring every module has a proper right flat resolution because flat preenvelopes exist; see
the next remark. We show in Remark 2.26 that over a noetherian ring a finitely generated
module has a proper right projective resolution.

Remark 2.25. Let M be a module with an augmented proper right X -resolution S

S : 0 −→M −→ X0 −→ X1 −→ X2 −→ · · · (2.23)

Then the morphisms M −→ X0 and Coker(M −→ X0) −→ X1, Coker(Xi−1 −→ Xi) −→
Xi+1 for i ≥ 1 are X -preenvelopes. In fact this property characterizes the complexes S of
the form given in (2.23) that are augmented proper right X -resolutions.

On the other hand, suppose that every module has an X -preenvelope and let M be
a module. We construct an augmented proper right X -resolution of M as follows: take
an X -preenvelope M −→ X0 with cokernel X0 −→ C0, then take an X -preenvelope
C0 −→ X1 and let C1 denote the cokernel of the composite X0 −→ C0 −→ X1. Take an
X -preenvelope of C1 and repeat to construct an augmented proper right X -resolution.
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Remark 2.26. Let A be a noetherian ring and M a finitely generated module. Then
the dual M∗ = HomA(M,A) is a finitely generated module, so it admits a resolution by
finitely generated projectives (in the ordinary sense)

· · · −→ P2 −→ P1 −→ P0 −→M∗ −→ 0

Applying HomA(−, A) and composing with the canonical morphism M −→M∗∗ we have a
complex of finitely generated modules with each P ∗i a finitely generated projective module

S : 0 −→M −→ P ∗0 −→ P ∗1 −→ P ∗2 −→ · · · (2.24)

It follows from [Jør05, Lemma 1.3] that S is an augmented proper right projective resolu-
tion; that is, P ∗ is a proper right projective resolution of M . In particular, the morphism
M −→ P ∗0 is a projective preenvelope.

The next result gives the connection between proper right resolutions and orthogonals.

Proposition 2.27. Let M be a module and suppose that we are given a complex

S : 0 −→M −→ X0 −→ X1 −→ X2 −→ · · ·

with Xi ∈ X . The following conditions are equivalent:

(i) S is an augmented proper right X -resolution.

(ii) S belongs to ⊥K(X ). That is, HomK(A)(S,Z) = 0 for every Z ∈ K(X ).

Proof. (i)⇒ (ii) By definition, HomA(S,X) is acyclic for X ∈ X . Taking cohomology we
deduce that HomK(A)(ΣiS,X) = 0 for every i ∈ Z, so X belongs to {S}⊥. It follows by a
standard argument that any bounded complex in K(X ) also belongs to {S}⊥.

By Remark 2.16 every bounded below complex Z in K(X ) is the homotopy limit of
its truncations bZ≤n, which are bounded complexes and therefore belong to {S}⊥. This
orthogonal is colocalizing, so it is closed under homotopy limits, and thus Z is in {S}⊥.
Finally, given any complex Z ∈ K(X ), we have by Remark 2.14

HomK(A)(S,Z) ∼= HomK(A)(S, bZ≥−1) = 0

which shows that S belongs to ⊥K(X ), as required.

(ii) ⇒ (i) For X ∈ X we have H i HomA(S,X) ∼= HomK(A)(S,ΣiX) which is zero by
assumption. This proves that HomA(S,X) is acyclic and that S is an augmented proper
right X -resolution.

A proper right X -resolution of M is the closest approximation to M among complexes
in K(X ). More precisely, such a resolution represents M in the homotopy category K(X ).
It follows that the proper right X -resolutionXM ofM (if it exists) is unique up to canonical
isomorphism in K(X ).
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Corollary 2.28. Let M be a module with proper right X -resolution XM . The canonical
morphism of complexes M −→ XM extends to a triangle in K(A)

S −→M −→ XM −→ ΣS (2.25)

with S in ⊥K(X ). For any complex Y in K(X ) there is a natural isomorphism

HomK(X )(XM , Y ) ∼−→ HomK(A)(M,Y ) (2.26)

Proof. Let S be the augmented proper right X -resolution of M corresponding to XM ,
where we agree that in the complex S the module M has degree zero. Then ΣS is
canonically isomorphic to the mapping cone of M −→ XM and fits into a triangle (2.25).
By Proposition 2.27 we have S ∈ ⊥K(X ), so given Y ∈ K(X ) we can apply the homological
functor HomK(A)(−, Y ) to (2.25) to deduce the isomorphism (2.26).

Let us state this result for our special examples of the class X . Let A be a noetherian
ring and M a module with injective resolution IM and proper right flat resolution FM .
By the previous corollary we have isomorphisms

HomK(InjA)(IM ,−) ∼−→ HomK(A)(M,−) (2.27)

HomK(FlatA)(FM ,−) ∼−→ HomK(A)(M,−) (2.28)

If M is finitely generated then it has a proper right projective resolution PM and

HomK(ProjA)(PM ,−) ∼−→ HomK(A)(M,−) (2.29)

A finitely generated module M is compact in K(A), so in this case the proper resolutions
IM , PM and FM are compact in their respective homotopy categories (here we use the fact
that these choices of X are closed under coproducts). Letting M vary produces a compact
generating set for K(InjA) and K(ProjA); see [Kra05, Proposition 2.3] and Theorem 2.30.

These isomorphisms are not new; in the injective case we have reproduced [Kra05,
Lemma 2.1] and in the projective case [Jør05, Lemma 1.5], since the proper right projective
resolution PM is precisely the complex P ∗ of Jørgensen’s [Jør05, Construction 1.2]. The
point of this section is that these results are special cases of a general principle:

Meta-Theorem 2.29. To represent a module M in the homotopy category K(X ) take a
proper right X -resolution of M . To construct compact objects in K(X ), represent finitely
generated modules.

The next result is an improvement on a result of Jørgensen [Jør05, Theorem 2.4] made
possible by recent work of Neeman1. To be clear, nothing about the next theorem is new;
the fact that K(ProjA) is compactly generated can be found as [Nee06a, Proposition 6.14].
We state the result here for the reader’s convenience.

1We should clarify what we mean by an “improvement”. Jørgensen’s theorem is, in some sense, more

general, but specialized to commutative noetherian rings he requires, roughly speaking, that the ring have

finite Krull dimension. See [Jør05] for the precise details.
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Theorem 2.30. If A is noetherian then K(ProjA) is compactly generated, and

S = {ΣiPM |M is a finitely generated module and i ∈ Z}

is a compact generating set, where PM denotes a proper right projective resolution of M .

Proof. Up to isomorphism there is a set of finitely generated modules. Pick one module
from each isomorphism class and let S be a set containing a proper right projective reso-
lution for each of these chosen modules, together with all shifts of such complexes. These
objects are compact, and we claim that S generates K(ProjA). To prove the claim, we
have to show that if a complex Q of projective modules satisfies

HomK(ProjA)(Σ
iPM , Q) = 0 for all finitely generated M and i ∈ Z (2.30)

then Q is zero in K(ProjA). The proof of [Jør05, Theorem 2.4] shows that the condition
(2.30) forces Q to be an acyclic complex with flat kernels. At this point Jørgensen uses
his hypothesis that all flat modules have finite projective dimension to conclude that each
kernel module of Q is projective, which implies that Q is contractible.

This hypothesis is not necessary: Neeman proves in [Nee06a, Theorem 7.7] that any
acyclic complex of flat modules with flat kernels belongs to the orthogonal K(ProjA)⊥ as
an object of K(FlatA). Since Q belongs to both K(ProjA) and K(ProjA)⊥ it must be
zero, which is what we needed to show.

Remark 2.31. Let A be a noetherian ring. Given a finitely generated module M , we
can construct a proper right flat resolution FM of M with each F iM finitely generated and
projective [EJ85, Example 3.4]. By (2.28) we have a natural isomorphism

HomK(ProjA)(FM ,−) = HomK(FlatA)(FM ,−) ∼−→ HomK(A)(M,−)

This is the unique property of the proper right projective resolution, so we deduce that
FM is isomorphic in K(A) to the proper right projective resolution of M .

This is consistent with a result of Neeman [Nee06a, Remark 6.13] which says that the
inclusion K(ProjA) −→ K(FlatA) preserves compactness: by Theorem 2.30 there is a
compact generating set for K(ProjA) consisting of proper right projective resolutions PM
of finitely generated modules M and, as we have just observed, such a complex is compact
in K(FlatA) as it agrees with the proper right flat resolution.

There is a dual theory of precovers and proper left resolutions that can be used to
contravariantly represent a module in K(X ). Our reference is once again [Xu96, §1.2].

Definition 2.32. An X -precover of a module M is a morphism φ : X −→ M with
X ∈ X such that any morphism f : X ′ −→ M with X ′ ∈ X factors as f = φg for some
g : X ′ −→ X. We do not require the factorization to be unique. Taking X to be the classes
Inj(A),Proj(A) and Flat(A) we obtain, respectively, the notion of a injective, projective
and flat precover. Some observations:
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• A projective precover is precisely an epimorphism φ : X −→ M with X projective,
so every module M has a projective precover.

• Over a noetherian ring every module has an injective precover; see [Xu96, Theorem
2.4.1].

• Every module has a flat precover. This was a conjecture of Enochs for almost twenty
years and was settled in the affirmative by Bican, El Bashir and Enochs [BEB01].

The reader should note that flat precovers are always epimorphisms, but injective precovers
are not necessarily epimorphisms and can even be zero; see [Xu96, Theorem 2.4.8].

Definition 2.33. An augmented proper left X -resolution of a module M is a complex

S : · · · −→ X−2 −→ X−1 −→ X0 −→M −→ 0 (2.31)

with Xi ∈ X such that HomA(X,S) is acyclic for every X ∈ X . We call the complex X

consisting of just the objects Xi a proper left X -resolution of M . Following tradition, we
will sometimes index the complex X homologically rather than cohomologically (that is,
writing Xi for X−i). Note that the complex S in (2.31) need not be exact.

A proper left projective resolution is simply a projective resolution. Every module has
a proper left flat resolution and over a noetherian ring every module has a proper left
injective resolution, because precovers of both type exist; see the next remark.

Remark 2.34. Let M be a module with augmented proper left X -resolution

S : · · · −→ X−2 −→ X−1 −→ X0 −→M −→ 0 (2.32)

Then the morphisms X0 −→M and X−1 −→ Ker(X0 −→M) and X−i−1 −→ Ker(∂−iX )
for i ≥ 1 are X -precovers. In fact this property characterizes the complexes S of the
form given in (2.32) that are augmented proper left X -resolutions. If every module has an
X -precover then we can take repeated precovers and kernels to construct an augmented
proper left X -resolution of M .

The next pair of results give the connection between left resolutions and orthogonals.
The results are dual to Proposition 2.27 and Corollary 2.28, so we omit the proofs.

Proposition 2.35. Let M be a module and suppose that we are given a complex

S : · · · −→ X−2 −→ X−1 −→ X0 −→M −→ 0

with Xi ∈ X . The following conditions are equivalent:

(i) S is an augmented proper left X -resolution.

(ii) S belongs to K(X )⊥. That is, HomK(A)(Z, S) = 0 for every Z ∈ K(X ).

A proper left X -resolution contravariantly represents a module in K(X ).
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Corollary 2.36. Let M be a module with proper left X -resolution XM . Then the canonical
morphism of complexes XM −→M extends to a triangle in K(A)

XM −→M −→ S −→ ΣXM (2.33)

with S in K(X )⊥. For any complex Y in K(X ) there is a natural isomorphism

HomK(X )(Y,XM ) ∼−→ HomK(A)(Y,M) (2.34)

The triangle (2.25) of Corollary 2.28 can be taken as the definition of a proper right
resolution. This has the advantage that the generalization to complexes is immediate; we
will make use of proper resolutions of complexes in Chapter 4 and again in Appendix B.

Definition 2.37. Given a complex M of modules and a triangle in K(A)

S −→M −→ XM −→ ΣS (2.35)

with XM ∈ K(X ) and S ∈ ⊥K(X ) we call the complex XM a proper right X -resolution.
The complexes M fitting into a triangle of the form (2.35) form a triangulated subcategory
of K(A) (called the Verdier sum). Hence, if every module has a X -preenvelope then every
bounded complex of modules admits a proper right X -resolution. Similarly, a proper left
X -resolution of a complex M is a morphism of complexes XM −→M fitting into a triangle

XM −→M −→ S −→ ΣXM

with XM ∈ K(X ) and S ∈ K(X )⊥. When M is a module these two definitions agree with
the original definitions; see Corollary 2.28 and Corollary 2.36.
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Chapter 3

The Mock Homotopy Category of

Projectives

In this chapter we introduce the mock homotopy category Km(ProjX) of projectives and
give its basic properties. In Section 3.1 we define the Čech triangles, enabling us to pass
from local statements to global ones; an important example is Theorem 3.16, where we
show that Km(ProjX) has small Homs. In Section 3.2 we prove that every quasi-coherent
sheaf is a quotient of a flat quasi-coherent sheaf, a fact that will be needed in the sequel.

Setup. In this chapter X denotes a scheme, and sheaves are defined over X by default.

Definition 3.1. Let K(FlatX) be the homotopy category of flat quasi-coherent sheaves.
Its objects are the complexes of flat quasi-coherent sheaves

· · · // Fn−1 ∂n−1
// Fn ∂n // Fn+1 // · · ·

and its morphisms are the homotopy equivalence classes of morphisms of complexes. The
category K(FlatX) is a triangulated category with coproducts.

Let E(X) denote the full subcategory of K(FlatX) consisting of complexes E with the
property that F ⊗ E is acyclic for every sheaf of modules F . Taking F = OX shows
that all such complexes are acyclic. It is worth mentioning the following fact, though we
will make no use of it: in the definition of E(X) it is equivalent to require that F ⊗ E be
acyclic for every quasi-coherent sheaf F ; see Lemma 3.25.

Lemma 3.2. E(X) is a localizing subcategory of K(FlatX).

Proof. Given a triangle A −→ B −→ C −→ ΣA in K(FlatX) with A and B in E(X)
we have to show that C ∈ E(X). For any sheaf of modules F there is a triangle in the
homotopy category K(X) of sheaves of modules

F ⊗A −→ F ⊗B −→ F ⊗ C −→ Σ(F ⊗A )

From the long exact cohomology sequence we infer that F ⊗C is acyclic, thus C ∈ E(X).
Tensoring with a complex preserves coproducts, so E(X) is a localizing subcategory.
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Definition 3.3. Let Km(ProjX) be the Verdier quotient

Km(ProjX) = K(FlatX)/E(X)

which is a triangulated category with coproducts; the objects are the complexes of flat
quasi-coherent sheaves and a morphism F −→ G in Km(ProjX) is an equivalence class
of “fractions” given by pairs of morphisms in K(FlatX)

F W
foo g // G

where f has mapping cone in E(X), and is in particular a quasi-isomorphism. The quotient
functor Q : K(FlatX) −→ Km(ProjX) preserves coproducts [Nee01b, Corollary 3.2.11]
and sends morphisms with mapping cone in E(X) to isomorphisms in Km(ProjX). It is
universal with this property.

The subscript “m” for mock is a reminder that Km(ProjX) is not defined to be the
homotopy category of any additive category. In particular, it is not the homotopy category
of projective quasi-coherent sheaves. There is no danger of confusion, because we do not
consider such sheaves.

The next result gives several characterizations of the complexes in E(X). In the proof
we use the Tor sheaves, so it is worth reminding the reader of the definition. For complexes
F ,G of sheaves of modules there is a tensor complex F ⊗ G defined in degree n ∈ Z by
(F ⊗ G )n =

⊕
i+j=n F i ⊗ G j with an appropriate differential; consult [Lip, (1.5.4)]. The

derived tensor product is a bifunctor on the derived category D(X) of (arbitrary) sheaves
of modules, which is triangulated in each variable

−
=
⊗− : D(X)× D(X) −→ D(X)

and defined by F
=
⊗ G = F ⊗ FG where FG is a K-flat resolution of G ; see [Lip, §2.5]. In

the next result, and throughout this thesis, we will speak often of K-flat complexes, which
are the generalization of flat modules; see Section 2.2 for the definition.

If F ,G are sheaves of modules, we have for i ∈ Z a sheaf Tori(F ,G ) = H−i(F
=
⊗G ).

The sheaf F is flat if and only if Tori(F ,G ) = 0 for every sheaf of modules G and i > 0.

Proposition 3.4. Let E be a complex of flat quasi-coherent sheaves. The following are
equivalent:

(i) E belongs to E(X).

(ii) E is acyclic and the kernel of (∂E )n : E n −→ E n+1 is flat for every n ∈ Z.

(iii) E is acyclic and K-flat.

(iv) For any complex F of sheaves of modules the complex F ⊗ E is acyclic.

Proof. (i) ⇒ (ii) If E belongs to E(X) then it is acyclic, and we need to show that the
quasi-coherent sheaf Ker(∂nE ) is flat. Note that

· · · −→ E n−3 −→ E n−2 −→ E n−1 −→ Ker(∂nE ) −→ 0
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is a flat resolution of Ker(∂nE ). Given a sheaf of modules F the complex F ⊗ E is acyclic
by assumption, so the following complex is exact

· · · −→ F ⊗ E n−3 −→ F ⊗ E n−2 −→ F ⊗ E n−1

This is another way of saying that the Tor sheaf Tori(F ,Ker(∂nE )) vanishes for i > 0.
Since F was arbitrary, this implies that Ker(∂nE ) is flat, as claimed.

(ii)⇒ (iii) Let E be an acyclic complex of flat quasi-coherent sheaves with flat kernels.
For each n ≥ 0 the truncation E≤n (see Section 2.1 for the notation) is a bounded above
complex of flat quasi-coherent sheaves, hence K-flat, from which it follows that the direct
limit E = lim−→E≤n is K-flat [Lip, §2.5].

(iii)⇒ (iv) Given a complex F of sheaves of modules, we can find a quasi-isomorphism
P −→ F with P a K-flat complex [Lip, Proposition 2.5.5]. Extending to a triangle, and
tensoring with E , we have a triangle in K(X) with C acyclic

P ⊗ E −→ F ⊗ E −→ C ⊗ E −→ Σ(P ⊗ E )

Since E is K-flat, C ⊗E is acyclic. Moreover, E is acyclic and P is K-flat, so P⊗E must
also be acyclic. From the triangle we conclude that F ⊗ E is acyclic. Finally, (iv) ⇒ (i)
is trivial, so the proof is complete.

Every result about Km(ProjX) for schemes specializes to a statement about complexes
of flat modules over a commutative ring; in fact, the theory also makes sense over noncom-
mutative rings. In the next remark we recall some features of the affine case established
earlier by Neeman.

Remark 3.5. Let A be a noncommutative ring, and let K(FlatA),K(ProjA) denote the
homotopy categories of flat (resp. projective) left A-modules. Let E(A) be the triangulated
subcategory of K(FlatA) consisting of acyclic complexes with flat kernels, and define

Km(ProjA) = K(FlatA)/E(A)

In this situation the characterizations of Proposition 3.4 hold and are due to Neeman, who
gives a different proof; see [Nee06a, Theorem 7.7, Corollary 8.4]. As many of our theorems
rely crucially on Neeman’s papers [Nee06a] and [Nee06c] we recall here some of his results:

(i) The subcategory E(A) is equal to the orthogonal K(ProjA)⊥ in K(FlatA) [Nee06a,
Theorem 7.7]. Thus, a complex E of flat A-modules belongs to E(A) if and only if
HomA(P,E) is acyclic for every complex P of projective A-modules.

(ii) The category K(ProjA) is well generated, so by Brown-Neeman representability the
inclusion K(ProjA) −→ K(FlatA) has a right adjoint [Nee06a, Corollary 7.1]. The
reader unfamiliar with well generated triangulated categories is referred to [Nee01b].
We use the theory to avoid a noetherian hypothesis in Theorem 5.5.
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(iii) Using flat covers, Neeman proves that the inclusion E(A) −→ K(FlatA) has a right
adjoint; see [Nee06c, Theorem 3.1]. This inclusion has a left adjoint by (ii) and the
standard theory of Bousfield localization, so we have a recollement

E(A) // K(FlatA)oo
oo // Km(ProjA)oo

oo

There is an equivalence of K(ProjA), as a subcategory of K(FlatA), with the orthog-
onal ⊥(K(ProjA)⊥) = ⊥E(A). From Lemma 2.3(iv) we conclude that the composite

K(ProjA) inc // K(FlatA) can // Km(ProjA)

is an equivalence of triangulated categories.

The class E(A) appeared in the literature well before Neeman’s [Nee06a], where it is
denoted S. In [EGR98] Enochs and Rozas call these complexes flat. But apart from some
overlap between [Nee06a, Theorem 7.7] and [EGR98, Theorem 2.4] the two papers are
very different. One can also think of the complexes in E(A) as the pure exact complexes
of flat modules; see for example [Chr98, §9.1].

Over an affine scheme, the mock homotopy category is the ordinary homotopy category.

Lemma 3.6. Let X = Spec(A) be an affine scheme. There is an equivalence

K(ProjA) ∼−→ Km(ProjX)

of triangulated categories.

Proof. The equivalence ModA ∼= Qco(X) identifies flat A-modules with flat sheaves, and
induces an equivalence of triangulated categories K(FlatA) ∼= K(FlatX), which becomes
an equivalence Km(ProjA) ∼= Km(ProjX) of the quotients. Combining this observation
with Remark 3.5(iii) we have an equivalence of triangulated categories

K(ProjA) ∼−→ Km(ProjA) ∼−→ Km(ProjX)

sending a complex of projective modules to the associated complex of flat quasi-coherent
sheaves on the affine scheme.

Remark 3.7. Let us given an elementary reason to care about the triangulated category
Km(ProjA), as opposed to the equivalent category K(ProjA). Of course, there is no formal
difference, but it can be clearer to work with flat complexes rather than the associated
complexes of projective modules.

For example, let A be a ring. Given an A-module M with projective resolution P and
flat resolution F , there is a morphism of complexes P −→ F lifting the identity

· · · // P−2

��

// P−1

��

// P 0

��

//M //

1

��

0

· · · // F−2 // F−1 // F 0 //M // 0
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Taking the mapping cone E determines a triangle in K(FlatA)

P −→ F −→ E −→ ΣP

where E is an acyclic, bounded above complex of flats. Any bounded above complex of
flats is K-flat, so E belongs to E(A) by Proposition 3.4. We conclude that

P
∼−→ F is an isomorphism in Km(ProjA)

In particular, this shows that any two flat resolutions of M are isomorphic in Km(ProjA).
More generally, any two K-flat resolutions by flat quasi-coherent sheaves of a complex of
quasi-coherent sheaves are isomorphic in Km(ProjX); see Remark 5.9 below.

Taking stalks at a point x ∈ X and restricting to an open subset U ⊆ X both preserve
flatness, so we have coproduct preserving triangulated functors

(−)|U : K(FlatX) −→ K(FlatU) (3.1)

(−)x : K(FlatX) −→ K(FlatOX,x) (3.2)

Let f : U −→ X be the inclusion of an affine open subset. Then f∗ : Qco(U) −→ Qco(X)
sends flat sheaves to flat sheaves, and there is a triangulated functor

f∗ : K(FlatU) −→ K(FlatX) (3.3)

which, by a standard argument, preserves coproducts and is right adjoint to (3.1).

Lemma 3.8. Let E be a complex of flat quasi-coherent sheaves. Then E ∈ E(X) if and
only if Ex ∈ E(OX,x) for every x ∈ X. It follows that

(i) If U ⊆ X is an open subset and E ∈ E(X) then E |U ∈ E(U).

(ii) If {Vi}i∈I is an open cover of X then E ∈ E(X) if and only if E |Vi ∈ E(Vi) for all
i ∈ I.

Proof. We know from Proposition 3.4 that E belongs to E(X) if and only if it is acyclic
with flat kernels, both of which can be checked on stalks, so the claims are immediate.

Definition 3.9. Taking stalks at a point x ∈ X sends E(X) into E(OX,x), while restricting
to an open subset U ⊆ X sends E(X) into E(U), so the functors of (3.1), (3.2) induce
coproduct preserving triangulated functors on the quotients

(−)|U : Km(ProjX) −→ Km(ProjU) (3.4)

(−)x : Km(ProjX) −→ Km(ProjOX,x) (3.5)

Let f : U −→ X be the inclusion of an affine open subset. Then f∗ : Qco(U) −→ Qco(X) is
exact and sends flat sheaves to flat sheaves, and using characterization (ii) of Proposition
3.4 we infer that f∗E(U) ⊆ E(X). It follows that (3.3) induces a triangulated functor

f∗ : Km(ProjU) −→ Km(ProjX) (3.6)

which, by a standard argument, is coproduct preserving and right adjoint to (3.4).
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Given an additive category A, an object X is zero in A (or just, is zero, when there
is no chance of confusion) when HomA(X,X) = 0. We are often dealing with complexes,
so it is worth being clear: a complex X of objects in A is zero in the homotopy category
K(A) if and only if it is contractible.

Remark 3.10. A complex F of flat quasi-coherent sheaves is zero in Km(ProjX) if and
only if it belongs to E(X),1 which by Lemma 3.8 is a local question. That is,

(i) F = 0 in Km(ProjX) if and only if Fx = 0 in Km(ProjOX,x) for every x ∈ X.

(ii) If {Vi}i∈I is an open cover of X then F = 0 in Km(ProjX) if and only if F |Vi = 0
in Km(ProjVi) for every i ∈ I.

Being an isomorphism is also local, because a morphism f : F −→ G is an isomorphism
in Km(ProjX) if and only if the mapping cone in Km(ProjX) is zero.

The triangles in Km(ProjX) are the candidate triangles isomorphic, in Km(ProjX),
to a triangle from K(FlatX) [Nee01b, §2.1]. Isomorphism in Km(ProjX) is weaker than
homotopy equivalence, so there are triangles in the mock homotopy category not apparent
in the homotopy category of flat sheaves. For example, suppose we have an exact sequence
of complexes of flat quasi-coherent sheaves

0 // A
ϕ // B

ψ // C // 0 (3.7)

It is standard that there is a triangle A −→ B −→ C −→ ΣA in the derived category
D(QcoX). The next lemma observes that this triangle exists already in Km(ProjX).

Note that a short exact sequence of complexes of projective or injective modules must
split in each degree and determine a triangle in K(ProjA) or K(InjA), by Lemma 2.15.
Flats do not split sequences, but they do determine triangles.

Lemma 3.11. Given an exact sequence (3.7) of complexes of flat quasi-coherent sheaves,
there is a canonical morphism z : C −→ ΣA and triangle, both in Km(ProjX)

A
ϕ // B

ψ // C
−z // ΣA (3.8)

Proof. The morphism ψ factorizes as B −→ cone(ϕ)
µ−→ C where cone(ϕ) is the mapping

cone and µ is a quasi-isomorphism, by a standard argument of homological algebra. We
are claiming that µ is actually an isomorphism in Km(ProjX). That is, if we claim that
if you extend µ to a triangle in K(FlatX)

cone(ϕ)
µ−→ C −→ E −→ Σ cone(ϕ) (3.9)

then E belongs to E(X). In each degree (3.7) is exact and consists of flat sheaves, so it is
degree-wise exact and K-flat, and remains exact after tensoring with any sheaf. That is,
for any sheaf of modules F we have a short exact sequence of complexes of sheaves

0 −→ F ⊗A −→ F ⊗B −→ F ⊗ C −→ 0
1Here we actually use thickness of E(X), see [Nee01b, Lemma 2.1.33].
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and a quasi-isomorphism cone(F ⊗ ϕ) −→ F ⊗ C . Tensoring with F is a triangulated
functor, so cone(F⊗ϕ) ∼= F⊗cone(ϕ) and F⊗µ is a quasi-isomorphism for every sheaf of
modules F . From the triangle (3.9) we conclude that F⊗E is acyclic, whence E belongs to
E(X), as claimed. Let w : cone(ϕ) −→ ΣA denote the canonical morphism of complexes
out of the mapping cone, and set z = −w◦µ−1 in Km(ProjX). The candidate triangle (3.8)
is isomorphic in Km(ProjX) to the mapping cone triangle A −→ B −→ cone(ϕ) −→ ΣA ,
and is therefore itself a triangle.

3.1 Čech Triangles

In this section we construct a sequence of Čech triangles in Km(ProjX) that assemble a
complex of flat quasi-coherent sheaves from its restrictions to an open affine cover. This
will allow us to prove global statements about Km(ProjX) using local arguments.

Setup. In this section X is a scheme with affine open cover U = {U0, . . . , Ud} and sheaves
are defined over X by default.

Given a quasi-coherent sheaf F we have an exact sequence of quasi-coherent sheaves
called the Čech resolution which is, in the notation of [Har77, §III.4]

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · −→ C d(U,F ) −→ 0

C p(U,F ) = ⊕i0<···<ipf∗(F |Ui0,...,ip )

where the Čech sheaf C p(U,F ) is a direct sum over sequences i0 < · · · < ip of length p in
{0, . . . , d} and f : Ui0,...,ip −→ X is the inclusion of the open set Ui0,...,ip = Ui0 ∩ · · · ∩ Uip .
Taking the pth Čech sheaf defines an exact coproduct preserving functor

C p(U,−) : Qco(X) −→ Qco(X)

For a complex of quasi-coherent sheaves F we can take Čech resolutions of each term to
obtain a bicomplex of quasi-coherent sheaves (see Section 2.1 for background)

0 0 0

· · · // C d(U,Fn−1) //

OO

C d(U,Fn)

OO

// C d(U,Fn+1)

OO

// · · ·

...

OO

...

OO

...

OO

· · · // C 0(U,Fn−1) //

OO

C 0(U,Fn)

OO

// C 0(U,Fn+1)

OO

// · · ·

· · · // Fn−1

OO

// Fn

OO

// Fn+1

OO

// · · ·

0

OO

0

OO

0

OO

(3.10)
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Denote by C (U,F ) the upper part of this bicomplex formed by just the Čech sheaves
(that is, delete the bottom row containing F ). In column i ∈ Z and row j ≥ 0 the sheaf
in this bicomplex is C (U,F )ij = C j(U,F i). The next lemma tells us that in Km(ProjX)
the complex F is isomorphic to the totalization of this bicomplex.

Lemma 3.12. Given a complex F of flat quasi-coherent sheaves there is a triangle in
K(FlatX) with E an object of E(X)

F −→ Tot C (U,F ) −→ E −→ ΣF

In particular, there is an isomorphism F
∼−→ Tot C (U,F ) in Km(ProjX).

Proof. Note that C (U,F ) is a bicomplex of flat quasi-coherent sheaves because each Čech
sheaf C j(U,F i) is a coproduct of direct images of flat sheaves under a flat affine morphism,
and such direct image sheaves are flat.

Let D denote the bicomplex in (3.10) which has the bicomplex C (U,F ) in rows ≥ 0
and the complex F in row −1. Actually, to get the signs right in what follows we should
take D to be the bicomplex in (3.10) but with some signs modified, as indicated in the
following diagram

· · · + // C 0(U,F−1)
+ // C 0(U,F 0)

+ // C 1(U,F 1)
+ // · · ·

· · · −
// F−1

−
OO

−
// F 0

−
//

+

OO

F 1

−
OO

−
// · · ·

(3.11)

The −1st row F of (3.10) gets negative signs on its morphisms in D, and we alternate
the signs on the morphisms between the F i and C 0(U,F i), as indicated. Everywhere else
the signs on the morphisms in D agree with the natural ones in (3.10).

There is a canonical morphism of bicomplexes C (U,F ) −→ D, whose cokernel is a
bicomplex nonzero only in row −1, where it is F with a negative sign on all its differentials,
as in (3.11). This gives rise to a short exact sequence of bicomplexes, split exact in each
bidegree, and then by Lemma 2.17 we obtain a triangle in K(FlatX)

Tot C (U,F ) // Tot(D) // ΣF
−Σu // Σ Tot C (U,F )

where un : Fn −→ Tot C 0(U,F )n is the first morphism Fn −→ C 0(U,Fn) in the Čech
resolution composed with the inclusion of C 0(U,Fn) into the coproduct⊕j≥0C j(U,Fn−j).
Shifting, we have

F
u // Tot C (U,F ) // Tot(D) // ΣF (3.12)

It is well-known that the bicomplex Dx of OX,x-modules has contractible columns [Har77,
III.4.2] so Lemma 2.19 implies that the totalization Tot(Dx) ∼= Tot(D)x is contractible,
and therefore in the subcategory E(OX,x), for every x ∈ X. Using Lemma 3.8 we conclude
that Tot(D) ∈ E(X), so u : F −→ Tot C (U,F ) is an isomorphism in Km(ProjX).
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Now we are ready to define the Čech triangles. Given a bicomplex B, we denote by
Brows≥k the brutal row truncation of B which deletes the rows < k. Recall also that our
scheme X comes with an affine open cover U with d+ 1 elements.

Proposition 3.13. Associated to every complex F of flat quasi-coherent sheaves is a
canonical sequence of triangles in Km(ProjX)

Pd−1 −→ F −→ C 0(U,F ) −→ ΣPd−1

Pd−2 −→Pd−1 −→ Σ−1C 1(U,F ) −→ ΣPd−2

...

Pi −→Pi+1 −→ Σ−d+i+1C d−i−1(U,F ) −→ ΣPi

...

P1 −→P2 −→ Σ−d+2C d−2(U,F ) −→ ΣP1

Σ−dC d(U,F ) −→P1 −→ Σ−d+1C d−1(U,F ) −→ Σ1−dC d(U,F )

where Pi = Tot(C (U,F )rows≥d−i). Moreover, these triangles are natural in F .

Proof. Associated to the bicomplex B = C (U,F ) are the brutal row truncations Brows≥d−i

and their totalizations Pi = Tot(Brows≥d−i). For i ≥ 0 there are canonical triangles in
K(FlatX) that relate successive truncations (see the triangle (2.14) in Section 2.1)

Pi −→Pi+1 −→ Σ−d+i+1C d−i−1(U,F ) −→ ΣPi (3.13)

By inspection we have P0 = Σ−dC d(U,F ) and Pd = Tot C (U,F ). This yields a sequence
of triangles in K(FlatX), and therefore Km(ProjX), accounting for all the triangles in
the statement of the proposition except for the first. From (3.13) we have a triangle

Pd−1 −→ Tot C (U,F ) −→ C 0(U,F ) −→ ΣPd−1 (3.14)

In Km(ProjX) we can replace Tot C (U,F ) by the isomorphic object F , which completes
the construction of the Čech triangles. It only remains to discuss naturality.

Given a morphism φ : F −→ G of complexes of flat quasi-coherent sheaves there is an
induced morphism of bicomplexes C (U,F ) −→ C (U,G ) which truncates to a morphism
of complexes Pi −→ Qi for each i ≥ 0, where Qi = Tot(C (U,G )rows≥d−i). We deduce a
morphism of triangles in K(FlatX) for i ≥ 0

Pi

��

//Pi+1

��

// Σ−d+i+1C d−i−1(U,F )

��

// ΣPi

��
Qi

// Qi+1
// Σ−d+i+1C d−i−1(U,G ) // ΣQi

When i = d− 1 we use naturality of the isomorphism F −→ Tot C (U,F ) of Lemma 3.12
to check that the following diagram commutes in Km(ProjX)

Pd−1

��

// F //

φ

��

C 0(U,F )

��

// ΣPd−1

��
Qd−1

// G // C 0(U,G ) // ΣQd−1
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which proves naturality of the Čech triangles with respect to morphisms in K(FlatX).

We give three applications of the Čech triangles, the first of which says that Km(ProjX)
is generated by complexes defined over its affine open subsets. This is the form in which
the previous result will usually be applied.

Corollary 3.14. Let L be a triangulated subcategory of Km(ProjX) and F a complex of
flat quasi-coherent sheaves. Suppose that for any intersection V = Ui0 ∩ · · · ∩ Uip of open
sets in the cover U we have f∗(F |V ) ∈ L, where f : V −→ X denotes the inclusion. Then
F belongs to L.

Proof. Taking finite direct sums we deduce that the Čech complex C p(U,F ) in degree p
belongs to L for every 0 ≤ p ≤ d. The last Čech triangle of Proposition 3.13 has the form

Σ−dC d(U,F ) −→P1 −→ Σ−d+1C d−1(U,F ) −→ Σ1−dC d(U,F )

Because the Čech complexes belong to L we deduce that P1 belongs to L. Climbing up
the sequence of Čech triangles, we find that every Pi belongs to L. Finally, from

Pd−1 −→ F −→ C 0(U,F ) −→ ΣPd−1

we conclude that F belongs to L, as required.

Lemma 3.15. Given a cover {Vα}α∈Λ of X by quasi-compact open subsets, an object X

is compact in Km(ProjX) if and only if X |Vα is compact in Km(ProjVα) for every α ∈ Λ.

Proof. First we prove that a locally compact object is globally compact. That is, given a
complex X of flat quasi-coherent sheaves with X |Vα compact in Km(ProjVα) for every
α ∈ Λ, we have to prove that Hom(X ,−) preserves coproducts (to reduce clutter we omit
subscripts on Homs. It is understood that all Homs are taken in Km(Proj−) over an open
subset of X that will be clear from the context). The first step in the proof is the following
observation:

(?) Let f : U −→ X be the inclusion of an affine open subset, so that we know,
by Definition 3.9, that (−)|U : Km(ProjX) −→ Km(ProjU) has a coproduct
preserving right adjoint and therefore preserves compactness by Lemma 2.9.

Let U = {U0, . . . , Ud} be an affine open cover of X with each Ui contained in some Vα.
Every finite intersection U of open sets in the cover U is an affine open subset of some Vα,
so from the hypothesis and (?) we infer that X |U is compact. We prove that Hom(X ,−)
preserves coproducts by using Čech triangles to reduce the problem to compactness over
such finite intersections.

Suppose that we are given a family {Fs}s∈T of complexes of flat quasi-coherent sheaves
and let ⊕sFs be the coproduct in K(FlatX). The Čech triangles of Proposition 3.13
assemble each complex Fs, as well as the coproduct ⊕sFs, from their restrictions to affine
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open subsets, and the inclusion Fs −→ ⊕sFs induces morphisms of these triangles. More
precisely, for each s ∈ T and 0 ≤ i ≤ d we set

Ps,i = Tot(C (U,Fs)rows≥d−i), Pi = Tot(C (U,⊕sFs)rows≥d−i) (3.15)

We are working in Km(ProjX), so by Lemma 3.12 we can assume that Ps,d = Fs and
Pd = ⊕sFs. The totalizations (3.15) fit into a morphism of triangles in Km(ProjX) for
every s ∈ T and 0 ≤ i ≤ d− 1

Ps,i //

��

Ps,i+1 //

��

Σ−d+i+1C d−i−1(U,Fs) //

��

ΣPs,i

��
Pi

//Pi+1
// Σ−d+i+1C d−i−1(U,⊕sFs) // ΣPi

(3.16)

Applying Hom(X ,−) yields a morphism of long exact sequences for every s ∈ T and
0 ≤ i ≤ d− 1. Fixing i and taking the coproduct of the top row (of this morphism of long
exact sequences) over all s ∈ T produces a morphism of long exact sequences of which the
following diagram is an excerpt

· · · // ⊕s Hom(X ,Ps,i+1)

��

// ⊕s Hom(X ,Σ−d+i+1C d−i−1(U,Fs)) //

��

· · ·

· · · // Hom(X ,Pi+1) // Hom(X ,Σ−d+i+1C d−i−1(U,⊕sFs)) // · · ·
(3.17)

In this diagram every third vertical morphism is an isomorphism of the following type

Hom(X ,C p(U,⊕sFs)) = Hom(X ,⊕i0<···<ipf∗(⊕sFs|Ui0,...,ip ))

∼= ⊕i0<···<ip Hom(X , f∗(⊕sFs|Ui0,...,ip ))

∼= ⊕i0<···<ip Hom(X |Ui0,...,ip ,⊕sFs|Ui0,...,ip ) (Adjunction)

∼= ⊕i0<···<ip ⊕s Hom(X |Ui0,...,ip ,Fs|Ui0,...,ip ) (Locally compact)

∼= ⊕i0<···<ip ⊕s Hom(X , f∗(Fs|Ui0,...,ip )) (Adjunction)

∼= ⊕s Hom(X ,⊕i0<···<ipf∗(Fs|Ui0,...,ip ))

= ⊕s Hom(X ,C p(U,Fs))

We proceed by inductively climbing the sequence of Čech triangles, beginning with the
last one (in the order listed in Proposition 3.13) which corresponds to i = 0. With this
value of i, an isomorphism of the above type occurs in two out of every three columns of
(3.17) because Ps,0 = Σ−dC d(U,Fs). From the Five Lemma we deduce an isomorphism

⊕s Hom(X ,Ps,1) ∼−→ Hom(X ,P1) (3.18)

Next, for i = 1, every third column of (3.17) is once again an isomorphism and, using (3.18)
and the Five Lemma, we conclude that every column is an isomorphism. Proceeding in
this way we eventually reach the final Čech triangle (i = d− 1), and from it we infer that
there is an isomorphism

⊕s Hom(X ,Fs)
∼−→ Hom(X ,⊕sFs) (3.19)
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which proves that X is compact, as required. It remains to check that when X is compact
the restrictions X |Vα are all compact. More generally, let U ⊆ X be a quasi-compact open
subset and U = {W0, . . . ,Wd} an affine open cover of U . By (?) the restrictions X |Wi are
all compact; applying the first part of the proof to the scheme U , cover U and object X |U
we conclude that X |U is compact.

The next theorem generalizes a result of Neeman to schemes; see Remark 3.5(iii).

Theorem 3.16. There is a localization sequence

E(X) // K(FlatX)oo
// Km(ProjX)oo (3.20)

In particular Km(ProjX) has small Homs.

Proof. The existence of a localization sequence (3.20) is equivalent by Lemma 2.3 to the
existence, for every complex F in K(FlatX), of a triangle in K(FlatX) with E in E(X)
and Y in the orthogonal E(X)⊥

E −→ F −→ Y −→ ΣE (3.21)

Let L denote the full subcategory of K(FlatX) consisting of the complexes F that fit into
such a triangle; this is a triangulated subcategory, the Verdier sum of E(X) and E(X)⊥.
The proof will be complete if we can show that every complex F in K(FlatX) belongs to
L. By Lemma 3.12 we have a triangle in K(FlatX)

F −→ Tot C (U,F ) −→ E −→ ΣF (3.22)

with E in E(X). Taking Y = 0 in (3.21) demonstrates that E(X) ⊆ L, so proving that
F belongs to L is equivalent to proving that Tot C (U,F ) belongs to L. The bicomplex
C (U,F ) is bounded vertically, so to show that the totalization belongs to L it suffices to
argue that the rows C p(U,F ) of the bicomplex all belong to L (Remark 2.18).

Each row is a finite direct sum C p(U,F ) = ⊕i0<···<ipf∗(F |Ui0,...,ip ) so to complete the
proof we need to show that f∗(T ) is in L whenever f : V −→ X is the inclusion of an
affine open subset and T is a complex of flat quasi-coherent sheaves on V . The scheme
V is affine, so by [Nee06c, Theorem 3.1] we have a triangle in K(FlatV ) with E in E(V )
and Y in the orthogonal E(V )⊥ (note that Neeman writes S for what we call E(V ))

E −→ T −→ Y −→ ΣE

Applying the functor f∗ : K(FlatV ) −→ K(FlatX) we have a triangle in K(FlatX)

f∗(E ) −→ f∗(T ) −→ f∗(Y ) −→ Σf∗(E )

where f∗(E ) belongs to E(X) and f∗(Y ) belongs to the orthogonal E(X)⊥, because for E ′

in E(X) we have Hom(E ′, f∗(Y )) ∼= Hom(E ′|V ,Y ) = 0. This proves that f∗(T ) belongs
to the subcategory L, and completes the proof of the theorem.
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Remark 3.17. For affine schemes the quotient Q : K(FlatA) −→ Km(ProjA) has a left
adjoint, so the localization sequence of the theorem is a recollement; see Remark 3.5(iii).
This is false for arbitrary schemes, and X = P1

k gives a counterexample; see Remark A.15.
The point is that when Q has a left adjoint products in Qco(X) must be exact, and this
is known to fail for the projective line.

3.2 Enough Flat Quasi-coherent Sheaves

Over a quasi-projective variety any quasi-coherent sheaf can be written as a quotient of a
locally free sheaf; see [TT90, Lemma 2.1.3]. In particular, every quasi-coherent sheaf is a
quotient of a flat quasi-coherent sheaf. We prove in this section that this weaker condition
holds for all schemes (recall that, by our standing hypothesis, schemes are quasi-compact
and separated). This fact will become very important in Chapter 5.

The key observation is contained in Proposition 3.19. First, we give a technical lemma
that is well-known, but for which we could not find a convenient reference.

Setup. In this section X denotes a scheme, and sheaves are defined over X by default.

Lemma 3.18. Let T be a triangulated category, S a thick triangulated subcategory, and
suppose that we have a commutative diagram in T with triangles for rows

A

f
��

// B

g

��

// C

h
��

// ΣA

��
A′ // B′ // C ′ // ΣA′

(3.23)

If any two of f, g, h have mapping cone in S, then so does the third.

Proof. Assume without loss of generality that f, g have mapping cone in S, and therefore
determine isomorphisms in the quotient T /S. Applying [Nee01b, Proposition 1.1.20] to
the image of (3.23) in T /S we infer that h is an isomorphism in T /S. Using the fact that
S is thick and [Nee01b, Proposition 2.1.35] we conclude that h has mapping cone in S.

Flat resolutions are not unique in the homotopy category, and in this sense they are
inferior to projective and injective resolutions. One solution is to work with a more rigid
kind of resolution, known as a proper resolution. Suppose that we have an exact sequence
of modules over a ring

S : · · · −→ P−2 −→ P−1 −→ P 0 −→M −→ 0 (3.24)

If this is a projective resolution of M then a morphism from a projective module to a
kernel of the complex S (for example M itself, or its syzygy Ker(P 0 −→M)) must factor
through the relevant projective object (for example P 0 or P−1). This property allows one
to prove that the projective resolution is unique up to homotopy equivalence.

If a flat resolution has this property with respect to morphisms from flat modules, it is
called a proper flat resolution. This is a flat resolution (3.24) with the additional property
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that P 0 −→M and P−1 −→ Ker(P 0 −→M) and so on are all flat precovers in the sense
of Definition 2.32. We review the relevant literature in Section 2.3, but for our purposes
in this section only two facts are really necessary: proper (left) flat resolutions exist, and
can be encoded in triangles; see Definition 2.33 and Corollary 2.36. In the next result we
use proper flat resolutions of modules to prove a useful fact about quasi-coherent sheaves.

Proposition 3.19. Every quasi-coherent sheaf F is isomorphic in D(QcoX) to a bounded
above complex of flat quasi-coherent sheaves.

Proof. This is implicit in the proof of [AJL97, Proposition 1.1] but we give another proof
using flat precovers. Let U = {U0, . . . , Ud} be an affine open cover of X, and consider the
Čech resolution

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · −→ C d(U,F ) −→ 0

This defines a quasi-isomorphism F −→ C (U,F ) so it is enough to prove that the complex
C (U,F ) is isomorphic, in D(QcoX), to a bounded above complex of flat quasi-coherent
sheaves. This is true, because locally F has proper flat resolutions.

In detail: given a finite sequence α : i0 < · · · < ip of indices in the set {0, . . . , d} we
write Uα = Ui0 ∩ · · · ∩ Uip for the corresponding intersection; this is an affine scheme, so
we can find a proper left flat resolution of F |Uα in the sense of Definition 2.33

Sα : · · · −→P−2
α −→P−1

α −→P0
α −→ F |Uα −→ 0 (3.25)

To be clear, we choose an isomorphism Uα ∼= Spec(A) and use the equivalence Qco(Uα) ∼=
ModA to pair F |Uα with an A-module Fα. Then we take a proper left flat resolution

Sα : · · · −→ P−2
α −→ P−1

α −→ P 0
α −→ Fα −→ 0 (3.26)

which is an exact sequence with each P iα flat, such the canonical morphism of complexes
Pα −→ Fα fits into a triangle Pα −→ Fα −→ Sα −→ ΣPα in K(A) with Sα in K(FlatA)⊥.
This resolution exists because flat precovers exist; see Remark 2.34 and Corollary 2.36.

Passing back to Qco(Uα) we have an exact sequence (3.25) of quasi-coherent sheaves
that fits into a triangle in K(QcoUα) with Pα in K(FlatUα) and Sα in K(FlatUα)⊥

Pα −→ F |Uα −→ Sα −→ ΣPα (3.27)

Moreover, the complex Sα is acyclic. The inclusion f : Uα −→ X is flat and affine, so the
direct image sends (3.27) to a triangle in K(QcoX)

f∗(Pα) −→ f∗(F |Uα) −→ f∗(Sα) −→ Σf∗(Pα)

with f∗(Pα) ∈ K(FlatX) and f∗(Sα) ∈ Kac(QcoX) ∩ K(FlatX)⊥. To see that f∗(Sα)
belongs to the orthogonal K(FlatX)⊥ we use the adjunction between direct image and
restriction. Taking the coproduct over all sequences α : i0 < · · · < ip of length p, we have
a triangle in K(QcoX)

Pp −→ C p(U,F ) −→ Sp −→ ΣPp
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with Pp ∈ K(FlatX) and Sp ∈ Kac(QcoX)∩K(FlatX)⊥. In particular Pp −→ C p(U,F )
is a quasi-isomorphism. This shows that the individual Čech sheaves are quasi-isomorphic
to bounded above complexes of flat quasi-coherent sheaves, and it remains to argue that
these resolutions can be combined to give a resolution for the complex C (U,F ).

Any bounded complex can be built, in a finite number of triangles, from the objects
occurring in the complex. Using proper flat resolutions provides enough ridigity for us to
assemble the resolutions of the Čech sheaves into a resolution of C (U,F ). The complex
C (U,F ) is the mapping cone of the following morphism of complexes (each arranged in
the correct degree)

Σ−1C 0(U,F ) : · · ·

��

// 0 // C 0(U,F )

��

// 0

��

// · · ·

bC (U,F )≥1 : · · · // 0 // C 1(U,F ) // C 2(U,F ) // · · ·

More generally, we can adjoin the kth Čech sheaf to the brutal truncation bC (U,F )≥k+1

to form bC (U,F )≥k (our notation for truncations is given in Section 2.1). This is reflected
by a triangle in K(QcoX)

Σ−k−1C k(U,F ) −→ bC (U,F )≥k+1 −→ bC (U,F )≥k −→ Σ−kC k(U,F )

Suppose that for some integer 0 < k ≤ d we have defined a bounded above complex of
flat quasi-coherent sheaves Ak and a quasi-isomorphism Ak −→ bC (U,F )≥k with mapping
cone Bk in K(FlatX)⊥. This has been done for k = d, where bC (U,F )≥d = Σ−dC d(U,F )
and we can take Ad = Σ−dPd and Bd = Σ−dSd as defined above. Returning to the case
of general 0 < k ≤ d we have a diagram with triangles for rows

Σ−kPk−1
//

(I)

��

Σ−kC k−1(U,F )

��

// Σ−kSk−1
//

��

Σ−k+1Pk−1

��
Ak

//
bC (U,F )≥k // Bk

// ΣAk

(3.28)

The following composite vanishes

Σ−kPk−1 −→ Σ−kC k−1(U,F ) −→ bC (U,F )≥k −→ Bk

because Pk−1 ∈ K(FlatX) and Bk ∈ K(FlatX)⊥ (this is the point where we use the
properness of our resolutions). We deduce unique vertical morphisms making (3.28) into
a morphism of triangles. Now extend the commutative square in (3.28) marked (I) to a
morphism of triangles in the vertical direction

Σ−kPk−1
//

f
��

(I)

Ak
//

g

��

Ak−1
//

h
��

Σ−k+1Pk−1

��
Σ−kC k−1(U,F ) //

bC (U,F )≥k //
bC (U,F )≥k−1

// Σ−k+1C k−1(U,F )

As f, g both have mapping cone in Kac(QcoX) ∩K(FlatX)⊥ it follows from Lemma 3.18
that h has mapping cone Bk−1 in this subcategory, which completes the inductive step.
Taking k = 1 we deduce a quasi-isomorphism A0 −→ C (U,F ) with A0 a bounded above
complex of flat quasi-coherent sheaves, as required.
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In the next lemma, let A be an abelian category and P ⊆ A a class containing the
zero objects and closed under isomorphism, with the property that for any short exact
sequence 0 −→ L −→ M −→ N −→ 0 in A with M,N ∈ P we have also L ∈ P. For
example, this applies when A is the category of quasi-coherent sheaves and P the class of
flat quasi-coherent sheaves (or vector bundles over a noetherian scheme).

Lemma 3.20. Let A be an abelian category and P ⊆ A a class as above. If M ∈ A is
isomorphic in D(A) to a bounded above complex in P, there exists an exact sequence

· · · −→ F−2 −→ F−1 −→ F 0 −→M −→ 0 (3.29)

with every F i an object of P.

Proof. Let P be a bounded above complex in P, isomorphic in D(A) to the object M .
Assume that M is nonzero, and let d be the largest integer with P d 6= 0. If d = 0 then we
are done. If d > 0 then we have a series of short exact sequences

0 −→ Kd−1 −→ P d−1 −→ P d −→ 0

0 −→ Kd−2 −→ P d−2 −→ Kd−1 −→ 0
...

0 −→ K1 −→ P 1 −→ K2 −→ 0

0 −→ K0 −→ P 0 −→ K1 −→ 0

where Ki = Ker(P i −→ P i+1). We deduce that K0 belongs to P, so

· · · −→ P−2 −→ P−1 −→ K0 −→M −→ 0

is a resolution of the desired form.

Corollary 3.21. Every quasi-coherent sheaf F admits an epimorphism P −→ F with
P a flat quasi-coherent sheaf.

Proof. By Proposition 3.19 the sheaf F is isomorphic, in D(QcoX), to a bounded above
complex of flat quasi-coherent sheaves. If we take P to be the class of flat quasi-coherent
sheaves in A = Qco(X), then Lemma 3.20 provides an epimorphism P −→ F with P a
flat quasi-coherent sheaf.

Corollary 3.22. Any complex F of quasi-coherent sheaves admits a quasi-isomorphism
P −→ F with P a K-flat complex of flat quasi-coherent sheaves which is the homotopy
colimit in K(FlatX) of a sequence

P0 −→P1 −→P2 −→P3 −→ · · · (3.30)

of bounded above complexes Pi of flat quasi-coherent sheaves.
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Proof. By Corollary 3.21 the class P of flat quasi-coherent sheaves satisfies the hypotheses
needed for Lemma 2.22, which then constructs a quasi-isomorphism P −→ F with P a
complex of flat quasi-coherent sheaves. Moreover, P is the homotopy colimit in K(QcoX)
of a sequence (3.30) of bounded above complexes of flat quasi-coherent sheaves. Because
each Pi is K-flat the homotopy colimit P is K-flat, completing the proof.

Remark 3.23. Enochs and Estrada have shown that flat precovers exist in the category
Qco(X) of quasi-coherent sheaves on X [EE05a, Corollary 4.2]. From Corollary 3.21 we
learn that flat precovers in Qco(X) are always epimorphisms, which answers an implicit
question of Enochs and Estrada in [EE05a, §5]. If we knew a priori that flat precovers
were epimorphisms in Qco(X), then Corollary 3.21 would be unnecessary.

The reader may safely skip the next pair of results, which will not be used elsewhere.
We include them to clarify a small point in the definition of the category E(X).

Lemma 3.24. For a quasi-coherent sheaf F the following are equivalent:

(i) F is flat.

(ii) Tori(F ,G ) = 0 for every quasi-coherent sheaf G and i > 0.

(iii) For every exact sequence of quasi-coherent sheaves

0 −→ A −→ B −→ C −→ 0

the following sequence is also exact

0 −→ F ⊗A −→ F ⊗B −→ F ⊗ C −→ 0

Proof. (i)⇒ (ii) and (i)⇒ (iii) are obvious. (ii)⇒ (i) We prove that F is flat by showing
that Fx is a flat OX,x-module for every x ∈ X. Let an OX,x-module G be given. We can
find a quasi-coherent sheaf G on X with stalk G at x (take an affine open neighborhood
U ∼= Spec(A) of x with inclusion f : U −→ X and let G be f∗(G˜ )). Then for i > 0
we have 0 = Tori(F ,G )x ∼= Tori(Fx, G). Since G was arbitrary this proves that Fx is
flat. (iii)⇒ (i) Given x ∈ X find an affine open neighborhood U ∼= Spec(A) of x, and let
f : U −→ X denote the inclusion. Let A −→ B be a monomorphism of quasi-coherent
sheaves on U . Then f∗A −→ f∗B is a monomorphism, whence F⊗f∗(A ) −→ F⊗f∗(B)
is a monomorphism, and restricting again to U we find that F |U ⊗A −→ F |U ⊗B is a
monomorphism. If M is an A-module with F |U ∼= M˜ then we deduce that M is flat. If
p is the prime ideal corresponding to x, then Fx

∼= Mp is a flat module over OX,x ∼= Ap.
Since x was arbitrary, this proves that F is flat.

Lemma 3.25. A complex E of flat quasi-coherent sheaves belongs to E(X) if and only if
F ⊗ E is acyclic for every quasi-coherent sheaf F .
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Proof. If E belongs to E(X) then it has the stated property. For the converse, assume
that F ⊗ E is acyclic for every quasi-coherent sheaf F . From the proof of (i) ⇒ (ii) in
Proposition 3.4 we learn that Tori(F ,Ker(∂nE )) is zero for every quasi-coherent sheaf F

and i > 0, so Lemma 3.24 implies that Ker(∂nE ) is flat. Hence E is an acyclic complex of
flat quasi-coherent sheaves with flat kernels, and therefore an object of E(X).



Chapter 4

Compact Generation of Km(Proj X)

This chapter contains our proof that Km(ProjX) is compactly generated for a noetherian
scheme X. In outline, here is the proof: an affine open cover of X determines a cocovering
of Km(ProjX) by Bousfield subcategories, and the application of a theorem of Rouquier
[Rou03, Theorem 5.15] to this cocover reduces the theorem to a statement about complexes
of projective modules over a ring.

For a noetherian ring A we know that the homotopy category K(ProjA) of projective
A-modules is compactly generated, by the work of Jørgensen and Neeman (Theorem 2.30).
To apply Rouquier’s theorem to our cocover, we need something more: we need to prove
that for f1, . . . , fr ∈ A the intersection over 1 ≤ i ≤ r of the kernels of the localizations

−⊗A Afi : K(ProjA) −→ K(ProjAfi)

is compactly generated in K(ProjA). An element of this intersection of kernels is a complex
of projective A-modules that becomes contractible after localizing at each fi. We introduce
the following notation for the triangulated subcategory of such complexes

V(f1, . . . , fr) = {P ∈ K(ProjA) |Pfi is zero in K(ProjAfi) for 1 ≤ i ≤ r}

In Section 2.3 we studied how to produce compact objects in K(ProjA): given a finitely
generated A-module M , the complex of projective A-modules PM that “represents” M is
compact in K(ProjA). This representing complex of projectives is called the proper right
projective resolution; we recall the details in Definition 4.3 below. With this in mind, here
is our recipe for producing compact objects of the category V(f1, . . . , fr):

(a) Let M be a finitely generated A-module with proper right projective resolution PM .

(b) For f ∈ A the Koszul complex K(f) = 0 //A
f //A //0 becomes contractible

after localizing at f , and given integers B1, . . . , Br > 0 the tensor product

K(fB1
1 )⊗ · · · ⊗K(fBrr )⊗ PM (4.1)

belongs to V(f1, . . . , fr). We prove in Lemma 4.4 that it is compact.
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In Proposition 4.5 we prove that the complexes of the form (4.1) form a compact generating
set for V(f1, . . . , fr) consisting of objects compact in the larger category K(ProjA). This
removes the only obstacle to applying Rouquier’s theorem, so we proceed in Section 4.1
with the proof that Km(ProjX) is compactly generated.

Setup. In this section A is a noetherian ring, and modules are defined over A by default.
Throughout we fix a family of elements f1, . . . , fr ∈ A.

We begin with Koszul complexes, which are complexes that become contractible after
localization for the most trivial reason possible.

Definition 4.1. Given an element f ∈ A the corresponding Koszul complex K(f) is the
following complex concentrated in degrees −1, 0

· · · // 0 // A
f // A // 0 // · · · (4.2)

For a family h1, . . . , hn ∈ A we introduce the notation

K(h1, . . . , hn) := K(h1)⊗ · · · ⊗K(hn)

Clearly K(f) becomes contractible after localizing at f . For a complex of modules X the
tensor product K(f) ⊗X is isomorphic to the mapping cone of f = f · 1 : X −→ X, so
there is a triangle X

f−→ X −→ K(f)⊗X −→ ΣX in K(A).

The next lemma tells us that Koszul complexes arise naturally.

Lemma 4.2. Let ϕ : M −→ X be a morphism of complexes of modules, with M bounded
and M i finitely generated for every i ∈ Z. Then

(i) Given f ∈ A with Xf zero in K(Af ) there exists an integer B > 0 such that fB · ϕ
is null-homotopic.

(ii) If Xfi is zero in K(Afi) for every 1 ≤ i ≤ r then there are integers B1, . . . , Br > 0
such that the morphism ϕ can be factored in K(A) as

M // K(fB1
1 , . . . , fBrr )⊗M // X

Proof. (i) Let ι : X −→ Xf be the canonical morphism of complexes of A-modules, and
choose a contracting homotopy Λ of Xf as a complex of Af -modules. We have a diagram

· · · //M i−1

ϕi−1

��

//M i //

ϕi

��

M i+1 //

ϕi+1

��

· · ·

· · · // Xi−1

��

// Xi

��

// Xi+1

��

// · · ·

· · · // Xi−1
foo // Xi

f
Λi

oo // Xi+1
f

Λi+1
oo // · · ·oo
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For i ∈ Z there is an isomorphism HomA(M i, Xi−1
f ) ∼−→ HomA(M i, Xi−1)f which must

identify Λiιiϕi with a fraction λi/fki for some morphism λi : M i −→ Xi−1 and ki > 0.
Because M is bounded, we can take the ki to be equal to some fixed integer k > 0, so that

ιi−1λi = fkΛiιiϕi for all i ∈ Z

Since Λ is a contracting homotopy for Xf , there is an equality for every i ∈ Z

∂i−1
Xf

Λi + Λi+1∂iXf = 1

Composing with ιiϕi and multiplying by fk yields

∂i−1
Xf

ιi−1λi + ιiλi+1∂iM = fkιiϕi

This equality in HomA(M i, Xi
f ) determines an equality in HomA(M i, Xi)f of fractions

(∂i−1
X λi +λi+1∂iM )/1 = (fkϕi)/1. We can make this into an equality in HomA(M i, Xi) by

multiplying the numerators by a sufficiently high power of f , and since M is bounded we
can make a fixed integer N > 0 work for every i ∈ Z. That is,

fN (∂i−1
X λi + λi+1∂iM ) = fN+kϕi for all i ∈ Z

If we set B = N + k then µi = fNλi gives a homotopy of fB · ϕ with zero, as required.
(ii) The proof is by induction on r ≥ 1. For r = 1 we apply (i) to find an integer

B > 0 and a null-homotopy of the morphsim fB1 · ϕ. From the triangle

M
fB1 //M // K(fB1 )⊗M // ΣM

we obtain the required factorization of ϕ : M −→ X through M −→ K(fB1 )⊗M . Suppose
that r > 1 is given and assume the lemma for all smaller values of r. In particular, we can
factor ϕ as a composite in K(A) of the form

M // K(fB1
1 , . . . , f

Br−1

r−1 )⊗M // X (4.3)

for some integers B1, . . . , Br−1 > 0. The complex G = K(fB1
1 , . . . , f

Br−1

r−1 )⊗M is bounded
and has finitely generated terms, so we can apply the case r = 1 to the morphism G −→ X

coming from (4.3) to obtain a factorization of ϕ as the following composite in K(A)

M −→ G −→ K(fBrr )⊗G −→ X

Since K(fBrr )⊗G ∼= K(fB1
1 , . . . , fBrr )⊗M this completes the proof.

For a complex P of projective modules, K(fB1
1 , . . . , fBrr )⊗ P belongs to V(f1, . . . , fr)

for any integers B1, . . . , Br > 0. To produce compact objects we apply this construction
when P is the proper right projective resolution of a finitely generated module. Let us tell
the reader what these proper resolutions are.

Proper resolutions belong to the subject of relative homological algebra, and we give
an exposition of the relevant theory in Section 2.3. Our approach is slightly different to
the literature, because we need to talk about proper resolutions of complexes (for modules,
our terminology agrees with the standard definitions). The following is Definition 2.37 in
the case X = Proj(A), the class of projective A-modules.
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Definition 4.3. Let G be a complex of modules. A proper right projective resolution of
G is a morphism of complexes G −→ PG fitting into a triangle in K(A)

S −→ G −→ PG −→ ΣS

with PG in K(ProjA) and S in the orthogonal ⊥K(ProjA). Given Q ∈ K(ProjA) we can
apply HomK(A)(−, Q) to this triangle to obtain a natural isomorphism

HomK(ProjA)(PG, Q) ∼−→ HomK(A)(G,Q) (4.4)

Hence PG represents G amongst the complexes of projective modules.

Every finitely generated module has a proper right projective resolution by Remark
2.26. It follows that every bounded complex of finitely generated modules has a proper
right projective resolution, but we are only interested in resolutions of very special bounded
complexes: those of the form K(fB1

1 , . . . , fBrr )⊗M for some finitely generated module M ,
and for these complexes we can describe the resolution explicitly.

Lemma 4.4. Let M be a finitely generated module with proper right projective resolution
PM . Given B1, . . . , Br > 0 the complex of projective modules

K(fB1
1 , . . . , fBrr )⊗ PM (4.5)

is a proper right projective resolution of K(fB1
1 , . . . , fBrr )⊗M . It follows that the complex

(4.5) is a compact object in K(ProjA).

Proof. By definition we have a triangle S −→M −→ PM −→ ΣS in K(A) where S belongs
to the orthogonal ⊥K(ProjA). Tensoring with K = K(fB1

1 , . . . , fBrr ) we have a triangle

K ⊗ S −→ K ⊗M −→ K ⊗ PM −→ ΣK ⊗ S

To prove that K⊗PM is a proper right projective resolution of K⊗M , we need only show
that K ⊗ S is left orthogonal to every complex Q of projective modules. But

HomK(A)(K ⊗ S,Q) ∼= HomK(A)(S,HomA(K,Q)) = 0

as HomA(K,Q) is a complex of projective modules, so K ⊗ S belongs to ⊥K(ProjA) and
K ⊗PM is a proper right projective resolution of K ⊗M . By definition, or more precisely
(4.4), we have a natural isomorphism

HomK(ProjA)(K ⊗ PM ,−) ∼−→ HomK(A)(K ⊗M,−) (4.6)

Because K⊗M is a bounded complex of finitely generated modules it is compact in K(A),
and from (4.6) we conclude that K ⊗ PM is compact in K(ProjA).

Finally, we construct a compact generating set for V(f1, . . . , fr). Recall from Chapter
2 that a localizing subcategory S of a triangulated category T is compactly generated in
T if it has a compact generating set consisting of objects compact in T .
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Proposition 4.5. The subcategory V(f1, . . . , fr) is compactly generated in K(ProjA) with
compact generating set

R =
{

ΣjK(fB1
1 , . . . , fBrr )⊗ PM |M is a finitely generated module,

B1, . . . , Br > 0 and j ∈ Z
}

where PM denotes a proper right projective resolution of M .

Proof. Up to isomorphism there is a set of finitely generated modules. Pick one module M
from each isomorphism class and let PM be a proper right projective resolution. Tensoring
with Koszul complexes and shifting gives the set R, which by Lemma 4.4 is a set of objects
of V(f1, . . . , fr) compact in K(ProjA). We claim that this set generates V(f1, . . . , fr).

Given a nonzero object X ∈ V(f1, . . . , fr) we have to find a finitely generated module
M , integers B1, . . . , Br > 0 and j ∈ Z, and a nonzero morphism in K(ProjA) (from now
on, nonzero means nonzero in the homotopy category)

ΣjK(fB1
1 , . . . , fBrr )⊗ PM −→ X (4.7)

By Theorem 2.30 the proper resolutions of finitely generated modules compactly generate
K(ProjA), and since X is nonzero in K(ProjA) there must be a finitely generated module
M with proper right projective resolution PM and a nonzero morphism

ΣjPM −→ X (4.8)

After shifting we may assume that j = 0. By assumption the localization Xfi is zero in
K(Afi) for 1 ≤ i ≤ r so by Lemma 4.2(ii) there is a factorization in K(A) of the composite
M −→ PM −→ X through a Koszul complex tensored with M

M // K(fB1
1 , . . . , fBrr )⊗M

ψ // X (4.9)

Since M −→ PM −→ X is nonzero the morphism ψ in (4.9) must also be nonzero. Setting
K = K(fB1

1 , . . . , fBrr ) we know from Lemma 4.4 that K ⊗PM is a proper right projective
resolution of K ⊗M , so there is an isomorphism

HomK(ProjA)(K ⊗ PM , X) ∼−→ HomK(A)(K ⊗M,X)

We deduce that ψ : K ⊗M −→ X factors through a nonzero morphism K ⊗ PM −→ X

in K(ProjA), which provides the necessary morphism (4.7) and completes the proof.

4.1 The Proof of Compact Generation

Given a noetherian scheme X we prove that Km(ProjX) is compactly generated by taking
an affine open cover of X and “cocovering” the triangulated category Km(ProjX) by a
family of Bousfield subcategories determined by the open cover. This reduces the problem
to a question over affine schemes, where Proposition 4.5 of the previous section gives the
input necessary to complete the proof.
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Setup. In this section X is a fixed scheme and all sheaves are defined over X by default.

First we describe the triangulated subcategory of Km(ProjX) associated with an open
subset of X, then we show that this subcategory is Bousfield.

Definition 4.6. Let U ⊆ X be a quasi-compact open subset and write Km,X\U (ProjX)
for the kernel of the triangulated functor

(−)|U : Km(ProjX) −→ Km(ProjU)

A complex F of flat quasi-coherent sheaves belongs to Km,X\U (ProjX) if and only if the
restriction F |U is acyclic and K-flat, in which case we say that F is mock supported on
the closed set X \ U .

Lemma 4.7. If f : U −→ X is the inclusion of an affine open subset, then the functor
f∗ : Km(ProjU) −→ Km(ProjX) is fully faithful and there is a localization sequence

Km,X\U (ProjX)
inc // Km(ProjX)oo

(−)|U // Km(ProjU)
f∗

oo

Hence Km,X\U (ProjX) is a Bousfield subcategory of Km(ProjX).

Proof. There is an adjunction between (−)|U and f∗ on the level of the mock homotopy
categories; see Definition 3.9. The counit (−)|U ◦ f∗ −→ 1 is a natural equivalence, so a
result of category theory tells us that the right adjoint f∗ is fully faithful. As a consequence
of Lemma 2.6 we have the desired localization sequence.

These Bousfield subcategories determined by open subsets intersect properly with one
another, in the sense of Rouquier; see [Rou03, Lemma 5.7] for the definition, which is also
given in Chapter 2.

Lemma 4.8. For quasi-compact open subsets U, V ⊆ X the subcategories Km,X\U (ProjX)
and Km,X\V (ProjX) are properly intersecting and Bousfield in Km(ProjX).

Proof. To keep the notation light, set TU = Km,X\U (ProjX) and TV = Km,X\V (ProjX).
First we treat the case where U and V are affine. By the previous lemma TU is a Bousfield
subcategory of Km(ProjX) and the functor (−)|U : Km(ProjX) −→ Km(ProjU) is a weak
Verdier quotient, with the same statements holding for V . Let f : U −→ X, g : V −→ X

and h : U ∩ V −→ V be the inclusions, and observe that for A in TV we have

f∗(A |U )|V ∼= h∗(A |U∩V ) = 0 in Km(ProjV )

Hence f∗(A |U ) belongs to TV and by symmetry g∗(B|V ) belongs to TU for any B in TU . By
Lemma 2.12, TU and TV are properly intersecting Bousfield subcategories of Km(ProjX).

Now let U be an arbitrary quasi-compact open subset of X, keeping V affine. Take an
affine open cover U = W1∪· · ·∪Wn and suppose that for some 1 ≤ i < n we have checked
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that the subcategory Si = Km,X\(W1∪···∪Wi)(ProjX) is Bousfield and properly intersects
every subcategory in the following list:

Km,X\Wi+1
(ProjX), . . . , Km,X\Wn

(ProjX), Km,X\V (ProjX) (4.10)

When i = 1 this is the affine case we have just verified. For arbitrary i, the subcategory
Si+1 is the intersection of two properly intersecting Bousfield subcategories

Si+1 = Si ∩Km,X\Wi+1
(ProjX)

Using [Rou03, Lemma 5.8] and [Rou03, Lemma 5.9] we conclude that Si+1 is a Bousfield
subcategory of Km(ProjX) intersecting properly with what remains of the list in (4.10)
after we delete the first item. Proceeding inductively, we conclude that TU is Bousfield
and intersects properly with TV for any affine open subset V ⊆ X. A similar argument on
V now completes the proof.

A cocovering of Km(ProjX) is a finite family of Bousfield subcategories, intersecting
pairwise properly, with the intersection over all elements of the cover equal to zero.

Lemma 4.9. Let U = {U0, . . . , Ud} be an affine open cover of X and set

Ti := Km,X\Ui(ProjX)

The family of Bousfield subcategories F = {T0, . . . , Td} is a cocovering of Km(ProjX).

Proof. By Lemma 4.8 the triangulated subcategories Ti are Bousfield subcategories that
intersect properly with one another. An object of the intersection T0 ∩ · · · ∩ Td restricts to
zero on an open cover of X, and is therefore by Remark 3.10 zero in Km(ProjX). Hence
F is a cocovering of Km(ProjX).

The next result is the major theorem of this chapter. The proof does not construct an
explicit set of compact generators; we delay such a construction until Chapter 7.

Theorem 4.10. If X is a noetherian scheme then Km(ProjX) is a compactly generated
triangulated category and, for any open subset U ⊆ X, the subcategory Km,X\U (ProjX)
is compactly generated in Km(ProjX).

Proof. Take an affine open cover U = {U0, . . . , Ud} of X and let F denote the associated
cocovering by Bousfield subcategories defined in Lemma 4.9. To match our notation with
the theorem of Rouquier (Theorem 2.13) that we will use, set J = Km,X\U (ProjX) and
T = Km(ProjX) for some open subset U ⊆ X, which may be empty. The proof consists
of verifying the hypothesis in Rouquier’s theorem.

Pick an arbitrary element I of the cocover F . Reindexing if necessary, we may assume
that the chosen element is I = T0. For any subset F ′ ⊆ {T1, . . . , Td} we prove that the
following quotient is compactly generated in T /I(

J ∩ ∩I′∈F ′I ′
)
/
(
J ∩ ∩I′∈F ′∪{I}I ′

)
(4.11)
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Let W ⊆ X be the union of U with all those open sets Ui with Ti ∈ F ′. Since J ∩(∩I′∈F ′I ′)
is the category Km,X\W (ProjX), we have to prove that the essential image of the composite

Km,X\W (ProjX) inc // Km(ProjX) can // Km(ProjX)/Km,X\U0
(ProjX)

is compactly generated in Km(ProjX)/Km,X\U0
(ProjX). This quotient is equivalent to

Km(ProjU0) by Lemma 4.7, so it is enough to show that the essential image of the following
composite (call the essential image S) is compactly generated in Km(ProjU0)

Km,X\W (ProjX) inc // Km(ProjX)
(−)|U0 // Km(ProjU0)

We claim that the image S is the kernel of (−)|U0∩W : Km(ProjU0) −→ Km(ProjU0∩W ).
It is clear that S is contained in the kernel. To prove the reverse inclusion, let a complex
F in the kernel be given, write f : U0 −→ X,h : U0∩W −→W for the inclusions, and set
F ′ = f∗(F ). Then F ′|W = h∗(F |U0∩W ) is zero in Km(ProjW ) and F = F ′|U0 , hence
F is an object of S, which proves the claim.

Because U0 is affine there exists a noetherian ring A and an isomorphism of schemes
U0
∼= Spec(A), which identifies U0 ∩W with a finite union D(f1) ∪ · · · ∪D(fr) for some

elements f1, . . . , fr ∈ A, where D(fj) is the open set of prime ideals not containing fj .
The kernel of the restriction functor

(−)|U0∩W : Km(ProjU0) −→ Km(ProjU0 ∩W )

corresponds under the equivalence K(ProjA) ∼= Km(ProjU0) to the subcategory

V(f1, . . . , fr) = {P ∈ K(ProjA) |Pfi is zero in K(ProjAfi) for 1 ≤ i ≤ r}

We proved in Proposition 4.5 that V(f1, . . . , fr) is compactly generated in K(ProjA), from
which it follows that S is compactly generated in Km(ProjU0). This completes the proof
that (4.11) is compactly generated in T /I.

If we take U to be empty in the above, then Km,X\U (ProjX) is just Km(ProjX) and
Theorem 2.13 allows us to conclude that Km(ProjX) is compactly generated. Given an
arbitrary open subset U ⊆ X another application of Theorem 2.13 (using Lemma 4.8 to
check the hypothesis about proper intersection) proves that Km,X\U (ProjX) is compactly
generated in Km(ProjX), and completes the proof.



Chapter 5

The Mock Stable Derived

Category

Let X be a scheme and let Km,ac(ProjX) denote the full subcategory of acyclic complexes
in Km(ProjX). This triangulated category, called the mock stable derived category of X,
will turn out to be an invariant of the singularities of X (see Section 9.2). Our main result
in this chapter asserts that there is a recollement (Theorem 5.5)

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

from which we deduce that Km,ac(ProjX) is compactly generated when X is noetherian.
Here D(QcoX) is the derived category of quasi-coherent sheaves on X, and the recollement
adjoins to this derived category the mock stable derived category, whose objects are acyclic
complexes of flat quasi-coherent sheaves (we review recollements in Chapter 2).

The recollement says something about K-flat resolutions: using it, we prove in Remark
5.9 that K-flat resolutions are unique in Km(ProjX). Together with the closed monoidal
structure studied in the next chapter, this observation will lead to our characterization in
Chapter 7 of the compact objects in Km(ProjX). Specializing to an affine scheme, there
a recollement for any ring A

Kac(ProjA) // K(ProjA)oo
oo // D(A)oo

oo

which exists even for noncommutative rings (Theorem 5.15). It follows that the homotopy
category Kac(ProjA) of acyclic complexes of projective modules is always well generated,
and that it is compactly generated whenever A is right coherent (Corollary 5.17).

Setup. In this chapter X is a fixed scheme and all sheaves are defined over X by default.

Before embarking on the proofs, let us explain the connection between stable module
categories and the triangulated category Km,ac(ProjX). In the same way that the mock
homotopy category Km(ProjX) glues together the homotopy categories K(ProjA) over
affine open subsets, the mock stable derived category glues together homotopy categories
Kac(ProjA) of acyclic complexes of projectives, so it is worth talking a little bit about
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acyclic complexes of projective modules over a ring A. Let P be such an acyclic complex,
and consider the kernel (also called the syzygy) K = Ker(Pn −→ Pn+1) in degree n

· · · // Pn−2 // Pn−1

))

// Pn // Pn+1 // · · ·

K

DD

The truncation · · · −→ Pn−2 −→ Pn−1 is a projective resolution of K so, up to homotopy
equivalence, P is determined in degrees ≤ n− 1 by K. In some cases the entire complex
is determined by this syzygy. To give a noncommutative example, if A = kG is the group
ring of a field k and finite group G then the projective and injective A-modules coincide,
and in the above diagram P is an injective resolution in degrees ≥ n. The complex P is
determined, up to homotopy equivalence, by K. The best way to describe this correspon-
dence between acyclic complexes and syzygies is via stable module categories.

There is a generic notion of stabilization in algebra. Abstractly, this is the process of
modding out the “free” or “smooth” parts of the representation theory of some structure.
The stable module category of a (noncommutative) ring A, denoted ModA, has the same
objects as the ordinary module category but morphisms are identified if their difference
factors through a projective. This category does not see projective summands of a module;
it sees only the “hard” part of the representation theory of A. For some entry points into
the literature, see the work of Auslander and Bridger [AB69], Happel’s book [Hap88], the
papers of Rickard [Ric89, Ric97], Benson-Carlson-Rickard [BCR97] and Rouquier [CR00].

A canonical example is the stable module category ModkG of a field k and finite
group G. Over the group ring A = kG a module is projective if and only if it is injective,
and acyclic complexes of projective modules are in bijection with modules. To be precise,
there is an equivalence of triangulated categories [Kra05, Theorem 8.2]

Z0(−) : Kac(InjA) = Kac(ProjA) ∼−→ModA (5.1)

defined by taking the kernel in degree zero; see [Kra05, §8] for further details. However, we
are primarily interested in the commutative rings occurring in algebraic geometry, and for
such rings the injective and projective modules rarely agree. To rescue the correspondence
between acyclic complexes and their syzygies we restrict to the acyclic complexes for which
the correspondence survives, called the totally acyclic complexes.

Rather than define total acyclicity, let us work over a (commutative) Gorenstein ring A
of finite Krull dimension, where acyclic complexes are totally acyclic [IK06, Corollary 5.5].
Even then, not every module occurs as a syzygy of an acyclic complex of projectives; those
that do are called Gorenstein projective modules, and we denote by Gproj(ModA) the full
subcategory of ModA consisting of these modules. Having arranged things correctly, we
have the analogue of (5.1): there is an equivalence of triangulated categories (Proposition
5.10) defined by taking the kernel in degree zero

Z0(−) : Kac(ProjA) ∼−→ Gproj(ModA)



63

The compact objects on the right hand side are, up to direct factors, the finitely generated
Gorenstein projective modules, which agree in this case with the maximal Cohen-Macaulay
(MCM ) modules; see Lemma 5.11. The stable module category of MCM modules contains
information about the singularities of the ring; see for example [Yos90]. This completes our
local description of the mock stable derived category: over a finite dimensional Gorenstein
scheme, the triangulated category Km,ac(ProjX) is locally equivalent to the stable module
category Gproj(ModA) which contains, in its subcategory of compact objects, the stable
module category of MCM modules. Results of this type explain how Km,ac(ProjX) carries
information about the singularities of X.

The theory of homotopy categories that we are describing comes to us in two flavours:
projective and injective. In this chapter we study the projective version Km,ac(ProjX) of
the stable derived category, but the injective aspect was developed first, by Krause. In
[Kra05] he introduced the (injective) stable derived category Kac(InjX) of a noetherian
scheme and proved many interesting results about it, including the existence of a recolle-
ment whose projective analogue the reader will encounter in Theorem 5.5 below.

Having explained the motivation, let us proceed with the results. The first proposition
tells us that the orthogonal ⊥Km,ac(ProjX) in Km(ProjX) is the subcategory of K-flat
complexes (the definition of K-flatness in given in Section 2.2). But first we need to check
that being K-flat is a property stable under isomorphism in Km(ProjX).

Lemma 5.1. Let F ,G be two complexes of flat quasi-coherent sheaves isomorphic in
Km(ProjX). Then G is K-flat if and only if F is K-flat.

Proof. Assume that G is K-flat and let Q : K(FlatX) −→ Km(ProjX) denote the quotient
functor. Every morphism α : F −→ G in Km(ProjX) can be written as Q(b)Q(a)−1 for
morphisms a : W −→ F and b : W −→ G in K(FlatX) with a having mapping cone in
E(X). If α is an isomorphism in Km(ProjX) then b must also be an isomorphism, and
we deduce that b has mapping cone in E(X) as a morphism of K(FlatX). Extending b to
a triangle in K(FlatX) we have

W
b // G // T // ΣW

where T and G are both K-flat, because complexes in E(X) are K-flat. We deduce that
W is K-flat. Extending a to a triangle W −→ F −→ T ′ −→ ΣW we have T ′ in E(X) by
construction, so both T ′ and W are K-flat. We conclude that F is K-flat, as required.

It is a basic fact of homological algebra that flat modules are close to projective mod-
ules, despite the former being defined in terms of tensor products and the latter in terms
of Hom. The generalization of these notions to complexes (K-projectivity and K-flatness)
follows the same pattern; see Section 2.2. This makes the following characterization of
K-flatness slightly surprising; informally, passing to the mock homotopy category has the
effect of making K-flat complexes behave like K-projective complexes.



64 The Mock Stable Derived Category

Proposition 5.2. A complex F of flat quasi-coherent sheaves is K-flat if and only if it
belongs to the orthogonal ⊥Km,ac(ProjX) as an object of Km(ProjX).

Proof. First we prove the claim when the complex F is bounded above. In this case F

is already K-flat, so we have to show that it belongs to the orthogonal ⊥Km,ac(ProjX).
This is a local question: suppose that we know it is true for affine schemes, and take

an affine open cover {U0, . . . , Ud} of X. Then, by assumption, for any finite intersection V
of open sets in the cover the restriction F |V belongs to the orthogonal ⊥Km,ac(ProjV ).
Denoting the inclusion by f : V −→ X we have, for any acyclic complex C

HomKm(ProjX)(F , f∗(C |V )) ∼= HomKm(ProjV )(F |V ,C |V ) = 0

Setting L = {F}⊥ in Corollary 3.14 we conclude that F is left orthogonal in Km(ProjX)
to acyclic complexes. Therefore, to prove that every bounded above complex F belongs
to ⊥Km,ac(ProjX), we can reduce to the affine case where X = Spec(A) and F = F ˜
for a bounded above complex F of flat A-modules. In this situation, let P −→ F be a
quasi-isomorphism with P a bounded above complex of projective A-modules. Extending
to a triangle in K(FlatA)

P −→ F −→ E −→ ΣP

the mapping cone E is an acyclic, bounded above complex of flat modules. Such complexes
belong to E(A) so P −→ F is an isomorphism in Km(ProjA). We want to show that F is
left orthogonal to acyclic complexes. Up to isomorphism every complex in Km(ProjA) is
a complex of projectives (Lemma 3.6) so it suffices to check that F is left orthogonal to
every acyclic complex Z of projective modules. In this case

HomKm(ProjA)(F,Z) ∼= HomKm(ProjA)(P,Z) ∼= HomK(ProjA)(P,Z) = 0

since P is K-projective and Z is acyclic. This completes the proof of the proposition when
F is a bounded above complex. For an arbitrary complex F ∈ Km(ProjX) we can by
Corollary 3.22 find a sequence of bounded above complexes of flat quasi-coherent sheaves

P0 −→P1 −→P2 −→P3 −→ · · ·

whose homotopy colimit in K(FlatX) is a K-flat complex P quasi-isomorphic to F . The
localizing subcategory ⊥Km,ac(ProjX) contains the Pi by the above discussion, and thus
contains the homotopy colimit P. We have a triangle in K(FlatX) with C acyclic

P −→ F −→ C −→ ΣP

Using this triangle we make the following chain of deductions

F is K-flat⇐⇒ C is K-flat, since P is known to be K-flat

⇐⇒ C is zero in Km(ProjX), since it is already acyclic

⇐⇒ C belongs to ⊥Km,ac(ProjX)

⇐⇒ F belongs to ⊥Km,ac(ProjX)

which is what we needed to show.
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Definition 5.3. Let Km,ac(ProjX) denote the full subcategory of acyclic complexes in
Km(ProjX). The canonical functor K(FlatX) −→ D(QcoX) vanishes on complexes in
E(X), so there is a unique triangulated functor U making the following diagram commute

K(FlatX)

Q **

inc // K(QcoX) can // D(QcoX)

Km(ProjX)
U

99

where Q is the Verdier quotient. Clearly Km,ac(ProjX) is the kernel of U , and in particular
it is a localizing subcategory of Km(ProjX).

Unsurprisingly, the proof of the major theorem in this chapter is easier for noetherian
schemes. The reader willing to assume noetherianness can skip the next result, which is
superfluous in the noetherian case.

Proposition 5.4. The inclusion

Km,ac(ProjX) −→ Km(ProjX)

has a right adjoint.

Proof. The proof is by reduction to the affine case, which is true even for noncommutative
rings so we delay it until Section 5.1; see Theorem 5.15. Assuming the affine case, the
proof follows the now familiar pattern of a Čech argument (cf. the proof of Theorem 3.16).
Let L be the full subcategory of Km(ProjX) consisting of the complexes F that fit into
a triangle in Km(ProjX)

C −→ F −→ S −→ ΣC (5.2)

with C belonging to Km,ac(ProjX) and S in Km,ac(ProjX)⊥. This subcategory L is a
triangulated subcategory called the Verdier sum. We claim that L = Km(ProjX).

To prove this claim it suffices, using Corollary 3.14, to show that f∗(G ) belongs to L
for every affine open subset V ⊆ X and G in Km(ProjV ), where f : V −→ X denotes the
inclusion. But the result is true for affine schemes by Theorem 5.15, so we have a triangle
in Km(ProjV ) with C in Km,ac(ProjV ) and S in the orthogonal Km,ac(ProjV )⊥

C −→ G −→ S −→ ΣC

Applying the functor f∗ : Km(ProjV ) −→ Km(ProjX) we have a triangle in Km(ProjX)

f∗(C ) −→ f∗(G ) −→ f∗(S ) −→ Σf∗(C )

where f∗(C ) is acyclic, because f is affine, and f∗(S ) belongs to Km,ac(ProjX)⊥ because
of the adjunction between direct image and restriction. We conclude that every complex
in Km(ProjX) fits into a triangle (5.2) of the desired form, which is enough by Lemma
2.3 to prove the existence of the required adjoint.

We are now ready for the proof of the theorem.
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Theorem 5.5. The sequence

Km,ac(ProjX) inc // Km(ProjX) U // D(QcoX) (5.3)

induces a recollement

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo
(5.4)

It follows that Km,ac(ProjX) is compactly generated when X is noetherian.

Proof. Let us outline the proof: Lemma 2.6 tells us that any triangulated functor with a
fully faithful left adjoint is, up to equivalence, the Verdier quotient by its kernel. We want
to prove that U has this property. It will be enough to show that the composite

T : ⊥Km,ac(ProjX) −→ Km(ProjX) −→ D(QcoX) (5.5)

is an equivalence, which follows from our identification in Proposition 5.2 of the orthogonal
⊥Km,ac(ProjX) with the subcategory of K-flat complexes. This will prove that (5.3) is a
colocalization sequence; we then invoke Proposition 5.4 to see that it is a recollement.

Now for the details. In order to prove that U has a fully faithful left adjoint, we show
that for complexes P and F in Km(ProjX) with P a K-flat complex, the map induced
by the canonical functor U

Φ : HomKm(ProjX)(P,F ) −→ HomD(QcoX)(P,F )

is a bijection. The following simple observation is the crux of the argument:

(?) Let P ′ −→ P be a quasi-isomorphism of K-flat complexes of flat quasi-
coherent sheaves. The mapping cone is acyclic and K-flat, and thus vanishes
in Km(ProjX), so P ′ −→P is an isomorphism in Km(ProjX).

To check surjectivity of Φ let a morphism α : P −→ F in D(QcoX) be given. This can
be represented by a “roof” diagram in K(QcoX)

W
a

}}||||||||
b

!!BBBBBBBB

P F

where a is a quasi-isomorphism. Denoting the quotient by q : K(QcoX) −→ D(QcoX) this
means that α = q(b)q(a)−1 in D(QcoX). Using Corollary 3.22 we can, by replacing W with
its resolution if necessary, assume that W is a K-flat complex of flat quasi-coherent sheaves.
It now follows from (?) that a is an isomorphism in Km(ProjX), so α = Φ(Q(b)Q(a)−1)
is in the image of Φ, where Q : K(FlatX) −→ Km(ProjX) is the quotient.

To see that Φ is injective, it suffices to show that a morphism of complexes s : P −→ F

sent to zero in D(QcoX) is already zero in Km(ProjX). If s is zero in D(QcoX) then by
[Nee01b, Lemma 2.1.26] we can find a quasi-isomorphism t : W −→ P of complexes of
quasi-coherent sheaves with the following composite zero in K(QcoX)

W
t //P

s // F
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Let t′ : P ′ −→ W be a K-flat resolution of W by a complex P ′ of flat quasi-coherent
sheaves. The composite t ◦ t′ is a quasi-isomorphism P ′ −→ P of K-flat complexes,
therefore an isomorphism in Km(ProjX) by (?). Since s composes with this morphism
to give zero in Km(ProjX), we deduce that s is zero in Km(ProjX), as required. This
completes the proof that Φ is a bijection, and shows that T in (5.5) is fully faithful.

The functor T is an equivalence, because every object of D(QcoX) admits a K-flat
resolution by flat quasi-coherent sheaves (Corollary 3.22) and these resolutions are objects
of ⊥Km,ac(ProjX) (Proposition 5.2). Composing the quasi-inverse T−1 with the inclusion
of the orthogonal ⊥Km,ac(ProjX) −→ Km(ProjX) gives a fully faithful left adjoint for
U , so it follows from Lemma 2.6 that (5.3) is a colocalization sequence.

When X is noetherian, Km(ProjX) is compactly generated and U has a right adjoint,
because it preserves coproducts (Proposition 2.7). More generally, Proposition 5.4 ensures
the existence of a right adjoint to the inclusion Km,ac(ProjX) −→ Km(ProjX) for any
scheme. This gives two different proofs, via Lemma 2.3, that (5.3) is a recollement. Finally,
when X is noetherian the category Km(ProjX) is compactly generated (Theorem 4.10)
so it follows from Corollary 2.10 that Km,ac(ProjX) is also compactly generated.

A weaker version of the theorem holds for K(FlatX).

Corollary 5.6. There is a localization sequence

Kac(FlatX) // K(FlatX)oo
// D(QcoX)oo

Proof. It is enough by Lemma 2.6 to prove that K(FlatX) −→ D(QcoX) admits a fully
faithful right adjoint. This functor is the composite of K(FlatX) −→ Km(ProjX) and
Km(ProjX) −→ D(QcoX), which by Theorem 3.16 and Theorem 5.5 both have fully
faithful right adjoints. Hence so does their composite.

Remark 5.7. The localization sequence of the corollary is a recollement when X is affine,
see Corollary 5.16 below, but this is not true over general schemes. For a counterexample,
see Remark A.15.

Remark 5.8. In particular, we have equivalences of triangulated categories

Km(ProjX)/Km,ac(ProjX) ∼−→ D(QcoX), K(FlatX)/Kac(FlatX) ∼−→ D(QcoX)

Remark 5.9 (Adjoints and flat resolutions). The existence of K-injective and K-projective
resolutions can be phrased as the existence of a recollement (see Remark 2.20) involving
the homotopy category and derived category of an abelian category A

Kac(A) // K(A)oo
oo // D(A)oo

oo
(5.6)

When A is the category of modules over a ring this recollement exists, and the left adjoint
qλ of the quotient q : K(A) −→ D(A) sends a complex to its K-projective resolution. Given
an arbitrary Grothendieck abelian category, for example the category of quasi-coherent
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sheaves over a scheme, (5.6) is a localization sequence but not necessarily a recollement,
because there may not be enough projectives.

For an abelian category A that lacks projectives there may be a weaker notion of a flat
object, and in many examples such flat objects are plentiful. Theorem 5.5 tells us that by
passing to the mock homotopy category we can make flats imitate projectives:

(i) Flat resolutions are unique up to isomorphism in Km(ProjX). It follows from the
theorem that we have an equivalence

⊥Km,ac(ProjX) inc−→ Km(ProjX) can−→ D(QcoX) (5.7)

The left adjoint Uλ factors as an equivalence D(QcoX) ∼−→ ⊥Km,ac(ProjX) followed
by the inclusion, and this defines the quasi-inverse of (5.7). Recall from Proposition
5.2 that the orthogonal ⊥Kac(ProjX) is the full subcategory of K-flat complexes.

We infer that K-flat complexes are isomorphic in Km(ProjX) if and only if they are
isomorphic in D(QcoX). Hence K-flat resolutions by flat quasi-coherent sheaves are
unique up to isomorphism; note that such resolutions exist, by Corollary 3.22.

(ii) Flat resolutions are functorial in Km(ProjX). Let M −→ N be a morphism in
D(QcoX) and choose K-flat resolutions PM −→M and PN −→ N consisting of
flat quasi-coherent sheaves. We have a diagram in D(QcoX)

PM

��

∼ //M

��
PN ∼

// N

(5.8)

The composite PM
∼−→M −→ N

∼−→PN in D(QcoX) lifts by (5.7) to a unique
morphism PM −→PN in Km(ProjX) making (5.8) into a commutative square in
D(QcoX). This demonstrates the functoriality of flat resolutions.

Let us retreat for a moment from sweeping generality and construct this lifting in the
affine case. Let A be a ring and f : M −→ N a morphism of A-modules. Let FM , FN
denote flat resolutions of M and N , respectively, and choose a projective resolution
P of M . In the standard way, we construct morphisms of complexes α : P −→ FM

and β : P −→ FN lifting the identity and f , respectively, as in the following diagram

· · · // F−1
M

// F 0
M

//M

· · · // P−1

<<yyyyyyyy

""EEEEEEEE
// P 0

!!DDDDDDDD

==zzzzzzzz
//M

1

>>}}}}}}}}}

f

  AAAAAAAAA

· · · // F−1
N

// F 0
N

// N

We already observed in Remark 3.7 that α is a morphism with mapping cone in
E(A), that is, it is an isomorphism in Km(ProjA). The composite ϕ = β ◦ α−1 is a
morphism FM −→ FN in Km(ProjA) that lifts f to the flat resolutions.
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(iii) Flat resolutions are calculated by the left adjoint of U . Let M be a complex of
quasi-coherent sheaves and PM −→ M a K-flat resolution by flat quasi-coherent
sheaves. As PM belongs to the orthogonal ⊥Km(ProjX) we have an isomorphism

Uλ(M ) ∼= Uλ(PM ) ∼= PM

in Km(ProjX), so Uλ sends a complex to its K-flat resolution.

We conclude this section by giving a local description of Km,ac(ProjX) in an important
special case, proving the claim made in the introduction about stable module categories
of Gorenstein projective modules. But first, let us set up some notation.

Let A be a noetherian ring. An acyclic complex P of projective A-modules is totally
acyclic if the complex HomA(P,Q) is acyclic for every projective A-module Q. We denote
by Ktac(ProjA) the full subcategory of totally acyclic complexes in K(ProjA), which is a
triangulated subcategory; these complexes are also called complete projective resolutions.
See [AB69], [Chr00, §4.2], [AM02] and [IK06] for properties of these complexes.

We say that an A-module is Gorenstein projective if it is isomorphic to Z0(P ) for some
totally acyclic complex P of projective A-modules. When A is Gorenstein and has finite
Krull dimension, a complex of projective A-modules is totally acyclic if and only if it is
acyclic; see [IK06, Corollary 5.5]. Denote by Gproj(ModA) the full subcategory of the
stable module category ModA given by the Gorenstein projective objects. In light of
the definition of Gorenstein projective modules as syzygies of objects of Ktac(ProjA), the
following equivalence comes as no surprise.

Proposition 5.10. Let A be a noetherian ring. There is an equivalence

Z0(−) : Ktac(ProjA) ∼−→ Gproj(ModA) (5.9)

defined by taking the kernel in degree zero.

Proof. The proof is dual to [Kra05, Proposition 7.2].

The relationship between maximal Cohen-Macaulay modules and Gorenstein projec-
tive modules is part of the motivation for the subject; see the survey in [EE05b]. For the
benefit of the reader who is not familiar with relative homological algebra we include the
following statements, most of which can be found in Christensen’s excellent book [Chr00].

Let A be a noetherian ring. The G-dimension, or Gorenstein dimension, of a finitely
generated A-module M is denoted GdimA(M). This dimension was defined by Auslander
and Bridger in [AB69]. The A-modules of G-dimension zero form a class G(A), called the
G-class of A. If A is local, a finitely generated A-module M is maximal Cohen-Macaulay
(MCM) if depthA(M) = dim(A). When A is an arbitrary noetherian ring, we say that a
finitely generated A-module M is MCM if Mp is a MCM module over Ap for every prime
ideal p ∈ Spec(A).

Lemma 5.11. Let A be a Gorenstein ring of finite Krull dimension. The following con-
ditions are equivalent for a finitely generated A-module M :
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(i) M is maximal Cohen-Macaulay.

(ii) M is Gorenstein projective.

(iii) M occurs as a syzygy of an acyclic complex of finitely generated free A-modules.

Proof. By [Chr00, Theorem 4.2.6] the module M is Gorenstein projective precisely when
it belongs to G(A). Membership in the G-class is local; that is, M ∈ G(A) if and only if
Mp ∈ G(Ap) for every prime p ∈ Spec(A) [Chr00, Lemma 1.3.1]. In the local ring Ap we
have the Auslander-Bridger formula [Chr00, Theorem 1.4.8]

GdimAp(Mp) + depthAp
(Mp) = dim(Ap) (5.10)

Here we use the fact that Ap is Gorenstein, so every finitely generated module has finite
G-dimension [Chr00, Theorem 1.4.9]. Now M ∈ G(A) if and only if GdimAp(Mp) = 0 for
every prime p, which by (5.10) is equivalent to depthAp

(Mp) = dim(Ap) for every p. This is
the statement that M is maximal Cohen-Macaulay, so we have established (i)⇔ (ii). For
the equivalence of (ii) and (iii) see [Chr00, Theorem 4.1.4] and [IK06, Corollary 5.5].

5.1 The Stable Derived Category of Projective Modules

The material of the previous section specializes to results about the homotopy category
K(ProjA) of projective modules over a commutative ring A. In this section we point out
that commutativity is superfluous; the results hold in complete generality.

Setup. In this section A is a noncommutative ring and modules are left A-modules.

The results of this section are straightforward consequences of the results established
by Neeman in his papers [Nee06a] and [Nee06c]. We are only able to work in such com-
plete generality (no finiteness conditions on A) by exploiting the theory of well generated
triangulated categories, so it is appropriate to say a few words about these categories.

Remark 5.12. In [Nee01b] Neeman introduced the well generated triangulated categories
as a generalization of the compactly generated ones; see also [Kra01]. Neeman’s book shows
why this is the correct generality in which to prove theorems like Brown representability.

There are natural examples of triangulated categories that are well generated but not
compactly generated. For example, the derived category D(A) of a Grothendieck abelian
category A is always well generated, but it is not necessarily compactly generated [Nee01a].
Of more relevance to us here, it is known that K(ProjA) is compactly generated for right
coherent rings [Nee06a, Jør05] but Neeman has shown that this is not true in general. The
homotopy category K(ProjA) is, however, always well generated [Nee06a, Theorem 4.8].

Our first task is to prove some technical results characterizing K-projectivity.

Proposition 5.13. The inclusions

K : K(ProjA) −→ K(A), J : K(FlatA) −→ K(A)
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both have right adjoints that are exact. That is, the right adjoints send acyclic complexes
in K(A) to acyclic complexes.

Proof. We know from the work of Neeman that K(ProjA) is well generated, so it satisfies
Brown representability [Nee06a, Corollary 4.9]. It follows from [Nee01b, Theorem 8.4.4]
that the inclusion K has a right adjoint. The existence of a right adjoint for J is connected
with flat covers, and is due to Neeman; see [Nee06c, Theorem 3.3]. It remains to prove
that the adjoints are exact. For M ∈ K(A) the counit KKρ(M) −→M fits into a triangle

KKρ(M) −→M −→ S −→ ΣKKρ(M) (5.11)

with S ∈ K(ProjA)⊥. By Lemma 2.22 we can find a quasi-isomorphism P −→ S with P a
complex of projectives; this morphism must be zero in K(A), from which we deduce that S
is acyclic. From the triangle (5.11) we conclude that the adjoint Kρ : K(A) −→ K(ProjA)
sends acyclic complexes to acyclic complexes, and the same argument applies to Jρ.

Recall from Section 2.2 the definition of K-injective, K-projective and K-flat complexes.
To be clear, over the noncommutative ring A a complex X of left A-modules is K-flat if
Z ⊗A X is acyclic for every acyclic complex Z of right A-modules.

Corollary 5.14. We have the following classification of orthogonals

(i) A complex X of projective modules is K-projective if and only if X ∈ ⊥Kac(ProjA).

(ii) A complex X of flat modules is K-projective if and only if X ∈ ⊥Kac(FlatA).

(iii) A complex X of flat modules is K-flat if and only if X ∈ ⊥Km,ac(ProjA).

where the orthogonal in (iii) is taken in Km(ProjA). It follows that

(iv) A complex X of projective modules is K-flat if and only if it is K-projective.

Proof. Note that orthogonals are always calculated relative to some ambient triangulated
category. In (i) and (ii) above this category is K(A) and in (iii) it is Km(ProjA).

(i) If X is K-projective then it is left orthogonal to every acyclic complex, and in par-
ticular it is left orthogonal to the acyclic complexes of projective modules, so X belongs to
⊥Kac(ProjA). In the other direction, let X be a complex of projectives left orthogonal to
every acyclic complex of projective modules. For an acyclic complex C of modules it follows
from Proposition 5.13 that Kρ(C) is acyclic, so HomK(A)(X,C) ∼= HomK(ProjA)(X,Kρ(C))
vanishes, proving that X is K-projective. The claim (ii) is proved similarly.

(iii) The complex X has a K-projective resolution consisting of a K-projective complex
P of projective modules and a triangle in K(A) with C acyclic (see Lemma 2.22)

P −→ X −→ C −→ ΣP (5.12)

Any acyclic complex Z of flat modules is isomorphic, in Km(ProjA), to an acyclic complex
Z ′ of projective modules, and using Remark 3.5(iii) we have

HomKm(ProjA)(P,Z) ∼= HomK(ProjA)(P,Z
′) = 0
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from which we deduce that P ∈ ⊥Km,ac(ProjA). If X is K-flat then from (5.12) we infer
that C is K-flat and thus zero in Km(ProjA). Hence X ∼= P belongs to ⊥Km,ac(ProjA). In
the other direction, if X belongs to this orthogonal then so does C, whence C is orthogonal
to itself and therefore zero. We conclude that X ∼= P is K-flat (K-flatness is stable under
isomorphism in Km(ProjA), by the argument of Lemma 5.1).

(iv) The equivalence K(ProjA) ∼−→ Km(ProjA) of Lemma 3.6 identifies Kac(ProjA)
with Km,ac(ProjA) and therefore identifies ⊥Kac(ProjA) with ⊥Km,ac(ProjA). By (i)
the first orthogonal consists of the K-projective complexes of projective modules and by
(iii) the second orthogonal is the full subcategory of Km(ProjA) consisting of the K-flat
complexes of flat modules. The claim is now immediate.

The injective analogue of the next theorem is known for noetherian rings [Kra05] but
for general rings it must be more subtle, because it is not even clear a priori how to define
coproducts in K(InjA) for rings without some noetherian hypothesis.

Theorem 5.15. The sequence

Kac(ProjA) inc // K(ProjA) can // D(A) (5.13)

induces a recollement

Kac(ProjA) // K(ProjA)oo
oo // D(A)oo

oo
(5.14)

Proof. The proof is the same as that given for Theorem 5.5, but since many details simplify
it is worth giving the full argument here. Firstly, we note that the composite

T : ⊥Kac(ProjA) −→ K(ProjA) −→ D(A)

is fully faithful, because by Corollary 5.14(i) the objects of ⊥Kac(ProjA) are precisely
the K-projective complexes of projectives. By Lemma 2.22 every complex X in D(A)
admits a K-projective resolution by a complex of projectives, so T is an equivalence. The
composite of the quasi-inverse T−1 with the inclusion ⊥Kac(ProjA) −→ K(ProjA) gives a
fully faithful left adjoint for the functor u : K(ProjA) −→ D(A), so it follows from Lemma
2.6 that (5.13) is a colocalization sequence. The triangulated category K(ProjA) satisfies
Brown representability by [Nee06a, Corollary 4.9], so the coproduct preserving functor u
admits a right adjoint. We conclude that (5.13) is a recollement, as required.

Next we give the flat analogue. Note that the recollement above generalizes to schemes,
but the recollement below does not.

Corollary 5.16. The sequence

Kac(FlatA) inc // K(FlatA) can // D(A) (5.15)

induces a recollement

Kac(FlatA) // K(FlatA)oo
oo // D(A)oo

oo
(5.16)
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Proof. Let I : K(ProjA) −→ K(FlatA) denote the inclusion, which has right adjoint Iρ by
Remark 3.5 (this is another result of Neeman). Given a complex F of flat modules, there
is a triangle IIρ(F ) −→ F −→ S −→ ΣIIρ(F ) with S in K(ProjA)⊥. We deduce that S
is an acyclic complex, and that the following diagram commutes up to natural equivalence

K(FlatA)

Iρ **

can // D(A)

K(ProjA)
can

;;

We know from the theorem that K(ProjA) −→ D(A) has fully faithful left and right
adjoints. The same is true of Iρ by [Nee06c, Remark 3.2]. We conclude that the canonical
functor K(FlatA) −→ D(A) has fully faithful left and right adjoints, and therefore induces
a recollement.

The next result adds to the list of well generated triangulated categories.

Corollary 5.17. The triangulated category Kac(ProjA) is well generated. If A is right
coherent, then it is compactly generated.

Proof. We use a characterization of well generated triangulated categories given by Krause
[Kra01] since it is more convenient for our purposes. In [Nee06a, Theorem 4.8] Neeman
proves that the category K(ProjA) is ℵ1-compactly generated: there is a set S of complexes
in K(ProjA) satisfying the conditions of [Kra01, Theorem A] for the cardinal α = ℵ1

(G1) An object X ∈ K(ProjA) is zero provided HomK(ProjA)(S,X) = 0 for every S ∈ S;

(G2) For every set of maps Xi −→ Yi in K(ProjA) the induced map

HomK(ProjA)(S,⊕iXi) −→ HomK(ProjA)(S,⊕iYi)

is surjective for every S ∈ S provided HomK(ProjA)(S,Xi) −→ HomK(ProjA)(S, Yi) is
surjective for all i and S ∈ S.

(G3) The objects of S are ℵ1-small.

Let F : Kac(ProjA) −→ K(ProjA) denote the inclusion, which by Theorem 5.15 admits
a left adjoint Fλ. It is straightforward to check that the set S ′ = {Fλ(S) |S ∈ S} satisfies
the above conditions (G1)-(G3) for the triangulated category Kac(ProjA). From [Kra01,
Theorem A] we conclude that Kac(ProjA) is ℵ1-compactly generated and, in particular, is
well generated. If A is right coherent then K(ProjA) is compactly generated by [Nee06a,
Proposition 6.14]. One checks that Fλ sends a compact generating set for K(ProjA) to a
compact generating set for Kac(ProjA), so this latter category is compactly generated.

There is nothing surprising about this corollary. It is essentially the argument given by
Iyengar and Krause in [IK06, Theorem 5.3] who prove the result when A is commutative
and noetherian of finite Krull dimension, applied to the new fact that K(ProjA) is always
well generated.
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Chapter 6

Closed Monoidal Structure

Many triangulated categories are also closed monoidal categories. The topological example
is the homotopy category of spectra with the smash product −∧− and function spectra,
while the algebraic example is the derived category D(A) of a (commutative) ring, which
has the derived tensor product −

=
⊗A − and derived Hom, denoted RHomA(−,−).

It is hardly possible to overstate the importance of these objects. On the algebraic
side, the derived structures contain in their cohomology the derived functors Tor and Ext
underlying classical homological algebra: for A-modules M,N we have isomorphisms

Tori(M,N) ∼= H−i(M
=
⊗A N), Exti(M,N) ∼= H iR HomA(M,N)

In this chapter we define the closed monoidal structure on Km(ProjX). The tensor product
is the ordinary tensor product of complexes, while the function object RFlat(−,−) is more
exotic. By analogy with the homotopy category of spectra, we call the functor

F 7→ F ◦ = RFlat(F ,OX)

the Spanier-Whitehead dual on the mock homotopy category of projectives; see [HPS97,
Definition A.2.4]. Taking the dual, in this sense, of flat resolutions of bounded complexes
of coherent sheaves produces compact objects in Km(ProjX), and we will prove in Chapter
7 that all the compact objects are of this form.

Another category of interest is the derived category D(QcoX) of quasi-coherent sheaves.
Its closed monoidal structure is identical to the structure on the derived category D(X) of
arbitrary sheaves of modules, modulo some technical points, discussed in Section 6.1. The
relationship between the derived category and Km(ProjX) is a recollement (Chapter 5)

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

When X is regular the mock homotopy category is equivalent to the derived category, and
the closed monoidal structure on Km(ProjX) reduces to the derived tensor product and
derived Hom (Remark 9.8). In general, however, the tensor product and function object
in Km(ProjX) extend the corresponding structures of D(QcoX) to take into account the
acyclic complexes, which carry information about the singularities of X.
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We refer the reader to [HPS97, Appendix A] and [MVW06, Definition 8A.1] for general
background on triangulated categories that are also closed monoidal categories.

Setup. In this section X is a noetherian scheme and sheaves are defined over X by default.

First we define the tensor product on Km(ProjX). In the homotopy category K(QcoX)
of quasi-coherent sheaves we have a tensor product −⊗− defined for complexes F ,G of
quasi-coherent sheaves by [Lip, (1.5.4)]. In degree n, this complex is

(F ⊗ G )n =
⊕
i+j=n

F i ⊗ G j

This tensor product makes K(QcoX) into a tensor triangulated category, in the sense of
[MVW06, Definition 8A.1]. The corresponding closed structure is discussed in Section 6.1.
Because the tensor product of flat sheaves is flat, the tensor product on K(QcoX) restricts
to make K(FlatX) into a tensor triangulated category.

Lemma 6.1. If F is a complex of flat quasi-coherent sheaves and E belongs to E(X) then
F ⊗ E also belongs to E(X).

Proof. Complexes in E(X) are characterized by the fact that tensoring with them sends
arbitrary complexes to acyclic complexes; see Proposition 3.4. Given a complex G we have
G ⊗ (F ⊗ E ) ∼= (G ⊗F )⊗ E , which must be acyclic, whence F ⊗ E ∈ E(X).

The lemma tells us that E(X) is a tensor ideal, and it follows that the tensor product on
K(FlatX) descends to a tensor product on the quotient Km(ProjX) = K(FlatX)/E(X),
which thus becomes a tensor triangulated category. The precise argument can be found in
[MVW06, Proposition 8A.7]. Because Km(ProjX) is compactly generated, we can deduce
function objects from Brown representability, as follows.

Proposition 6.2. The triangulated category Km(ProjX) is a closed symmetric monoidal
category, in which the tensor product and function object RFlat(−,−) are compatible with
the triangulation. In particular, there is a natural isomorphism

HomKm(ProjX)(F ⊗ G ,H ) ∼−→ HomKm(ProjX)(F ,RFlat(G ,H )) (6.1)

Proof. When we say that the structure is compatible with the triangulation, we mean it in
the precise sense of [HPS97, Definition A.2.1]. We have already shown that Km(ProjX)
is a tensor triangulated category with the ordinary tensor product of complexes. For any
object F ∈ Km(ProjX) this tensor product gives a coproduct preserving functor

−⊗F : Km(ProjX) −→ Km(ProjX)

which has, by Brown representability, a right adjoint RFlat(F ,−). Here we use the fact
that X is noetherian to see that Km(ProjX) is compactly generated (Theorem 4.10), so
that the Brown representability theorem of Neeman applies (Proposition 2.7).

This defines the function object RFlat(−,−), but now some work is required to verify
that the conditions given in [HPS97, Definition A.2.1] are satisfied. The only problem is
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that it is not immediately clear that RFlat(−,−) is a triangulated functor in the first
variable. We give a general argument in Appendix C that settles this point for arbitrary
tensor triangulated categories satisfying Brown representability and an extra mild axiom
on the tensor product, which holds for Km(ProjX) and the other natural examples (see
Proposition C.13 and the subsequent remark).

Alternatively, one can prove that RFlat(−,−) is triangulated in the first variable by
giving a more explicit description of this complex, along the same lines that one defines the
derived Hom in D(X). This development is given in Appendix B. Using either approach,
we find that the function object is a triangulated functor in both variables. Since the other
conditions of [HPS97, Definition A.2.1] are easily checked, the proof is complete.

The reader may be left cold by this definition. Although the adjunction (6.1) tells us
everything we need to know about the function object as an object of Km(ProjX), we have
said nothing about it as a complex. In practice we will study RFlat(−,−) by reducing to
the local case, where Lemma 6.6 below computes the function object explicitly. In some
important special cases, the global function object simplifies; see Corollary 6.13.

Remark 6.3. The reason for the notation RFlat(−,−) is that there is a closed structure
Flat(−,−) on K(FlatX), whose derived functor is the function object in Km(ProjX). The
closed structure on K(FlatX) is not important here, so we relegate it to Appendix B.

We will give a more traditional exposition on the closed monoidal structure of D(QcoX)
in Section 6.1, but using Brown representability it is possible to give a shorter proof that
bypasses some nonsense about coherators.

Proposition 6.4. The triangulated category D(QcoX) is closed symmetric monoidal, with
tensor product −

=
⊗− and function object RHomqc(−,−) compatible with the triangulation,

and there is a natural isomorphism

HomD(QcoX)(F =
⊗ G ,H ) ∼−→ HomD(QcoX)(F ,RHomqc(G ,H ))

Proof. In Chapter 5 we identified D(QcoX) with the full subcategory of K-flat complexes
in Km(ProjX), by identifying a complex with its resolution. To be precise, we established
an equivalence of triangulated categories (see Remark 5.9)

⊥Km,ac(ProjX) inc−→ Km(ProjX) can−→ D(QcoX) (6.2)

where ⊥Km,ac(ProjX) consists of K-flat complexes of flat quasi-coherent sheaves (Propo-
sition 5.2) and the quasi-inverse of (6.2) sends a complex to its K-flat resolution. Because
the tensor product of K-flat complexes is K-flat, ⊥Km,ac(ProjX) is a tensor triangulated
category, and from (6.2) we deduce that D(QcoX) is a tensor triangulated category with
the induced structure, which is just the derived tensor product in the usual sense.

Since D(QcoX) is compactly generated by [Nee96, Proposition 2.5] the argument given
in Appendix C now applies to prove that D(QcoX) has a function object RHomqc(−,−)
making it into a closed monoidal category in a way compatible with the triangulation; see
Remark C.14.
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The function object RHomqc(−,−) agrees with the usual derived Hom in the derived
category D(X) of arbitrary sheaves of modules, denoted here by RHom(−,−), whenever
such agreement is possible.

Lemma 6.5. There is a morphism in D(X) natural in both variables

RHomqc(F ,G ) −→ RHom(F ,G )

If RHom(F ,G ) has quasi-coherent cohomology, this is an isomorphism in D(X).

Proof. The canonical functor D(QcoX) −→ D(X) is fully faithful and induces an equiva-
lence of D(QcoX) with the subcategory Dqc(X) ⊆ D(X) of complexes with quasi-coherent
cohomology; see [BN93, Corollary 5.5]. We have a canonical natural isomorphism

HomD(QcoX)(A ,RHomqc(F ,G )) ∼−→ HomD(QcoX)(A =
⊗F ,G ) (Adjunction)

∼−→ HomD(X)(A =
⊗F ,G ) (Inclusion)

∼−→ HomD(X)(A ,RHom(F ,G )) (Adjunction)

The desired morphism corresponds to the identity on the left, when A is RHomqc(F ,G ).
This proves that RHomqc(F ,G ) represents RHom(F ,G ) amongst the complexes with
quasi-coherent cohomology; if RHom(F ,G ) is already one of these complexes, then the
two complexes must be isomorphic in D(X).

In the rest of this section we study the function object RFlat(−,−). In good situations
it is local, and over an open affine it simplifies. Over a ring A we work with modules rather
than sheaves, so in place of Km(ProjX) we use the equivalent category (Remark 3.5)

Km(ProjA) = K(FlatA)/E(A)

The function object on Km(ProjA) given by Proposition 6.2 is denoted RFlat(−,−) rather
than RFlat(−,−) to emphasize that it is a complex of modules. In the following lemma
we relate this complex to the ordinary Hom complex.

Lemma 6.6. Let A be a noetherian ring, F a complex of flat A-modules and P a complex
of finitely generated projective A-modules. There is an isomorphism in Km(ProjA)

HomA(P, F ) ∼−→ RFlat(P, F ) (6.3)

natural with respect to morphisms of complexes in both variables.

Proof. First, let us make some general comments. Recall that the objects of the orthogonal
⊥E(A) in K(FlatA) are, up to homotopy equivalence, the complexes of projective modules
(Remark 3.5(iii)), so given a complex p of projective A-modules and a complex f of flat
A-modules, there is an isomorphism (see [Nee01b, Lemma 9.1.5])

HomK(FlatA)(p, f) ∼−→ HomKm(ProjA)(p, f) (6.4)
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The quotient Q : K(FlatA) −→ Km(ProjA) has a left adjoint Qλ (Remark 3.5) and given
a complex Z of flat A-modules, Qλ(Z) is a complex of projective A-modules isomorphic,
in the quotient Km(ProjA), to Z.

Now for the proof of the lemma. An infinite product of flat modules over a noetherian
ring is flat, so HomA(P, F ) is a complex of flat A-modules and it makes sense as an object
of Km(ProjA). Given a complex Z of flat A-modules, we have an isomorphism

HomKm(ProjA)(Z,HomA(P, F )) ∼−→ HomK(FlatA)(Qλ(Z),HomA(P, F )) (Adjunction)
∼−→ HomK(FlatA)(Qλ(Z)⊗ P, F ) (Adjunction)
∼−→ HomKm(ProjA)(Qλ(Z)⊗ P, F ) (By 6.4)
∼−→ HomKm(ProjA)(Z,RFlat(P, F )) (Adjunction)

This isomorphism is natural in the variables P, F with respect to morphisms of K(FlatA),
and natural in Z with respect to all morphisms of Km(ProjA), so we deduce the desired
natural isomorphism (6.3) in Km(ProjA).

In the cases where we care about RFlat(F ,G ) the complex F will often be something
like a complex of vector bundles, which is locally a complex of finitely generated projectives,
so the lemma calculates the function object locally in many cases of interest. To exploit
this knowledge globally, we need to know when there is an isomorphism of the form

RFlat(F ,G )|U
∼−→ RFlat(F |U ,G |U )

We will prove in Proposition 6.12 that this holds whenever F is locally a complex of vector
bundles and G is bounded. The first step towards the proof is understanding restriction
between affine schemes: that is, we study how RFlat(−,−) behaves under extension along
a flat ring morphism.

Proposition 6.7. Given a flat morphism A −→ B of noetherian rings and complexes F
and G of flat A-modules, there is a natural morphism in Km(ProjB)

RFlatA(F,G)⊗A B −→ RFlatB(F ⊗A B,G⊗A B) (6.5)

If each F i is finitely generated and G is bounded, this is an isomorphism in Km(ProjB).

Proof. In any closed monoidal category there are unit and counit morphisms relating the
tensor product and function objects. For example, there is a morphism in Km(ProjA)

RFlatA(F,G)⊗A F −→ G

Applying −⊗A B and rearranging produces a morphism in Km(ProjB)

{RFlatA(F,G)⊗A B} ⊗B {F ⊗A B} ∼= (RFlatA(F,G)⊗A F )⊗A B −→ G⊗A B

that corresponds under adjunction to a morphism (6.5) in Km(ProjB). Suppose that each
F i is a finitely generated projective module and that G is bounded. By Lemma 6.6 we can
replace RFlat(−,−) by Hom(−,−) and reduce to checking that the canonical morphism

HomA(F,G)⊗A B −→ HomB(F ⊗A B,G⊗A B) (6.6)
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is an isomorphism in K(B). This reduction involves checking some compatibility diagrams,
but the verification is routine. The right hand side of (6.6) is canonically isomorphic to
the complex of B-modules HomA(F,G ⊗A B) and we are in the situation of the tensor
evaluation isomorphism: boundedness of G and finiteness of the objects in F imply the
necessary isomorphism

HomA(F,G)⊗A B
∼−→ HomA(F,G⊗A B)

which completes the proof.

Setup. In the rest of this section U ⊆ X is an open subset with inclusion f : U −→ X.

The restriction functor (−)|U : Km(ProjX) −→ Km(ProjU) preserves coproducts and
admits by Brown representability a right adjoint (see Proposition 2.7 and Theorem 4.10)

R̂f∗ : Km(ProjU) −→ Km(ProjX)

If U is affine this agrees with the ordinary direct image; see Definition 3.9. The adjunction
between restriction and direct image can now be “enriched”.

Lemma 6.8. Given complexes of flat quasi-coherent sheaves G on X and H on U there
is a natural isomorphism in Km(ProjX)

RFlat(G , R̂f∗H ) ∼−→ R̂f∗RFlat(G |U ,H )

Proof. For a complex F of flat quasi-coherent sheaves on X we have the following natural
isomorphism, with Homs taken in Km(ProjX) or Km(ProjU) as appropriate

Hom(F ,RFlat(G , R̂f∗H )) ∼−→ Hom(F ⊗ G , R̂f∗H )
∼−→ Hom(F |U ⊗ G |U ,H )
∼−→ Hom(F |U ,RFlat(G |U ,H ))
∼−→ Hom(F , R̂f∗RFlat(G |U ,H ))

from which we infer the desired isomorphism.

Definition 6.9. A complex F of flat quasi-coherent sheaves is locally a complex of vector
bundles in Km(ProjX) if every point x ∈ X has an open neighborhood V ⊆ X such
that F |V is isomorphic to a complex of vector bundles in Km(ProjV ). It will not cause
confusion if we drop the qualifier “in Km(ProjX)” and we will usually do so.

Let us give two examples that will be of importance later.

Lemma 6.10. A compact object in Km(ProjX) is locally a complex of vector bundles.

Proof. Compactness is local by Lemma 3.15, so it suffices to check that for a noetherian
ring A every compact object in K(ProjA) is isomorphic to a complex of finitely generated
projectives. This follows from [Nee06a, Proposition 6.12].



81

Lemma 6.11. For a bounded above complex G of coherent sheaves, the K-flat resolution
by flat quasi-coherent sheaves of G is locally a complex of vector bundles.

Proof. Such a resolution P −→ G exists, and is unique in Km(ProjX), by Remark 5.9.
Locally, G is a bounded above complex of finitely generated modules over a noetherian
ring, which admits a resolution by a complex of finitely generated projectives. Uniqueness
of K-flat resolutions in the mock homotopy category implies that, locally, P is isomorphic
to such a resolution, which is what we needed to show.

Finally, the main result.

Proposition 6.12. Given complexes F ,G of flat quasi-coherent sheaves on X there is a
canonical natural morphism in Km(ProjU)

τ : RFlat(F ,G )|U −→ RFlat(F |U ,G |U )

When F is locally a complex of vector bundles and G is bounded, this is an isomorphism
in Km(ProjU).

Proof. Using the unit of adjunction G −→ R̂f∗(G |U ) and Lemma 6.8, we have a canonical
natural morphism in Km(ProjX)

RFlat(F ,G ) −→ RFlat(F , R̂f∗(G |U )) ∼−→ R̂f∗RFlat(F |U ,G |U )

corresponding under adjunction to the morphism τ . Assume that F is locally a complex
of vector bundles and that G is bounded. To prove that τ is an isomorphism we use two
reductions: firstly to the case of affine open U , and secondly to the case where both X

and U are affine. For the first reduction, note that for an open affine W ⊆ U we have a
commutative diagram in Km(ProjW )

RFlat(F ,G )|U |W

τ ′′ ++

τ |W // RFlat(F |U ,G |U )|W

τ ′ssRFlat(F |W ,G |W )

Suppose that the proposition holds when U is affine. Then τ ′, τ ′′ are both isomorphisms in
Km(ProjW ), and we conclude that τ |W is also an isomorphism. Since W was an arbitrary
affine open subset, τ is an isomorphism and the proof is complete.

Thus, we have reduced to the case where U is affine. With F fixed, we denote by L
the triangulated subcategory of Km(ProjX) consisting of complexes G that make τ an
isomorphism in Km(ProjX). To show that a particular bounded complex G belongs to
this subcategory it suffices, by Corollary 3.14, to show that g∗(G |V ) belongs to L for every
affine open subset V ⊆ X with inclusion g : V −→ X. Writing h : U ∩ V −→ U for the
inclusion, we have

RFlat(F , g∗(G |V ))|U ∼= {g∗RFlat(F |V ,G |V )} |U ∼= h∗ {RFlat(F |V ,G |V )|U∩V }

RFlat(F |U , g∗(G |V )|U ) ∼= RFlat(F |U , h∗(G |U∩V )) ∼= h∗RFlat(F |U∩V ,G |U∩V )
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We conclude that it is enough to establish the isomorphism

RFlat(F |V ,G |V )|U∩V
∼−→ RFlat(F |U∩V ,G |U∩V ) (6.7)

so we reduce to the case where both X and U are affine. In fact, examining the statement
of Corollary 3.14, it suffices in (6.7) to consider open affines V that are finite intersections
of elements in an affine open cover of X, so we can reduce to the case where X and U

are both affine and F is a complex of vector bundles on X. In this case, Proposition 6.7
applies to complete the proof.

Corollary 6.13. For a complex V of vector bundles there is an isomorphism

Hom(V ,OX) ∼−→ RFlat(V ,OX) (6.8)

in the category Km(ProjX)

Proof. The morphism Hom(V ,OX)⊗V −→ OX corresponds, via the adjunction between
the tensor product and RFlat(−,−), to a morphism (6.8) that we claim is an isomorphism.
By Proposition 6.12 this is a local question. Over an affine scheme we must show that for
a complex P of finitely generated projectives the canonical morphism

HomA(P,A) −→ RFlat(P,A)

is an isomorphism in Km(ProjA), which is a consequence of Lemma 6.6.

6.1 The Derived Category of Quasi-coherent Sheaves

A significant role is played in modern algebraic geometry by the derived category D(X) of
sheaves of modules over a scheme X. We are really only interested in the quasi-coherent
sheaves, so one often restricts to the subcategory Dqc(X) ⊆ D(X) of complexes with quasi-
coherent cohomology. This has the advantage of being compactly generated. By [BN93,
Corollary 5.5] there is an equivalence of triangulated categories

D(QcoX) ∼−→ Dqc(X) (6.9)

It would be cleaner to work entirely in D(QcoX), but unfortunately our constructions may
produce sheaves that are not quasi-coherent. A common example is the sheaf Hom(F ,G )
for quasi-coherent sheaves F and G , which need not be quasi-coherent unless there is some
finiteness hypothesis on F .

The solution is to replace Hom(F ,G ) by a sheaf Homqc(F ,G ) that is quasi-coherent
for arbitrary quasi-coherent sheaves F ,G , and which agrees with Hom(F ,G ) whenever
this sheaf happens to be quasi-coherent. This much is well-known, but less well-known is
the definition of the derived tensor product and Hom in D(QcoX) that does not appeal to
(6.9). We give two approaches: one short, and one long. The short definition via Brown
representability has already been given in Proposition 6.4. The long definition is the more
traditional one via derived functors, given at the end of this section. The main focus of
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this section is the definition of the function object in the homotopy category K(QcoX),
which we will need in Chapter 8. The subsequent “long” definition of the function object
in the derived category D(QcoX) is optional and the reader can safely skip it. There is an
independent treatment of the closed monoidal structure on D(QcoX) in a recent paper of
Alonso, Jeremı́as, Pérez and Vale [AJPV07] who go on to show that D(QcoX) is a stable
homotopy category. See also the discussion following Corollary 2.5 in [Hov01].

Setup. Throughout this section X is a fixed scheme and sheaves are defined over X.

In the homotopy category K(X) of sheaves of modules we have internal structures−⊗−
and Hom(−,−) defined for complexes F ,G of sheaves of modules by [Lip, (1.5.3),(1.5.4)].
In degree n, these complexes are defined by

(F ⊗ G )n =
⊕
i+j=n

F i ⊗ G j

Homn(F ,G ) =
∏
q∈Z

Hom(F q,G q+n)

Given a quasi-coherent sheaf F the functor Hom(F ,−) may not preserve quasi-coherence.
Nonetheless, the category Qco(X) of quasi-coherent sheaves must possess an internal Hom,
because the functor −⊗F : Qco(X) −→ Qco(X) preserves colimits, and therefore has a
right adjoint Homqc(F ,−). Over an affine scheme X = Spec(A) the uniqueness of such
an adjoint implies that for A-modules M,N we have an isomorphism in Qco(X)

Homqc

(
M̃, Ñ

)
∼= HomA(M,N)˜

The sheaf Homqc(F ,G ) can be calculated by a Čech argument [TT90, Appendix B.14]
and it must agree with Hom(F ,G ) when F is locally finitely presented (e.g. coherent on
a noetherian scheme). We find it convenient to define Homqc(−,−) using the coherator.
Recall that Mod(X) denotes the category of arbitrary sheaves of modules on X.

Lemma 6.14. The inclusion Qco(X) −→Mod(X) has a right adjoint C, that we call the
coherator.

Proof. By our blanket hypothesis the schemeX is quasi-compact and separated, so Qco(X)
is Grothendieck abelian and the inclusion has a right adjoint by the Special Adjoint Func-
tor Theorem.

For the next pair of results we fix the coherator C for our scheme X.

Proposition 6.15. The category Qco(X) is a closed symmetric monoidal category with
the usual tensor product and the function object Homqc(−,−) defined by

Homqc(F ,G ) = CHom(F ,G )

In particular, there is a natural isomorphism

HomQco(X)(F ⊗ G ,H ) ∼= HomQco(X)(F ,Homqc(G ,H ))
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The internal structures in Qco(X) pass to complexes in such a way as to make the
triangulated category K(QcoX) into a closed symmetric monoidal category. There is one
subtle point involving products in Qco(X), which may not agree with products in Mod(X).

Remark 6.16. Because Qco(X) is Grothendieck abelian it has products, denoted here by∏qc. These are calculated by applying the coherator to products in Mod(X). Note that
the product in Qco(X) is not exact, and therefore not local; see [Kra05, Example 4.9].

Proposition 6.17. The triangulated category K(QcoX) is closed symmetric monoidal,
with tensor product and function object Homqc(−,−) compatible with the triangulation,
and in degree n we have

Homn
qc(F ,G ) = CHomn(F ,G ) =

qc∏
q∈Z

Homqc(F q,G q+n) (6.10)

In particular, there is a natural isomorphism

HomK(QcoX)(F ⊗ G ,H ) ∼= HomK(QcoX)(F ,Homqc(G ,H ))

Proof. The function object Hom(−,−) in K(X) becomes, after applying the coherator,
a function object Homqc(−,−) = CHom(−,−) for K(QcoX). Together with the usual
tensor product this makes K(QcoX) a closed symmetric monoidal category, and the struc-
ture is clearly compatible with the triangulation. We deduce (6.10) from the fact that C
has a left adjoint, so it sends products to products.

In the rest of this section we give the “long” definition of the closed monoidal structure
on the derived category D(QcoX) of quasi-coherent sheaves. This will not be used in the
sequel and is included only for completeness. To make D(QcoX) into a closed monoidal
category we derive the tensor and Hom in K(QcoX). The definitions are standard: replace
one variable in − ⊗ − with a K-flat resolution and the second variable in Homqc(−,−)
with a K-injective resolution, working throughout with quasi-coherent sheaves and keeping
in mind the distinction between K-injective complexes in Qco(X) and Mod(X). Despite
this simple description there is some effort involved in getting the details right; one way to
avoid some of these details is using adjoints: because Qco(X) is Grothendieck abelian the
quotient q : K(QcoX) −→ D(QcoX) induces a localization sequence (see Remark 2.20)

Kac(QcoX) // K(QcoX)oo
q // D(QcoX)
qρ

oo

where the right adjoint qρ sends a complex to its K-injective resolution. This is well-known,
but new to this thesis is the construction of K-flat resolutions by an adjoint functor. By
Theorem 5.5 the canonical functor U : Km(ProjX) −→ D(QcoX) induces a recollement

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)

Uρ
oo

Uλoo

The left adjoint Uλ sends a complex to a K-flat resolution by flat quasi-coherent sheaves,
and does so functorially; see Remark 5.9. We will use these adjoints to define the tensor
product and function objects in D(QcoX), but first we need to prove a technical lemma.
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Lemma 6.18. Given complexes F and I of quasi-coherent sheaves that are, respectively,
K-flat and K-injective, the complex Homqc(F ,I ) is K-injective.

Proof. When we say that a complex of quasi-coherent sheaves is K-injective we mean that
it belongs to the orthogonal Kac(QcoX)⊥ in K(QcoX). Given C ∈ Kac(QcoX) we have

HomK(QcoX)(C ,Homqc(F ,I )) ∼= HomK(QcoX)(C ⊗F ,I )

which is zero, because C ⊗F is acyclic. This proves the claim.

Proposition 6.19. The triangulated category D(QcoX) is a closed symmetric monoidal
category, with tensor product −

=
⊗ − and function object RHomqc(−,−) compatible with

the triangulation. These complexes are defined by

F
=
⊗ G = F ⊗ Uλ(G )

RHomqc(F ,G ) = Homqc(F , qρ(G ))

In particular, there is a natural isomorphism

HomD(QcoX)(F =
⊗ G ,H ) ∼= HomD(QcoX)(F ,RHomqc(G ,H ))

Proof. The tensor product and function object, as given, are well-defined on objects. Let
us check that these definitions make sense for morphisms in the derived category, beginning
with the tensor product −

=
⊗−. Fix a complex F ∈ D(QcoX) and consider the composite

K(FlatX) inc // K(QcoX) F⊗− // K(QcoX) can // D(QcoX) (6.11)

For E in E(X) the complex F ⊗E is acyclic, by Proposition 3.4(iv). Hence the composite
(6.11) vanishes on E(X), so it induces a triangulated functor out of the Verdier quotient
Km(ProjX). Composing with the left adjoint Uλ, which takes a K-flat resolution, we have
the derived tensor product with F

F
=
⊗− : D(QcoX)

Uλ // Km(ProjX) F⊗− // D(QcoX)

Functoriality in the first variable is handled similarly, so we have defined a bifunctor −
=
⊗−

triangulated in each variable. The functoriality of RHomqc(−,−) is identical and left to
the reader. Observe that we use a subscript “qc” for the function object but not the tensor
product; this is because our K-flat resolution Uλ(G ) is of the same type used to define
the derived tensor product in D(X), so the two tensor products agree up to canonical
isomorphism and there is no need to distinguish them in the notation. It remains to give
the adjunction between the tensor product and function objects. Given complexes F ,G

and H of quasi-coherent sheaves we have

HomD(QcoX)(F =
⊗ G ,H ) = HomD(QcoX)(F ⊗ Uλ(G ),H ) (Definition)

∼= HomK(QcoX)(F ⊗ Uλ(G ), qρ(H )) (Adjunction)
∼= HomK(QcoX)(F ,Homqc(Uλ(G ), qρ(H ))) (Adjunction)
∼= HomD(QcoX)(F ,Homqc(G , qρ(H )) (Lemma 6.18)

= HomD(QcoX)(F ,RHomqc(G ,H )) (Definition)
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The coherence diagrams that make D(QcoX) closed symmetric monoidal are verified to
be commutative in the same way that one checks the analogous properties for D(X), and
similarly one checks compatibility with the triangulation.

Remark 6.20. The two function objects RHomqc(−,−) defined in Proposition 6.4 and
Proposition 6.19 must agree, because they are uniquely determined by the adjunction with
the tensor product which is the same in both cases.



Chapter 7

Classifying the Compact Objects

Let X be a noetherian scheme. We have defined the mock homotopy category Km(ProjX)
of projectives and its subcategory Km,ac(ProjX) of acyclic complexes, and shown that both
are compactly generated triangulated categories (see Theorem 4.10 and Theorem 5.5). In
this chapter we study the compact objects in these categories, and achieve a classification
in terms of an equivalence (Theorem 7.4)

Db
coh(QcoX)op ∼−→ Kc

m(ProjX) (7.1)

and an equivalence up to direct factors (Theorem 7.9)

(Db
coh(QcoX)/Perf(X))op ∼−→ Kc

m,ac(ProjX) (7.2)

where Db
coh(QcoX) denotes the bounded derived category of coherent sheaves, and Perf(X)

is the full subcategory of perfect complexes. This was already known for affine schemes;
see [Jør05, Theorem 3.2] and [IK06, Theorem 5.3]. Our approach is different, because the
lack of projective sheaves dictates that we work throughout with flat resolutions.

Setup. In this section X is a noetherian scheme and sheaves are defined over X by default.

The equivalence (7.1) sends a coherent sheaf to a complex of flat quasi-coherent sheaves
which is compact in Km(ProjX). Let us describe briefly how this identification works. A
result of Krause identifies compact objects in the homotopy category K(InjX) of injective
quasi-coherent sheaves with bounded complexes of coherent sheaves, via an equivalence of
triangulated categories [Kra05, Proposition 2.3]

Db
coh(QcoX) ∼−→ Kc(InjX)

which identifies a coherent sheaf G with its injective resolution. The projective case must
be more subtle, because the flat resolution of G is not necessarily compact in Km(ProjX)
(if it were, then G would be a perfect complex). Instead, the Spanier-Whitehead dual of
the flat resolution is compact, which explains the contravariance in (7.1). This dual was
introduced in Chapter 6 and denoted there by

(−)◦ = RFlat(−,OX)
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More generally, the compact object in Km(ProjX) corresponding to a bounded complex of
coherent sheaves is the Spanier-Whitehead dual of its K-flat resolution. To deal effectively
with K-flat resolutions, we use the results of Chapter 5. Recall that the canonical functor
U : Km(ProjX) −→ D(QcoX) determines a recollement (Theorem 5.5)

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)

Uρ
oo

Uλoo
(7.3)

where the left adjoint Uλ of U sends a complex in D(QcoX) to its K-flat resolution by flat
quasi-coherent sheaves (Remark 5.9). Before continuing, let us clear up a technical point.

Remark 7.1. One advantage of noetherian schemes is that we are never confused about
the meaning of the term “bounded derived category of coherent sheaves”, for which there
are three candidates

(i) Db(CohX): the bounded derived category of the category Coh(X) of coherent sheaves.

(ii) Db
coh(QcoX): the subcategory of complexes with bounded coherent cohomology in

the derived category D(QcoX) of quasi-coherent sheaves.

(iii) Db
coh(X): the subcategory of complexes with bounded coherent cohomology in the

derived category D(X) of sheaves of modules.

The inclusions Coh(X) −→ Qco(X) and Qco(X) −→Mod(X) yield equivalences of trian-
gulated categories, by [Ver96, Proposition III.2.4.1] and [BN93, Corollary 5.5] respectively

Db(CohX) ∼−→ Db
coh(QcoX) ∼−→ Db

coh(X) (7.4)

Due to our preference for quasi-coherent sheaves, the bounded derived category of coherent
sheaves hereafter means Db

coh(QcoX). It is useful to know that every object of this category
is, up to isomorphism, a bounded complex of coherent sheaves. This consequence of (7.4)
will be used often, and without explicit mention.

In the first proposition we show that taking the Spanier-Whitehead dual of a K-flat
resolution is right adjoint to sending a complex of flat quasi-coherent sheaves to its Spanier-
Whitehead dual, considered as an object of D(QcoX)op.

Proposition 7.2. There is an adjoint pair of triangulated functors

Km(ProjX)
U(−)◦ //

D(QcoX)op
(−)◦Uλ

oo

where U(−)◦ is left adjoint to (−)◦Uλ.

Proof. Let a complex A of quasi-coherent sheaves and a complex F of flat quasi-coherent
sheaves be given. Writing “HomK(−,−)” for HomKm(ProjX)(−,−) and “HomD(−,−)” for
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HomD(QcoX)(−,−), there is a natural isomorphism

HomD(A , U(F ◦)) ∼−→ HomK(Uλ(A ),RFlat(F ,OX)) (Adjunction)
∼−→ HomK(Uλ(A )⊗F ,OX) (Adjunction)
∼−→ HomK(F ⊗ Uλ(A ),OX) (Symmetry)
∼−→ HomK(F , (Uλ(A ))◦) (Adjunction)

which establishes the desired adjunction.

We will show that U(−)◦ restricts to an equivalence of the subcategory Kc
m(ProjX) of

compact objects with the subcategory Db
coh(QcoX)op of complexes with bounded coherent

cohomology. But first we need to make some small observations.

Lemma 7.3. If F is a complex of flat quasi-coherent sheaves that is locally a complex of
vector bundles in Km(ProjX) then F ◦ also has this property, and the canonical morphism

F −→ F ◦◦

is an isomorphism in Km(ProjX). If F is compact in Km(ProjX) then F ◦ is K-flat.

Proof. By Proposition 6.12 these are all local questions, so we can reduce to proving the
following statements for a noetherian ring A (using the notation of Chapter 6):

(a) If P is a complex of finitely generated projective A-modules, then RFlat(P,A) is a
complex of finitely generated projectives (up to isomorphism) and

P −→ RFlat(RFlat(P,A), A)

is an isomorphism in Km(ProjA).

(b) Any compact object P in Km(ProjA) has K-flat dual RFlat(P,A).

In (a) we can, by Lemma 6.6, replace RFlat(P,A) by the isomorphic complex HomA(P,A)
in which case the claims are obvious. (b) We know from [Nee06a, Proposition 6.12] that
any compact object P in K(ProjA) is, up to homotopy equivalence, bounded below. Hence
HomA(P,A) ∼= RFlat(P,A) is, up to homotopy equivalence, a bounded above complex of
projective modules, therefore K-flat.

Theorem 7.4. The functor U(−)◦ restricts to an equivalence

U(−)◦ : Kc
m(ProjX) ∼−→ Db

coh(QcoX)op

with quasi-inverse (−)◦Uλ.

Proof. The proof has two parts. In part (A) we will prove that the functors of Proposition
7.2 restrict to an adjoint pair between Kc

m(ProjX) and Db
coh(QcoX)op by showing that

U(−)◦ sends compact objects to complexes with bounded coherent cohomology, and vice
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versa for (−)◦Uλ. In part (B) we prove that the unit and counit of this adjunction are
isomorphisms, so the two functors involved are actually equivalences.

(A) Given a compact object P in Km(ProjX), proving that P◦ has bounded coherent
cohomology is, by Proposition 6.12, a local question. Locally we are working in Km(ProjA)
for a noetherian ring A, where a compact object is by [Nee06a, Proposition 6.12] a bounded
below complex P of finitely generated projectives with H i HomA(P,A) = 0 for i� 0. So
in this case it is clear, using noetherianness of A, that RFlat(P,A) ∼= HomA(P,A) has
bounded coherent cohomology (here we use Lemma 6.6).

Next, we show that for a bounded complex G of coherent sheaves with K-flat resolution
P, the dual P◦ is compact. By Lemma 3.15 and Proposition 6.12 this is a local question.
Given a noetherian ring A let G be a bounded complex of finitely generated A-modules
and P a projective resolution of G by finitely generated projectives; the dual RFlat(P,A)
is compact in Km(ProjA) by Lemma 6.6 and [Nee06a, Proposition 6.12]. This proves that
the adjunction of Proposition 7.2 restricts to an adjunction

Kc
m(ProjX)

U(−)◦ //
Db

coh(QcoX)op

(−)◦Uλ

oo (7.5)

(B) Given a complex F that is compact in Km(ProjX), the counit e : UλU(F ◦) −→ F ◦

of the adjunction between U and Uλ is a K-flat resolution, by Remark 5.9. But by Lemma
7.3 the complex F ◦ is already K-flat, so e is an isomorphism in Km(ProjX). The unit of
the adjunction (7.5) is the composite

F −→ F ◦◦
e◦−→ (UλU(F ◦))◦

of two isomorphisms, by Lemma 7.3 (recall that compact objects are locally complexes of
vector bundles by Lemma 6.10). This proves that the unit of (7.5) is a natural equivalence.

Given a bounded complex G of coherent sheaves the unit morphism f : G −→ UUλ(G )
is an isomorphism in D(QcoX), as the left adjoint Uλ is fully faithful. Moreover, the K-flat
resolution Uλ(G ) is locally a complex of vector bundles (Lemma 6.11) so the counit of the
adjunction (7.5) is the composite

G
f−→ UUλ(G ) −→ U(Uλ(G )◦◦)

of two isomorphisms; see Lemma 7.3. This proves that the counit of (7.5) is a natural
equivalence, and establishes that U(−)◦ is an equivalence with quasi-inverse (−)◦Uλ.

We say that X has enough vector bundles if every coherent sheaf can be written as the
quotient of a vector bundle; in this case, the theorem simplifies. Note that this condition is
satisfied by any quasi-projective variety or, more generally, by any scheme with an ample
family of line bundles; see [TT90, Lemma 2.1.3].

Remark 7.5. Assume that X has enough vector bundles, so that every bounded complex
G of coherent sheaves has a resolution V −→ G by a bounded above complex V of vector
bundles. This is a K-flat resolution, and by Corollary 6.13 we have

V ◦ = Hom(V ,OX)
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so the equivalence (−)◦Uλ of Theorem 7.4 identifies G with the sheaf dual Hom(V ,OX)
of its resolution by vector bundles. The theorem also implies that every compact object
in Km(ProjX) is of this form.

Up to isomorphism the coherent sheaves form a set that generates the bounded derived
category of coherent sheaves. From the theorem we learn that the Spanier-Whitehead duals
of flat resolutions of elements of this set generate Kc

m(ProjX) as a triangulated category;
such resolutions exist, and are unique in Km(ProjX), by Remark 5.9. This constructs an
explicit compact generating set, as described in the following.

Corollary 7.6. The category Km(ProjX) is compactly generated, and

{ΣiP◦
G |G is a coherent sheaf and i ∈ Z}

is a compact generating set, where PG denotes a resolution by flat quasi-coherent sheaves

· · · −→P−2
G −→P−1

G −→P0
G −→ G −→ 0

Our attention now turns to the mock stable derived category Km,ac(ProjX). We know
from the defining recollement (Theorem 5.5) that this category is equivalent to the quotient
of Km(ProjX) by the derived category D(QcoX), identified with the subcategory of K-flat
resolutions in Km(ProjX). A classification of the compact objects in Km,ac(ProjX) will
therefore follow from the Neeman-Ravenel-Thomason localization theorem. As part of the
proof, we will need the following comparison of function objects. Recall that the function
object RHomqc(−,−) in D(QcoX) was defined in Section 6.1.

Lemma 7.7. There is a canonical morphism in D(QcoX) natural in both variables

θ : RFlat(P,F ) −→ RHomqc(P,F )

which is an isomorphism in D(QcoX) if P is K-flat.

Proof. If we agree to write “HomKm(−,−)” for HomKm(ProjX)(−,−) and “HomD(−,−)”
for HomD(QcoX)(−,−) then we have a natural morphism

HomD(A ,RFlat(P,F )) ∼−→ HomKm(UλA ,RFlat(P,F )) (Adjunction)
∼−→ HomKm(Uλ(A )⊗P,F ) (Adjunction)

−→ HomD(Uλ(A )⊗P,F ) (Quotient) (?)
∼−→ HomD(A

=
⊗P,F ) (Definition)

∼−→ HomD(A ,RHomqc(P,F )) (Adjunction)

which yields a canonical morphism θ : RFlat(P,F ) −→ RHomqc(P,F ) in D(QcoX).
If P is K-flat then the tensor product Uλ(A )⊗P is K-flat and the step marked (?) is an
isomorphism, by Remark 5.9(i), so we conclude that θ is an isomorphism in D(QcoX).
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The Spanier-Whitehead dual on D(QcoX) is the usual derived dual

(−)∨ = RHomqc(−,OX)

Recall that a complex of quasi-coherent sheaves is perfect if it is locally isomorphic, in
the derived category of quasi-coherent sheaves, to a bounded complex of vector bundles.
These are the compact objects in D(QcoX) [Nee96, Proposition 2.5] and for the sake of
having emotive notation we denote the full subcategory of perfect complexes by

Perf(X) = Dc(QcoX)

The perfect complexes are very well studied in the literature; the most complete accounts
can be found in [SGA6, §I.4] or [TT90, §2]. In particular, a great deal is known about
the interaction between perfect complexes and the function object RHom(−,−) in D(X),
and using Lemma 6.5 most of these results translate directly to D(QcoX). Properties of
perfect complexes can also be viewed as consequences of the fact that D(QcoX) is a stable
homotopy category; see [AJPV07] and [HPS97, Appendix A.2].

Lemma 7.8. Let C be a perfect complex. There is an isomorphism in Km(ProjX)

Uλ(C ∨) ∼−→ (UλC )◦

Proof. These complexes are K-flat by Lemma 7.3, and to show that they are isomorphic in
Km(ProjX) it suffices, by Remark 5.9(i), to prove that they are isomorphic in D(QcoX).
This is a consequence of Lemma 7.7.

In the next theorem we identify compact objects in Km,ac(ProjX) with objects of the
triangulated category of singularities [Orl04]

Db
sg(X) = Db

coh(QcoX)/Perf(X)

We have described compact objects in the mock homotopy category of projectives as the
duals of resolutions, and something similar is true for Km,ac(ProjX). However, to give the
exact statement it would be necessary to develop the properties of complete flat resolutions
over schemes, so we will give it elsewhere.

Theorem 7.9. There is a canonical equivalence up to direct factors

Db
sg(X)op ∼−→ Kc

m,ac(ProjX)

Proof. By Theorem 5.5 we have a recollement

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

in which Km(ProjX) is compactly generated (Theorem 4.10) and D(QcoX) is compactly
generated [Nee96, Proposition 2.5]. The inclusion I : Km,ac(ProjX) −→ Km(ProjX) has
left adjoint Iλ and applying the Neeman-Ravenel-Thomason localization theorem (in the
form of Corollary 2.10) we deduce that the restricted functor

Iλ : Kc
m(ProjX) −→ Kc

m,ac(ProjX)
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induces an equivalence up to direct factors Kc
m(ProjX)/Perf(X) ∼−→ Kc

m,ac(ProjX). It
remains to identify this quotient with the one occurring in the statement of the theorem.
By Theorem 7.4 we have an equivalence

(−)◦Uλ : Db
coh(QcoX)op ∼−→ Kc

m(ProjX)

which we claim identifies the subcategory Perf(X)op of the left hand side with the copy
of Perf(X) existing in Kc

m(ProjX) as the essential image of Uλ on compact objects. To
prove this, let C be a perfect complex. Then by Lemma 7.8 the Spanier-Whitehead dual
(UλC )◦ is the K-flat resolution of the perfect complex C ∨, thus an object of the image of
Uλ on compacts. Conversely, we have

Uλ(C ) ∼= Uλ(C ∨∨) ∼= U(C ∨)◦

so every object in the image of Uλ on compacts is of the form Uλ(D)◦ for some perfect
complex D , proving the claim. It follows that there is an equivalence

(Db
coh(QcoX)/Perf(X))op = Db

coh(QcoX)op/Perf(X)op

∼= Kc
m(ProjX)/Perf(X)

which completes the proof of the theorem.
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Chapter 8

The Infinite Completion of

Grothendieck Duality

Let X be a noetherian scheme with a dualizing complex. We argued in the introduction to
this thesis that the mock homotopy category Km(ProjX) of projectives and the homotopy
category K(InjX) of injectives should be understood as extensions of the derived category
of quasi-coherent sheaves D(QcoX), which adjoin acyclic complexes of interest. We prove
in this chapter that the dualizing complex D , assumed to be a bounded complex of injective
quasi-coherent sheaves, induces an equivalence of these two extensions (Theorem 8.4)

−⊗ D : Km(ProjX) ∼−→ K(InjX) (8.1)

Restricting to compact objects recovers the equivalence of Grothendieck duality

RHomqc(−,D) : Db
coh(QcoX)op ∼−→ Db

coh(QcoX) (8.2)

where Db
coh(QcoX) is the bounded derived category of coherent sheaves (see Remark 7.1).

For affine schemes this result is due to Iyengar and Krause [IK06], and we refer the reader
to the introduction of this thesis for a discussion of their work. We will not try to survey the
literature on Grothendieck duality, as the subject is too vast, but the reader can find a very
good introduction in Conrad’s [Con00]. For us, the central object is the dualizing complex
[Har66, §V.2]. This is a bounded below complex D in D(X) with coherent cohomology
and finite injective dimension, such that the canonical morphism

F −→ RHom(RHom(F ,D),D) (8.3)

is an isomorphism in D(X) for every complex F ∈ Db
coh(X), which is to say, every complex

of sheaves of modules with bounded coherent cohomology. We deduce from (8.3) that there
is an equivalence (8.2), modulo one technical point; see Lemma 8.1 below.

Dualizing complexes are very useful, and exist for a large class of schemes. For example,
any scheme of finite type over a field (and thus any variety) admits a dualizing complex
[Har66, §II.10]. A dualizing complex is quasi-isomorphic to a bounded complex of injective
quasi-coherent sheaves [Har66, II 7.20(i)qc]. Hence, if X admits a dualizing complex, it
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admits a dualizing complex that is a bounded complex of injective quasi-coherent sheaves,
so we are free to adopt the following convention.

Setup. In this section X is a noetherian scheme with dualizing complex D and sheaves
are defined over X by default. We will always assume that D is a bounded complex of
injective quasi-coherent sheaves.

One technical point is that we want to work with Db
coh(QcoX) rather than Db

coh(X), in
order to deal throughout with quasi-coherent sheaves; see Remark 7.1 for an explanation
of the notation and Chapter 6 for a discussion of the function objects in D(QcoX), denoted
here by RHomqc(−,−). The next lemma consists of replacing one version of the bounded
derived category by another in the defining property of a dualizing complex.

Lemma 8.1. There is an equivalence of triangulated categories

RHomqc(−,D) : Db
coh(QcoX)op ∼−→ Db

coh(QcoX)

Proof. This is a consequence of Lemma 6.5 and the definition of the dualizing complex.

We need to explain why tensoring with D sends complexes of flat sheaves to complexes
of injective sheaves. This functor should also send acyclic K-flat complexes to contractible
complexes in order to be well-defined on Km(ProjX). Note that the next lemma applies
just as well to an arbitrary complex D of injective quasi-coherent sheaves.

Lemma 8.2. If F is a complex of flat quasi-coherent sheaves then F ⊗D is in K(InjX).
If moreover F belongs to E(X) then F ⊗D is contractible.

Proof. We have (F ⊗D)n = ⊕i+j=nF i ⊗Dj , and an arbitrary coproduct of injectives in
Qco(X) is injective, so we reduce to the case where F and D are single quasi-coherent
sheaves. The claim can now be checked on stalks [Har66, Proposition II.7.17] so we reduce
to showing that F ⊗AD is injective for a noetherian ring A, flat A-module F and injective
A-module D. By Lazard’s thesis [Laz64], F is the direct limit of a family of finitely
generated free modules. The functor −⊗AD commutes with colimits and any direct limit
of injective A-modules is injective [Mat58] so we reduce to the case of F free of finite rank,
which is trivial.

Now suppose that F belongs to E(X), so that it is acyclic and K-flat. We prove that
the complex F ⊗D is contractible. It is enough to show that it is acyclic and has injective
kernels, both of which can be checked on stalks, so we can take X = Spec(A) affine. For a
noetherian ring A, acyclic K-flat complex F of flat A-modules and complex D of injective
A-modules we have to prove that D ⊗A F is contractible. The proof of this statement is
given in [Nee06a, Corollary 8.7].

Tensoring with D defines a triangulated functor from K(QcoX) to itself. By the lemma
this functor sends K(FlatX) into K(InjX), and the restriction K(FlatX) −→ K(InjX)
vanishes on E(X). We deduce a triangulated functor out of the Verdier quotient

−⊗ D : Km(ProjX) −→ K(InjX) (8.4)
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We will prove that this is an equivalence, but first we need to understand how to relate
the tensor product −⊗D and function object RHom(−,D).

Lemma 8.3. Let F be a complex of flat quasi-coherent sheaves that is locally a complex
of vector bundles. There is a natural isomorphism in K(X)

π : F ◦ ⊗D
∼−→Hom(F ,D)

If further F is K-flat then F ◦ ⊗D is K-injective.

Proof. To be clear on some notation: in Chapter 6 we defined the closed monoidal structure
on Km(ProjX) and in particular the Spanier-Whitehead dual (−)◦. We also explained in
Definition 6.9 what it means for a complex of flat quasi-coherent sheaves to be locally a
complex of vector bundles. Applying −⊗D to the canonical morphism F ◦ ⊗F −→ OX
in Km(ProjX) we obtain a morphism

(F ◦ ⊗D)⊗F ∼= (F ◦ ⊗F )⊗D −→ D

which is adjoint to the desired morphism π in K(X). Suppose we can show that π restricts
to an isomorphism in K(U) for every affine open subset U ⊆ X. Then the mapping cone
I = cone(π) is a complex of injective (not necessarily quasi-coherent) sheaves contractible
on every open affine. For any affine open cover U = {U0, . . . , Ud} the Čech resolution

0 −→ I −→ C 0(U,I ) −→ C 1(U,I ) −→ · · · −→ C d(U,I ) −→ 0

decomposes into short exact sequences of complexes of injective sheaves, each degree-wise
split. From the corresponding triangles in K(X) and the local vanishing of I we deduce
that I vanishes in K(X), which implies that π is an isomorphism in K(X).

Because F is locally a complex of vector bundles, we can apply Proposition 6.12 to
reduce to the case where X = Spec(A) for a noetherian ring A with dualizing complex D
(as always, assumed to be a bounded complex of injectives) and F is replaced by a complex
F of finitely generated projectives. In this case we have to show that the morphism

π : RFlat(F,A)⊗A D −→ HomA(F,D)

is an isomorphism in K(A). Happily, we are in the situation where RFlat(−,−) simplifies.
By Lemma 6.6 there is an isomorphism HomA(F,A) ∼= RFlat(F,A) in Km(ProjA) and we
have reduced to checking that the canonical morphism

HomA(F,A)⊗A D −→ HomA(F,D)

is an isomorphism in K(A), which is straightforward. It remains to prove the second claim.
If F is K-flat then Hom(F ,D) is K-injective, and thus the homotopy equivalent complex
F ◦ ⊗D must also be K-injective.

Combining our major results, we have the infinite completion of Grothendieck duality.
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Theorem 8.4. There is an equivalence of triangulated categories

−⊗D : Km(ProjX) ∼−→ K(InjX)

making the following diagram commute up to natural equivalence

Kc
m(ProjX) −⊗D // Kc(InjX)

cano

��
Db

coh(QcoX)op

(−)◦Uλ o

OO

RHomqc(−,D)

∼ // Db
coh(QcoX)

(8.5)

Proof. We begin by reminding the reader of the functors in the diagram (8.5). By Theorem
5.5 the canonical functor U : Km(ProjX) −→ D(QcoX) has a left adjoint Uλ that takes
K-flat resolutions. The left side of (8.5) comes from Theorem 7.4, which proves that there
is an equivalence

(−)◦Uλ : Db
coh(QcoX)op ∼−→ Kc

m(ProjX)

The right side of (8.5) comes from [Kra05, Proposition 2.3], where Krause shows that the
canonical functor K(InjX) −→ D(QcoX) induces an equivalence

Kc(InjX) ∼−→ Db
coh(QcoX)

The bottom side of (8.5) is the defining property of the dualizing complex (Lemma 8.1).
For the top to be well-defined, we have to prove that the functor −⊗D of (8.4) preserves
compactness. Consider the diagram

Km(ProjX) −⊗D // K(InjX)

can

��
Db

coh(QcoX)op

(−)◦Uλ

OO

RHomqc(−,D)
// D(QcoX)

The two ways around this diagram are naturally equivalent, as follows

{Uλ(−)}◦ ⊗D
∼−→Hom(Uλ(−),D) (Lemma 6.11 and Lemma 8.3)
∼−→ RHom(Uλ(−),D) (D is K-injective)
∼−→ RHomqc(−,D) (Lemma 6.5)

Let a compact object in Km(ProjX) be given. By Theorem 7.4 we can assume that this
compact object is of the form Uλ(G )◦ for some G in Db

coh(QcoX). The resolution Uλ(G ) is
locally a complex of vector bundles and is K-flat, so Lemma 8.3 implies that Uλ(G )◦ ⊗D

is K-injective. From the following isomorphism in D(QcoX)

Uλ(G )◦ ⊗D
∼−→ RHomqc(G ,D)
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we learn that Uλ(G )◦⊗D has bounded coherent cohomology, and is consequently compact
in K(InjX) by Krause’s classification [Kra05, Proposition 2.3]. This proves that − ⊗ D

preserves compactness, and that the induced functor

−⊗ D : Kc
m(ProjX) −→ Kc(InjX) (8.6)

fits into a square (8.5) commuting up to natural equivalence. Since every other side of this
square is an equivalence, we infer that (8.6) is an equivalence, and a standard argument
(Proposition 2.11) now allows us to conclude that −⊗D : Km(ProjX) −→ K(InjX) is an
equivalence, because it is a coproduct preserving triangulated functor between compactly
generated triangulated categories (see Theorem 4.10 and [Kra05, Proposition 2.3]) which
restricts to an equivalence on compact objects.

Let us explain the significance of the commutative diagram (8.5) of the theorem.

Remark 8.5. Bounded complexes of coherent sheaves can be viewed as compact objects in
both Km(ProjX) and K(InjX), in the former category by taking the Spanier-Whitehead
dual of a K-flat resolution, and in the latter by taking a K-injective resolution; see Chapter
7. Given a bounded complex G of coherent sheaves, the equivalence

−⊗ D : Km(ProjX) ∼−→ K(InjX) (8.7)

does not interchange the two compact objects corresponding to G . It sends the compact
object of Km(ProjX) determined by G to the compact object of K(InjX) determined by
its Grothendieck dual RHomqc(G ,D). To be precise, writing p(−) for a K-flat resolution
and i(−) for a K-injective resolution, we have an isomorphism in K(InjX)

(p G )◦ ⊗D
∼−→ i RHomqc(G ,D)

This is the content of (8.5) and the sense in which (8.7) extends Grothendieck duality.

Remark 8.6. We have recollements, by Theorem 5.5 and [Kra05, Corollary 4.2]

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

Kac(InjX) // K(InjX)oo
oo // D(QcoX)oo

oo

One can ask whether the equivalence of Theorem 8.4 identifies the recollements, in the
sense that it sends acyclic complexes to acyclic complexes. In fact, this can only happen
when X is a Gorenstein scheme: if the functor −⊗D identifies the subcategories of acyclic
complexes, then it identifies their orthogonals, and we have an equivalence

−
=
⊗D : D(QcoX) ∼−→ ⊥Km,ac(ProjX) ∼−→ ⊥Kac(InjX) ∼−→ D(QcoX)

This equivalence must preserve compactness, so D ∼= D
=
⊗ OX is perfect and we can

conclude that X is Gorenstein [Har66, V.9.1].

Next we study the quasi-inverse of the equivalence in Theorem 8.4, using the function
object Homqc(−,−) in the homotopy category K(QcoX), as defined in Section 6.1.
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Lemma 8.7. If I ,I ′ are injective quasi-coherent sheaves then Homqc(I ,I ′) is flat.

Proof. Let U = {U0, . . . , Ud} be an affine open cover of X and consider the Čech resolution

0 −→ I ′ −→ C 0(U,I ′) −→ · · · −→ C d(U,I ′) −→ 0

This is an exact sequence of injective quasi-coherent sheaves that decomposes into a series
of short, split exact sequences. The functor Homqc(I ,−) preserves split exact sequences,
so to prove that Homqc(I ,I ′) is flat it suffices to show that Homqc(I , f∗(I ′|U )) is flat
whenever f : U −→ X is the inclusion of an affine open subset. In this case there is an
isomorphism of sheaves (using adjointness, see Lemma 6.8)

Homqc(I , f∗(I ′|U )) ∼= f∗Homqc(I |U ,I ′|U )

The functor f∗ preserves flatness of quasi-coherent sheaves, so we have reduced to the
case where X = Spec(A) is affine, and Homqc(I ,I ′) ∼= HomA(I, I ′)˜ for some injective
modules I, I ′. This module is flat, by a standard argument.

Given a complex I of injective quasi-coherent sheaves the complex Homqc(D ,I ) is,
in degree n ∈ Z, the following product in the category Qco(X) of quasi-coherent sheaves

Homn
qc(D ,I ) =

qc∏
q∈Z

Homqc(Dq,I q+n)

Because D is bounded this is a finite direct sum of flat sheaves, which is flat, so we have
defined a triangulated functor Homqc(D ,−) : K(InjX) −→ K(FlatX). Composing with
the quotient K(FlatX) −→ Km(ProjX) defines a triangulated functor

Homqc(D ,−) : K(InjX) −→ Km(ProjX)

We show in the next proposition that this is an equivalence.

Lemma 8.8. Let I be a complex of injective quasi-coherent sheaves. Then Homqc(D ,I )
belongs to the orthogonal E(X)⊥ as an object of K(FlatX).

Proof. This follows from the adjunction between − ⊗ D and Homqc(D ,−) and the fact
that E ⊗D is contractible whenever E belongs to E(X) (Lemma 8.2).

Proposition 8.9. There is a pair of equivalences of triangulated categories

Km(ProjX)
−⊗D
∼

//
K(InjX)

Homqc(D ,−)
oo

each quasi-inverse to the other.

Proof. For a complex F of flat quasi-coherent sheaves and a complex I of injective quasi-
coherent sheaves, there is a natural isomorphism

HomK(InjX)(F ⊗D ,I ) ∼−→ HomK(FlatX)(F ,Homqc(D ,I )) (Proposition 6.17)
∼−→ HomKm(ProjX)(F ,Homqc(D ,I )) (Lemma 8.8)



101

This defines Homqc(D ,−) and −⊗D as an adjoint pair of functors between Km(ProjX)
and K(InjX). We know from Theorem 8.4 that − ⊗ D is an equivalence, which implies
that Homqc(D ,−) is an equivalence, and it must be the desired quasi-inverse.

Using this equivalence we can define a closed monoidal structure on K(InjX). Let us
tell the reader what the structure is over a noetherian ring A, but delay the proof until
Appendix B where we can treat schemes on the same footing. Let D be the dualizing
complex (which is, as always, a bounded complex of injectives) and observe that D is the
unit object for the tensor product in the following closed monoidal structure.

Proposition 8.10. The category K(InjA) is closed symmetric monoidal: it has a tensor
product −⊗Inj − and function object Inj(−,−) defined by

I ⊗Inj J = I ⊗A HomA(D,J)

Inj(I, J) = D ⊗A HomA(I, J)

which are compatible with the triangulation.

Proof. See Proposition B.6 and Remark B.7.
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Chapter 9

Applications

9.1 Local Cohomology

The local cohomology theory of Grothendieck [Har67] arises from a Bousfield localization
of the derived category of quasi-coherent sheaves; see [BN93, §6]. In this section we give
the analogue for the mock homotopy category of projectives.

To see the connection between local cohomology and Bousfield localization, let X be
a scheme with quasi-compact open subset U ⊆ X and inclusion f : U −→ X, and set
Z = X \ U . For a quasi-coherent sheaf F there is an exact sequence

0 −→ ΓZ(F ) −→ F −→ f∗(F |U ) (9.1)

where ΓZ(F ) is the subsheaf of sections with support in Z. Passing to the derived category,
we have for every complex F of quasi-coherent sheaves a triangle in D(QcoX)

RΓZ(F ) −→ F −→ Rf∗(F |U ) −→ ΣRΓZ(F ) (9.2)

The next proposition realizes RΓZ(−) as one of the six functors in a recollement. To be
precise, it is the right adjoint of the inclusion in D(QcoX) of the triangulated subcategory
DZ(QcoX) ⊆ D(QcoX) of complexes with cohomology supported on Z.

Proposition 9.1. There is a recollement

D(QcoU) // D(QcoX)oo
oo // DZ(QcoX)oo

oo

Proof. The restriction functor D(QcoX) −→ D(QcoU) admits a fully faithful right adjoint
Rf∗, so we have a colocalization sequence (Lemma 2.6), where B denotes the inclusion

D(QcoU)
Rf∗

// D(QcoX)
(−)|Uoo

Bρ
// DZ(QcoX)

Boo

The functor Rf∗ has a right adjoint; this is the Grothendieck duality theorem of Neeman
[Nee96]. Using Lemma 2.3 we conclude that the pair (Bρ,Rf∗) is recollement.
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Remark 9.2. Let B : DZ(QcoX) −→ D(QcoX) be the inclusion, with right adjoint Bρ.
By the proposition, for any complex F of quasi-coherent sheaves there is a triangle

BBρ(F ) −→ F −→ Rf∗(F |U ) −→ ΣBBρ(F ) (9.3)

Let us explain why Bρ(−) is the local cohomology functor RΓZ(−) of Grothendieck. For
simplicity, we assume that X is noetherian. If F is flasque then (9.1) is short exact, and
thus defines a triangle in the derived category. Replacing F by its K-injective resolution by
injective quasi-coherent sheaves (which are flasque) we obtain a triangle (9.2). Comparing
with (9.3) we deduce an isomorphism Bρ(F ) ∼= RΓZ(F ), as claimed.

Setup. In this section X is a noetherian scheme and U ⊆ X denotes an open subset with
complement Z. We write f : U −→ X for the inclusion.

Let Km,Z(ProjX) be the triangulated subcategory of Km(ProjX) consisting of those
complexes that are “mock supported” on Z, in the sense that they are acyclic and K-flat
on the complement; see Definition 4.6. Next we give the analogue of local cohomology for
the mock homotopy category.

Theorem 9.3. There is a recollement

Km(ProjU) // Km(ProjX)oo
oo // Km,Z(ProjX)oo

oo

Proof. We aim to copy the proof of Proposition 9.1, and in fact the argument is identical.
However, in the present situation some work is required to show that the right adjoint of
restriction, the analogue of Rf∗ in the earlier proof, is fully faithful.

The restriction functor (−)|U : Km(ProjX) −→ Km(ProjU) preserves coproducts and
admits a right adjoint R̂f∗ by Brown representability. To prove that this functor is fully
faithful it suffices, by a basic result of category theory, to prove that the counit

ε : (−)|U ◦ R̂f∗ −→ 1

is a natural equivalence, and this is what we do. The idea is that R̂f∗ must be fully faithful
“on” an open affine subset W ⊆ U because, denoting by g : W −→ U and h : W −→ X

the inclusions, we have a natural equivalence

R̂f∗ ◦ g∗
∼−→ h∗

and g∗ and h∗ are both fully faithful, by Lemma 4.7. Given a complex F of quasi-coherent
sheaves on W , the counit εg∗(F ) is the isomorphism

R̂f∗(g∗(F ))|U ∼= h∗(F )|U = g∗(F )

Hence the triangulated subcategory L of Km(ProjU) on which ε is an isomorphism con-
tains the complexes defined over affine open subsets, and using Corollary 3.14 we conclude
that ε is a natural equivalence. Thus R̂f∗ is fully faithful and, by Lemma 2.6, we have a
colocalization sequence

Km(ProjU)
R̂f∗

// Km(ProjX)
(−)|Uoo

// Km,Z(ProjX)
incoo
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Now we apply the machinery of compactly generated triangulated categories. Restriction
preserves compactness, by Lemma 3.15, so the right adjoint R̂f∗ must preserve coproducts;
see Lemma 2.9. But Km(ProjU) is compactly generated, so by Brown representability
R̂f∗ has a right adjoint, and from Lemma 2.3 we deduce the desired recollement.

Bounded complexes of coherent sheaves correspond to compact objects of Km(ProjX),
by Theorem 7.4. As one would expect, those complexes with cohomology supported on Z
determine compact objects of Km,Z(ProjX). We introduce the following notation

Db
coh,Z(QcoX) := Db

coh(QcoX) ∩ DZ(QcoX)

for the triangulated subcategory of D(QcoX) whose objects are complexes with bounded
coherent cohomology supported on Z. Our next result gives a classification of the compact
objects in Km,Z(ProjX). We use the notation of Chapter 7, so that Uλ is the adjoint which
calculates K-flat resolutions and (−)◦ is the Spanier-Whitehead dual.

Corollary 9.4. The triangulated category Km,Z(ProjX) is compactly generated and there
is an equivalence

U(−)◦ : Kc
m,Z(ProjX) ∼−→ Db

coh,Z(QcoX)op

with quasi-inverse (−)◦Uλ.

Proof. By Theorem 4.10 the localizing subcategory Km,Z(ProjX) is compactly generated
in Km(ProjX). From the Neeman-Ravenel-Thomason localization theorem (Theorem 2.8)
we deduce that

Kc
m,Z(ProjX) = Km,Z(ProjX) ∩Kc

m(ProjX) (9.4)

Taking the Spanier-Whitehead dual in Km(ProjX) commutes with restriction for compact
objects (Proposition 6.12) so the following diagram commutes, up to natural equivalence

Kc
m(ProjX)

oU(−)◦

��

(−)|U // Kc
m(ProjU)

o U(−)◦

��
Db

coh(QcoX)op
(−)|U

// Db
coh(QcoU)op

The kernel of the top row is, by (9.4), the subcategory of compact objects Kc
m,Z(ProjX),

and the kernel of the bottom row is Db
coh,Z(QcoX)op so we have the desired equivalence.

The local cohomology recollements for D(QcoX) and Km(ProjX), given in Proposition
9.1 and Theorem 9.3 above, are related. In fact, they fit into a kind of “exact sequence”
of recollements, in which the “kernel” is a recollement involving the subcategory of acyclic
complexes Km,ac,Z(ProjX) in Km,Z(ProjX).
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Proposition 9.5. There is a diagram in which each row and column is a recollement

Km,ac(ProjU) //

��

Km(ProjU)oo
oo

��

// D(QcoU)

��

oo
oo

Km,ac(ProjX)

OO OO

//

��

Km(ProjX)oo
oo

OO OO

��

// D(QcoX)

��

oo
oo

OO OO

Km,ac,Z(ProjX)

OO OO

// Km,Z(ProjX) //

OO OO

oo
oo

DZ(QcoX)

OO OO

oo
oo

The diagram commutes if one restricts to arrows in the south and east directions.

Proof. Except for the left column and bottom row, these recollements are a consequence of
Theorem 5.5 and the results of this section. With the notation of Chapter 5 the left adjoint
Uλ of the canonical functor U : Km(ProjX) −→ D(QcoX) calculates K-flat resolutions
and therefore commutes with restriction; taking right adjoints we find that the following
diagram commutes up to natural equivalence (using the notation R̂f∗ for the right adjoint
of restriction, introduced just prior to Lemma 6.8)

Km(ProjX) U // D(QcoX)

Km(ProjU)

R̂f∗

OO

U
// D(QcoU)

Rf∗

OO

By Theorem 9.3 the functor R̂f∗ is fully faithful, so we have a fully faithful functor R̂f∗ :
Km,ac(ProjU) −→ Km,ac(ProjX) right adjoint to restriction. It preserves coproducts, and
therefore has a right adjoint, because Km,ac(ProjU) is compactly generated (Theorem 5.5).
By Lemma 2.3 and Lemma 2.6 we have a recollement

Km,ac(ProjU) // Km,ac(ProjX)oo
oo // Km,ac,Z(ProjX)oo

oo

The functors U and Uλ restrict to an adjoint pair between Km,Z(ProjX) and DZ(QcoX).
Since U preserves coproducts and the category Km,Z(ProjX) is compactly generated, the
restriction of U has a right adjoint. From Lemma 2.3 and Lemma 2.6 we conclude that
there is a recollement

Km,ac,Z(ProjX) // Km,Z(ProjX)oo
oo // DZ(QcoX)oo

oo

which completes the proof.

9.2 Characterizations of Smoothness

In this section we use our previous results to give a characterization of regular schemes,
and show that Km,ac(ProjX) is an invariant of singularities, in the sense that it does not
change upon restriction to an open subset containing all the singularities of X.
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Setup. In this section X is a noetherian scheme and sheaves are defined over X by default.

The celebrated theorem of Serre [Ser56] and Auslander-Buchsbaum [AB56] states that
a local noetherian ring is regular if and only if every finitely generated module is quasi-
isomorphic to a bounded complex of finitely generated projectives. When this hypothesis
fails, it is worthwhile to have an invariant that measures how badly. This invariant is called
variously the bounded stable derived category or the triangulated category of singularities,
and is defined to be the quotient

Db
sg(X) = Db

coh(QcoX)/Perf(X)

of the bounded derived category of coherent sheaves, by the category of perfect complexes.
It is a consequence of the classification of regular local rings that Db

sg(X) vanishes precisely
when X is regular. We include a proof for the reader’s convenience.

Proposition 9.6. If X has finite Krull dimension then it is a regular scheme if and only
if Db

sg(X) = 0.

Proof. Being a perfect complex is a local property, so the vanishing of Db
sg(X) is local.

That is, if U = {U0, . . . , Ud} is an affine open cover of X and Db
sg(Ui) = 0 for each 0 ≤ i ≤ d

then Db
sg(X) = 0. Since being a regular scheme is also a local property, it suffices to prove

the proposition when X = Spec(A) for a noetherian ring A of finite Krull dimension.
Suppose that A is regular and let M be a finitely generated A-module. For each prime

ideal p the projective dimension of Mp over Ap is at most the Krull dimension of A, from
which we deduce that pdA(M) < ∞. It follows that M is perfect as an object of D(A),
whence any bounded complex of finitely generated modules is perfect and Db

sg(A) = 0.
For the converse, we are given that Db

sg(A) = 0 and we must prove that A is regular,
for which it suffices to show that Am is regular for every maximal ideal m. Given m, the
residue field κ(m) = Am/mAm

∼= A/m is a finitely generated A-module, so there is a finite
resolution

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ κ(m) −→ 0

of κ(m) by finitely generated projective A-modules. Localizing at m we have produced a
finite projective resolution of κ(m) as an Am-module, which implies that Am is regular.

From results earlier in this article and Krause’s paper [Kra05] we know the infinite
completion of the triangulated category of singularities and also of its opposite; combining
Theorem 7.9 and [Kra05, Corollary 5.4] we have equivalences up to direct factors

Db
sg(X)op ∼−→ Kc

m,ac(ProjX) (9.5)

Db
sg(X) ∼−→ Kc

ac(InjX) (9.6)

This leads to a new characterization of regular schemes, given below. One point we want
to emphasize is that over regular schemes the mock homotopy category Km(ProjX) is
canonically equivalent to the ordinary derived category.
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Proposition 9.7. The following conditions are equivalent

(i) Db
sg(X) = 0.

(ii) Km,ac(ProjX) = 0.

(iii) Every complex of flat quasi-coherent sheaves is K-flat.

(iv) The functor Km(ProjX) −→ D(QcoX) is an equivalence.

Proof. The triangulated category Km,ac(ProjX) vanishes if and only if its subcategory of
compact objects vanishes, which proves (i)⇔ (ii). By Theorem 5.5 we have a recollement

Km,ac(ProjX) // Km(ProjX)oo
oo // D(QcoX)oo

oo

The rest of the proof follows by staring at this recollement. Firstly, we note that there is an
equivalence Km(ProjX)/Km,ac(ProjX) ∼−→ D(QcoX) so the subcategory Km,ac(ProjX)
is zero if and only if the canonical functor Km(ProjX) −→ D(QcoX) is an equivalence,
hence (ii)⇔ (iv). Next, observe that the subcategory Km,ac(ProjX) vanishes if and only
if the orthogonal ⊥Km,ac(ProjX) contains all complexes of flat quasi-coherent sheaves.
This orthogonal is, by Proposition 5.2, the subcategory of K-flat complexes, which implies
(ii)⇔ (iii) and completes the proof.

Remark 9.8. Suppose that X is regular and of finite Krull dimension, so that Db
sg(X) = 0

by Proposition 9.6. Then by the previous proposition we have an equivalence

Km(ProjX) ∼−→ D(QcoX) (9.7)

Since every complex of flat quasi-coherent sheaves is K-flat, this is an equivalence of tensor
triangulated categories; see also the proof of Proposition 6.4. If an equivalence identifies
the tensor structures it must also identify the closed structures, so (9.7) is an equivalence
of closed monoidal categories.

Combining several results of [Kra05] we have the injective analogue.

Proposition 9.9. The following conditions are equivalent

(i) Db
sg(X) = 0.

(ii) Kac(InjX) = 0.

(iii) Every complex of injective quasi-coherent sheaves is K-injective.

(iv) The functor K(InjX) −→ D(QcoX) is an equivalence.

Proof. The relevant results are [Kra05, Corollary 5.4] for (i)⇔ (ii) and [Kra05, Corollary
4.3] for (ii)⇔ (iv). The identification of the orthogonal Kac(InjX)⊥ with the subcategory
of K-injective complexes occurs in [Kra05, Corollary 3.9].

Specializing, we have the following characterization of regular rings.
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Corollary 9.10. Given a noetherian ring A of finite Krull dimension, the following are
equivalent:

(i) A is regular.

(ii) Every complex of injective A-modules is K-injective.

(iii) Every complex of projective A-modules is K-projective.

(iv) Every complex of flat A-modules is K-flat.

Proof. To prove (i)⇔ (ii)⇔ (iv) one combines Propositions 9.6, 9.7 and 9.9. To see that
(iii) is equivalent to the other conditions, consider the recollement of Theorem 5.15

Kac(ProjA) // K(ProjA)oo
oo // D(A)oo

oo

As in Proposition 9.7 we argue that Kac(ProjA) vanishes precisely when A is a regular ring.
Moreover, the left orthogonal ⊥Kac(ProjA) is the subcategory of K-projective complexes
(Corollary 5.14) from which we deduce (i)⇔ (iii).

We can now prove that Km,ac(ProjX) is an invariant of the singularities of our scheme.
This gives the unbounded analogue of a result of Orlov for the triangulated category of
singularities [Orl04, Proposition 1.14], and should be compared to [Kra05, Corollary 6.10],
which gives the corresponding statement for the homotopy category of acyclic complexes
of injective sheaves.

Proposition 9.11. If U ⊆ X is an open subset containing every singularity of X then
the restriction functor

(−)|U : Km,ac(ProjX) −→ Km,ac(ProjU) (9.8)

is an equivalence of triangulated categories.

Proof. By Proposition 9.5 the restriction functor fits into a recollement (setting Z = X\U)

Km,ac(ProjU) // Km,ac(ProjX)oo
oo // Km,ac,Z(ProjX)oo

oo

In particular the functor (9.8) induces an equivalence

Km,ac(ProjX)/Km,ac,Z(ProjX) ∼−→ Km,ac(ProjU)

To prove that (9.8) is an equivalence, we show that the kernel Km,ac,Z(ProjX) vanishes
whenever U contains all the singularities of X. Intuitively, Km,ac,Z(ProjX) is the invariant
of singularities of X contained in Z, which should vanish under the stated conditions.

Let F be an acyclic complex of flat quasi-coherent sheaves on X that is mock sup-
ported on Z, so that F |U is K-flat. For any point x /∈ U the local ring OX,x is regular,
so Fx is K-flat by Corollary 9.10(iv). We deduce that F is K-flat on stalks for every
point of X, whence F is K-flat globally and thus zero in Km(ProjX). This proves that
Km,ac,Z(ProjX) is the zero category, as required.
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Appendix A

Flat Covers of Complexes

In this appendix we prove that for any noetherian scheme X the inclusion

J : K(FlatX) −→ K(QcoX) (A.1)

has a right adjoint. This adjoint will be used in Appendix B to introduce a closed monoidal
structure on K(FlatX) and K(InjX). The proof consists of generalizing an argument of
Neeman for rings [Nee06c] using some ideas of Enochs and Estrada from [EE05b]. Let
us first outline the proof in the affine case and then explain the argument that will lead
to our generalization. Given a ring A there exists by [Nee06c, Remark 3.2] a recollement
(using the notation of Remark 3.5)

E(A) // K(FlatA)oo
oo // K(ProjA)oo

oo
(A.2)

The inclusion J : K(FlatA) −→ K(A) can be “decomposed” into two pieces, the respective
inclusions of the two subcategories in the recollement

E(A) −→ K(A), K(ProjA) −→ K(A) (A.3)

To prove that J has a right adjoint one constructs a right adjoint for each piece in (A.3).
The second inclusion has a right adjoint by Brown-Neeman representability, as K(ProjA)
is well generated [Nee06a, Theorem 4.8], and for first inclusion Neeman uses the following
result on constructing adjoints from precovers.

Definition A.1. Let T be a category and S a full subcategory. A morphism s −→ t

is called an S-precover of t if s ∈ S and every morphism s′ −→ t with s′ ∈ S factors
(not necessarily uniquely) through s −→ t. An important example is the notion of a flat
precover of a module, which we have already seen in Definition 2.32.

Proposition A.2. Let T be a triangulated category and S ⊆ T a thick triangulated
subcategory. Assume that

(i) Every object t ∈ T admits an S-precover.

(ii) Every idempotent in T splits.
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Then the inclusion F : S −→ T has a right adjoint.

Proof. See [Nee06c, Proposition 1.4].

In our case, we learn that to construct a right adjoint of E(A) −→ K(A) it is enough to
construct E(A)-precovers. To do this, Neeman introduces an auxiliary (noncommutative)
ring, denoted here by N(A), such that the category of complexes of A-modules embeds in
the category of N(A)-modules. Flat precovers over N(A) give E(A)-precovers of complexes,
so both pieces in (A.3) have a right adjoint and thus so does J .

It is worth mentioning an earlier result of Enochs and Rozas [EGR98]. They call the
complexes in E(A) flat and prove that over a commutative noetherian ring of finite Krull
dimension, any complex of modules has a “flat precover”. The difference is that Neeman
works in the homotopy category (and with arbitrary noncommutative rings) while Enochs
and Rozas work in the category of complexes.

We aim to prove that, for a noetherian scheme X, the inclusion J of (A.1) has a right
adjoint. The proof arises by generalizing each step in the above argument for rings, and
the first ingredient is the following localization sequence (Theorem 3.16)

E(X) // K(FlatX)oo
// Km(ProjX)oo

by which we reduce to constructing a right adjoint for the inclusion E(X) −→ K(QcoX).
From Proposition A.2 we learn that it is enough to construct E(X)-precovers. Following
[EGR98, §2] we think of quasi-coherent sheaves on X as modules over a representation R
in the category of rings of a certain quiver Q. We introduce an auxiliary presheaf N(R) of
(noncommutative) rings, and observe that the category of complexes of R-modules embeds
in the category of N(R)-modules. Flat precovers in the latter category give rise to E(R)-
precovers in the former (Lemma A.11) and using the correspondence between R-modules
and sheaves, this will yield the desired E(X)-precovers. At this point it is a short step to
Theorem A.13 where we prove that J has a right adjoint.

Setup. In this section rings may be noncommutative, and X denotes a fixed scheme.

Let us define Neeman’s auxiliary ring. The following construction and its properties
are described in [Nee06c] but we repeat the definitions here for the reader’s convenience.

Definition A.3. [Nee06c, Notation 2.3] Let A be a ring, which, by the conventions of this
section, may be noncommutative. We study the ring constructed from A and the quiver

· · ·
∂i−2

// •
∂i−1

// •
∂i

// •
∂i+1

// · · ·

with the relation ∂i+1∂i = 0. To be precise, we introduce the set S = {∂i, ei}i∈Z and the
graded ring A〈S〉 (the free noncommutative A-algebra on S) which is the free A-module
on the set of sequences in S (including the empty sequence). There is a canonical ring
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morphism A −→ A〈S〉. Consider the two sided ideal I of A〈S〉 generated by the following
relations

eiej = 0 if i 6= j

eiei = ei

∂i∂j = 0

ei+1∂i = ∂iei = ∂i

ej∂i = 0 unless j = i+ 1

∂iej = 0 unless j = i

Write N(A) for the ring A〈S〉/I. It is not difficult to check that N(A) is free as an A-module
on the basis {1, ∂i, ei}i∈Z. A morphism of commutative rings A −→ B induces a morphism
of rings A〈S〉 −→ B〈S〉 and thus N(A) −→ N(B), and this makes the construction N(−)
into a functor from commutative rings to rings.

Definition A.4. Let A be a ring, Z a complex of A-modules

· · · −→ Zi−1 −→ Zi −→ Zi+1 −→ · · ·

and denote by T (Z) the N(A) = A〈S〉/I-module, which as an A-module is the coproduct

T (Z) =
⊕
i∈Z

Zi

with the action of N(A) defined by the action of the generators ∂i, ei as

∂i · (. . . , zi−1, zi, zi+1, . . .) = (. . . , 0, 0, ∂i(zi), 0, . . .)

ei · (. . . , zi−1, zi, zi+1, . . .) = (. . . , 0, zi, 0, . . .)

Given a morphism φ : Z −→ Q of complexes of A-modules, T (φ) = ⊕iφi is a morphism
of N(A)-modules, so this defines an additive functor T : C(A) −→ N(A)Mod. One checks
that T is fully faithful. In the other direction, let a N(A)-module M be given, and let
Tρ(M) denote the following complex of A-modules

· · · // ei−1M
∂i−1

// eiM
∂i // ei+1M // · · ·

A morphism M −→ N of N(A)-modules restricts to a sequence of maps eiM −→ eiN ,
defining a morphism of complexes Tρ(M) −→ Tρ(N). This defines an additive functor
Tρ : N(A)Mod −→ C(A).

Given an N(A)-module M the inclusions eiM −→M give a morphism of N(A)-modules
ε : TTρ(M) −→M natural in M . This is the counit of an adjunction, with T left adjoint to
Tρ. In [Nee06c, Proposition 2.8] it is shown that Tρ sends flat N(A)-modules to complexes
in E(A), and in the reverse direction T sends complexes from E(A) to flat N(A)-modules
(the notation E(A) was introduced in Remark 3.5, and agrees with Neeman’s S).

Lemma A.5. Let A −→ B be a flat morphism of commutative rings. The induced ring
morphism N(A) −→ N(B) makes N(B) flat as both a left and right N(A)-module.
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Proof. The ring N(B) = B〈S〉/I is isomorphic as a left and right N(A)-module to the
algebra B ⊗A N(A), which is a module via the ring morphism N(A) −→ B ⊗A N(A)
sending a to 1⊗ a. Given this observation, the claim is straightforward to check.

It is known that flat covers exist in the category of quasi-coherent sheaves on a scheme
[EE05b]. The proof works by replacing the category of quasi-coherent sheaves by a category
of modules over a presheaf of commutative rings, defined on a certain quiver Q. Let us
recall this construction. Let Q be a quiver and C (Q) the path category of Q. Denoting
by Rng the category of (noncommutative) rings, a contravariant functor C (Q) −→ Rng
is a presheaf of rings on Q. In [EE05b] a dual definition is used, but presheaves are more
natural in the present context and the distinction is trivial, in any case.

Let R be a presheaf of rings on Q. A left module over R is a presheaf M of abelian
groups on Q with the property that, for every edge a : v −→ w, the morphism M(w) −→
M(v) is a morphism of R(w)-modules. The category RMod of left modules over R is
Grothendieck abelian. Similarly we define the Grothendieck abelian category ModR of
right modules over R. Given a left module M over R and an edge a : v −→ w we have a
morphism of R(v)-modules natural in M

R(v)⊗R(w) M(w) −→M(v)

r ⊗m 7→ r ·M(a)(m)

We say that M is quasi-coherent if this is an isomorphism for every edge a : v −→ w. The
quasi-coherent modules define an abelian subcategory Qco(R) of RMod, provided that
R is flat : this means that for each edge a : v −→ w the ring morphism R(w) −→ R(v)
makes R(v) a flat right R(w)-module. There is a natural tensor product for modules over
R, that we can use to define flat right and left R-modules; see [EE05b]. In this section,
modules over a presheaf of rings are left modules unless indicated otherwise.

Combining the following results of [EE05b] gives flat covers for quasi-coherent sheaves.

Proposition A.6. There exists a quiver Q and a flat presheaf of commutative rings R on
Q, such that the category of quasi-coherent R-modules is equivalent to Qco(X). Moreover,
this equivalence preserves flatness in both directions.

Proof. See [EE05b, §2].

Theorem A.7 (Enochs,Estrada). Let Q be a quiver and R a flat presheaf of rings defined
on Q. The category of quasi-coherent R-modules C admits flat precovers.

Proof. See [EE05b, Theorem 4.1].

For the remainder of this section let Q be a quiver and R a presheaf of commutative
rings on Q. Applying the functor N(−) we have a presheaf N(R) of rings on Q, defined
by N(R)(v) = N(R(v)), which is flat if R is flat, by Lemma A.5. We want to construct
the E(R)-precover (defined below) of a complex of R-modules by “packing” the complex
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into a single module over N(R) and taking the flat precover of this N(R)-module. To do
this we generalize Definition A.4, and we hope the reader will bear with us through some
technical detail. For each v ∈ Q we have an adjoint pair, described by Definition A.4 when
A = R(v)

C(R(v)Mod)
Tv // N(R)(v)Mod
Tv,ρ

oo (A.4)

Let a complex Z of R-modules be given. If we fix v ∈ Q then we have a complex of
R(v)-modules Z(v) and thus an N(R)(v)-module T (Z)(v) = Tv(Z(v)). This defines an
N(R)-module T (Z) and a fully faithful additive functor

T : C(RMod) −→ N(R)Mod

realizing complexes of R-modules as modules over the presheaf of rings N(R).

It remains to define the right adjoint, which unpacks an N(R)-module to give a complex.
Given an N(R)-module M we have for an integer i ∈ Z and vertex v an R(v)-module
Tv,ρ(M(v))i, and we define a complex Tρ(M) of R-modules by Tρ(M)i(v) = Tv,ρ(M(v))i.
With a little checking this defines an additive functor

Tρ : N(R)Mod −→ C(RMod)

Define a natural transformation ε : TTρ −→ 1 by setting εM (v) = εv,M(v) for an N(R)-
module M , where εv : TvTv,ρ −→ 1 is the counit for the adjunction (A.4). One checks
that ε is the counit of an adjunction, with T left adjoint to Tρ

C(RMod)
T // N(R)Mod
Tρ

oo (A.5)

Next we show that the adjoint functors T and Tρ interchange flat N(R)-modules and
acyclic complexes of flat R-modules with flat kernels.

Lemma A.8. If Z is an acyclic complex of flat R-modules with flat kernels then T (Z) is
a flat N(R)-module. In the other direction, if M is a flat N(R)-module then Tρ(M) is an
acyclic complex of flat R-modules with flat kernels.

Proof. Given an acyclic complex Z of flat R-modules with flat kernels, the complex Z(v)
of R(v)-modules belongs to E(R(v)), so T (Z(v)) is flat as an N(R)(v)-module by [Nee06c,
Proposition 2.8]. It follows that T (Z) is a flat N(R)-module. For the second claim, let
M be a flat N(R)-module. Then M(v) is flat for every vertex v, from which we deduce
that Tv,ρ(M(v)) belongs to E(R(v)). We deduce that Tρ(M) is an acyclic complex of flat
R(v)-modules with flat kernels.

We are interested in quasi-coherent sheaves and thus, quasi-coherent R-modules. An
important property of the functors T and Tρ is that they both preserve quasi-coherence;
before giving the proof, we need a technical lemma.
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Lemma A.9. Let a : v −→ w be an edge, and S a left N(R)(w)-module. The map

R(v)⊗R(w) S −→ N(R)(v)⊗N(R)(w) S

λ⊗ x 7→ λ⊗ x

is an isomorphism of left R(v)-modules.

Proof. Such a map clearly exists. Its inverse is the morphism induced out of the tensor
product N(R)(v)⊗N(R)(w) S by the following N(R)(w)-bilinear map

N(R(v))× S −→ R(v)⊗R(w) Sλ+
∑
i

µi∂
i +
∑
j

τje
j , x

 7→ λ⊗ x+
∑
i

(µi ⊗ ∂ix) +
∑
j

(τj ⊗ ejx)

where we use the fact that N(R(v)) is free as an R(v)-module on the set {1, ∂i, ei}i∈Z to
write an arbitrary element in terms of coefficients λ, µi, τj ∈ R(v).

The following result shows that the constructions T and Tρ preserve quasi-coherence.

Lemma A.10. Suppose that R is flat. Then

(i) If Z is a complex of quasi-coherent R-modules then T (Z) is a quasi-coherent N(R)-
module.

(ii) If M is a quasi-coherent N(R)-module then Tρ(M) is a complex of quasi-coherent
R-modules.

Proof. (i) Let Z be a complex of quasi-coherent R-modules, and a : v −→ w an edge. We
have to show that the canonical morphism N(R(v)) ⊗N(R(w)) T (Z)(w) −→ T (Z)(v) is an
isomorphism. Using Lemma A.9 this reduces to showing that the map

R(v)⊗R(w) T (Z)(w) −→ T (Z)(v)

r ⊗m 7→ r · T (Z)(a)(m)

is an isomorphism. As an R(w)-module we have T (Z)(w) = ⊕i∈ZZ
i(w), and similarly for

v, and moreover the tensor product commutes with coproducts, so it is enough to show
that the map R(v)⊗R(w) Z

i(w) −→ Zi(v) is an isomorphism for every i ∈ Z. But this is
known, because each Zi was assumed quasi-coherent.

(ii) Given a quasi-coherent N(R)-module M and an edge a : v −→ w, consider the
following commutative diagram for I ∈ Z

R(v)⊗R(w) e
IM(w)

t
��

h // eIM(v)

��

R(v)⊗R(w) M(w)

o
��

N(R(v))⊗N(R(w)) M(w)
H

//M(v)

(A.6)
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where eIM(w) −→ M(w) is the inclusion, and we again use Lemma A.9. To show that
Tρ(M) is a complex of quasi-coherent R-modules, we have to show that h is an isomor-
phism. By assumption the bottom row is an isomorphism, and since R is flat the map
marked t is injective. From this we infer that h is injective.

To see that h is surjective, let x ∈ M(v) be given. Because M is quasi-coherent,
we can write x =

∑
iH(Xi ⊗ mi) for some Xi ∈ N(R(v)) and mi ∈ M(w). Therefore

eIx =
∑

iH(eIXi ⊗mi) for any I ∈ Z. For each i we can write Xi using the canonical
basis in N(R(v))

Xi = λi +
∑
t

µi,t∂
t +
∑
s

τi,se
s

and one calculates

eIx =
∑
i

h(λi ⊗ eImi + µi,I−1 ⊗ eI∂I−1mi + τi,I ⊗ eImi)

which shows that h is surjective, hence an isomorphism.

Let R be a flat presheaf of commutative rings, so that Qco(R) is an abelian category.
Denote by K(FlatR) ⊆ K(QcoR) the homotopy category of flat quasi-coherent R-modules
and by E(R) the full subcategory of acyclic complexes with flat kernels in K(FlatR).

Lemma A.11. Let Q be a quiver and R a flat presheaf of commutative rings. Every
complex of quasi-coherent R-modules has an E(R)-precover in the category K(QcoR).

Proof. To be clear: we are claiming that for any complex Z of quasi-coherent R-modules
there is a complex E in E(R) and morphism of complexes E −→ Z with the property that
any morphism of complexes E′ −→ Z with E′ in E(R) factors (not necessarily uniquely)
via E −→ Z in K(QcoR). In fact, the factorization will happen on the level of complexes.

Let Z be a complex of quasi-coherent R-modules. Packing the complex into a single
module will produce, by Lemma A.10, a quasi-coherent N(R)-module T (Z). We know
from Theorem A.7 that modules over such a presheaf of rings have flat precovers; let
F −→ T (Z) such a precover, in the category of quasi-coherent N(R)-modules.

Applying Tρ to unpack our modules into complexes, and using the equivalence TρT ∼= 1,
we have a morphism Tρ(F ) −→ Z in the category of complexes of R-modules. Together,
Lemma A.8 and Lemma A.10 tell us that Tρ(F ) is a complex of flat quasi-coherent R-
modules with flat kernels, and one checks that this is the desired E(R)-precover.

Proposition A.12. The inclusion E(X) −→ K(QcoX) has a right adjoint.

Proof. By Proposition A.6 there is a quiver Q and a flat presheaf of commutative rings R
on Q, together with an equivalence of categories

Qco(R) ∼−→ Qco(X)

identifying the subcategories of flat objects on both sides. We will apply Proposition A.2 to
deduce a right adjoint for the inclusion E(X) −→ K(QcoX). The category K(QcoX) has
coproducts, so any idempotent splits [Nee01b, Proposition 1.6.8], and we already know
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that E(X) ⊆ K(QcoX) is thick, so it remains to prove that every object in K(QcoX)
has an E(X)-precover. If we identify, up to equivalence, the category K(QcoX) with the
category K(QcoR) and E(X) with E(R), this follows from Lemma A.11.

Theorem A.13. If X is noetherian then the inclusion

J : K(FlatX) −→ K(QcoX)

has a right adjoint.

Proof. We prove that J has a right adjoint by constructing, for every complex F of quasi-
coherent sheaves, a triangle in K(QcoX) with C in K(FlatX) and T in K(FlatX)⊥

C −→ F −→ T −→ ΣC (A.7)

This is done in two stages: first we construct the triangle in K(QcoX) modulo E(X), then
we lift the triangle to K(QcoX). If T denotes the quotient K(QcoX) −→ K(QcoX)/E(X)
then from Lemma 2.3 and Proposition A.12 we deduce a localization sequence

E(X) // K(QcoX)oo
T // K(QcoX)/E(X)oo (A.8)

Recall the following fact: given a triangulated category T and triangulated subcategories
S ⊆ Q ⊆ T the induced triangulated functor Q/S −→ T /S is fully faithful. In our specific
case, the inclusion J : K(FlatX) −→ K(QcoX) induces a fully faithful triangulated functor
M making the following diagram commute

K(QcoX) T // K(QcoX)/E(X)

K(FlatX)

J

OO

Q
// Km(ProjX)

M

OO

Because M preserves coproducts and Km(ProjX) is compactly generated (Theorem 4.10)
M has a right adjoint Mρ. Thus, for our given complex F of quasi-coherent sheaves, we
can find a triangle in K(QcoX)/E(X)

MMρ(F ) −→ F −→M ′ −→ ΣMMρ(X )

with HomK(QcoX)/E(X)(A ,M ′) = 0 for every A in K(FlatX). This is the triangle (A.7)
that we are looking for, modulo E(X). It remains to lift the triangle to K(QcoX).

Write the counit MMρ(F ) −→ F as a composite T (g)T (f)−1 for a pair of morphisms
g : P −→ F and f : P −→MMρ(F ) in K(QcoX) with f having mapping cone in E(X).
Since P can be written as the mapping cone on a morphism between MMρ(F ) and an
object of E(X), both of which are complexes of flat quasi-coherent sheaves, we can assume
that P is a complex of flat quasi-coherent sheaves. Extending g to a triangle in K(QcoX),
we have

P
g−→ F −→M −→ ΣF (A.9)
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with HomK(QcoX)/E(X)(A ,M ) = 0 for every A in K(FlatX), because M and M ′ are
isomorphic in K(QcoX)/E(X). As E(X) is a Bousfield subcategory of K(QcoX) we can
find a triangle in K(QcoX) with R in E(X) and T in the orthogonal E(X)⊥

R −→M −→ T −→ ΣR (A.10)

Since R vanishes in the quotient K(QcoX)/E(X) we deduce that for A in K(FlatX)

HomK(QcoX)(A ,T ) ∼= HomK(QcoX)/E(X)(A ,T ) ∼= HomK(QcoX)/E(X)(A ,M ) = 0

where the first isomorphism is a standard property of Verdier quotients. We have shown
that T belongs to K(FlatX)⊥ with the orthogonal taken in K(QcoX). From (A.9), (A.10)
and the octahedral axiom, we deduce two new triangles in K(QcoX)

C −→ F −→ T −→ ΣC

P −→ C −→ R −→ ΣP

Since both P and R belong to K(FlatX), we can assume that C is also a complex of flat
quasi-coherent sheaves. Hence the first triangle of this pair has C in K(FlatX) and T in
K(FlatX)⊥ and the proof is complete.

Next we give a counterexample to show that certain adjoints do not exist in general.

Corollary A.14. If X is noetherian and either of the canonical functors

K(FlatX) −→ D(QcoX), K(FlatX) −→ Km(ProjX) (A.11)

have left adjoints then products are exact in Qco(X).

Proof. By the theorem the inclusion J : K(FlatX) −→ K(QcoX) has a right adjoint, so
for every complex F of quasi-coherent sheaves there is a triangle in K(QcoX)

JJρ(F ) −→ F −→ T −→ ΣJJρ(F )

with T belonging to K(FlatX)⊥ and therefore acyclic (every complex has a K-flat reso-
lution by flat quasi-coherent sheaves). Applying the quotient q : K(QcoX) −→ D(QcoX)
to this triangle we deduce a natural equivalence

q
∼−→ qJJρ

The following diagram therefore commutes up to natural equivalence (by Definition 5.3
we have U ◦Q = q ◦ J)

K(QcoX)

Jρ
��

q // D(QcoX)

K(FlatX)
Q
// Km(ProjX)

U

OO

By Theorem 5.5 the functor U has a left adjoint. It follows that if either of the functors
in (A.11) has a left adjoint, then q has a left adjoint. This implies that products are exact
in Qco(X), completing the proof.
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Remark A.15. In particular, this shows that for a field k neither of the functors

K(Flat P1
k) −→ D(QcoP1

k), K(Flat P1
k) −→ Km(Proj P1

k)

admits a left adjoint, because products in Qco(P1
k) are not exact [Kra05, Example 4.9].



Appendix B

Flat Function Objects

We define the closed monoidal structure on the homotopy category K(FlatX) of flat quasi-
coherent sheaves, using the adjoint constructed in Appendix A. This result is applied to
give an alternative description of the function objects in Km(ProjX) and to define a closed
monoidal structure on K(InjX) in the presence of a dualizing complex.

Setup. In this appendix X is a noetherian scheme and sheaves are defined over X.

We make use of two functors, the inclusion and quotient, respectively

J : K(FlatX) −→ K(QcoX), Q : K(FlatX) −→ Km(ProjX)

Both functors admit right adjoints, by Theorem A.13 and Theorem 3.16, and these adjoints
are denoted by Jρ and Qρ as per our usual notational conventions. The tensor product of
flat quasi-coherent sheaves is flat, so the tensor product on K(QcoX) restricts to K(FlatX),
making it into a tensor triangulated category; see Chapter 6. The corresponding closed
structure, denoted by Flat(−,−), is defined as follows.

Definition B.1. Let F ,G be complexes of quasi-coherent sheaves, and Homqc(F ,G )
the corresponding function object in K(QcoX), given by Proposition 6.17. We define

Flat(F ,G ) = JρHomqc(F ,G )

which is a complex of flat quasi-coherent sheaves.

We refer the reader to [HPS97, Definition A.2.1] for the definition of a closed monoidal
structure compatible with the triangulation.

Proposition B.2. The triangulated category K(FlatX) is closed symmetric monoidal.
It has a tensor product and function object Flat(−,−) compatible with the triangulation,
and there is a natural isomorphism

HomK(FlatX)(F ⊗ G ,H ) ∼−→ HomK(FlatX)(F ,Flat(G ,H )) (B.1)

Proof. From Definition B.1 it is clear that Flat(−,−) is functorial, contravariantly in the
first variable and covariantly in the second, and is a triangulated functor in both variables.
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We already know that the closed symmetric monoidal structure on K(QcoX) is compatible
with the triangulation (Proposition 6.17), and it follows that the same is true of K(FlatX).
The adjunction isomorphism (B.1) is an easy consequence of the adjunction isomorphism
between J and Jρ and the corresponding isomorphism for K(QcoX).

In Chapter 6 we defined the function object in Km(ProjX) via Brown representability.
Using Appendix A we can give a description more in line with the usual definition of the
derived Hom in the derived category of modules over a ring. First, a technical observation.
Recall that E(X) ⊆ K(FlatX) is the subcategory of acyclic, K-flat complexes.

Lemma B.3. Given complexes F ,C of flat quasi-coherent sheaves with C in E(X)⊥, the
complex Flat(F ,C ) belongs to E(X)⊥.

Proof. Given E in E(X) we have Hom(E ,Flat(F ,C )) ∼−→ Hom(E ⊗F ,C ) which is zero
because, by Lemma 6.1, the tensor product E ⊗F belongs to E(X).

Proposition B.4. The function object in Km(ProjX) can be defined by

RFlat(F ,G ) = Flat(F , Qρ(G )) (B.2)

Proof. The function object was defined in Proposition 6.2 to be the right adjoint to the
tensor product, so the following calculation shows that RFlat(−,−) can be defined by the
construction in (B.2). We have a natural isomorphism

HomKm(ProjX)(F ⊗ G ,H ) ∼−→ HomK(FlatX)(F ⊗ G , Qρ(H )) (Adjunction)
∼−→ HomK(FlatX)(F ,Flat(G , Qρ(H ))) (Adjunction)
∼−→ HomKm(ProjX)(F ,Flat(G , Qρ(H ))) (Lemma B.3)

which completes the proof.

Lemma B.5. There is a canonical morphism in Km(ProjX) natural in both variables

Flat(F ,G ) −→ RFlat(F ,G ) (B.3)

which is an isomorphism if G belongs to E(X)⊥.

Proof. From the adjunction between Q and Qρ we have a unit transformation 1 −→ QρQ,
which determines a morphism natural in both variables Flat(−,−) −→ Flat(−, QρQ(−))
as required. If G belongs to E(X)⊥ then G −→ QρQ(G ) is an isomorphism in K(FlatX), so
the canonical morphism Flat(F ,G ) −→ RFlat(F ,G ) is an isomorphism, as claimed.

Assume that X has a dualizing complex D , which is always assumed to be a bounded
complex of injective quasi-coherent sheaves. By Theorem 8.4 there is an equivalence

−⊗ D : Km(ProjX) ∼−→ K(InjX) (B.4)

the quasi-inverse of which is described by Proposition 8.9 as the functor

Homqc(D ,−) : K(InjX) ∼−→ Km(ProjX) (B.5)

From the closed monoidal structure on Km(ProjX), described in Chapter 6, we obtain an
induced structure on K(InjX), with D the unit object of the tensor product.
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Proposition B.6. If X admits a dualizing complex D then K(InjX) is closed symmetric
monoidal: it has tensor product −⊗Inj − and function object Inj(−,−) defined by

I ⊗Inj I ′ = I ⊗Homqc(D ,I ′)

Inj(I ,I ′) = D ⊗Flat(I ,I ′)

which are compatible with the triangulation.

Proof. For any complex J of injective quasi-coherent sheaves we have by Proposition 8.9
a natural isomorphism in K(InjX)

J
∼−→Homqc(D ,J )⊗D (B.6)

Let I and I ′ be complexes of injective quasi-coherent sheaves. The tensor product on
K(InjX) induced by the equivalence of Theorem 8.4 is given by

I ⊗Inj I ′ = D ⊗
(
Homqc(D ,I )⊗Homqc(D ,I ′)

) ∼= I ⊗Homqc(D ,I ′) (B.7)

Applying (B.6) to I ′ instead of I in the above, we find that the definition of the tensor
product is actually symmetric. The function object in K(InjX) is defined by

Inj(I ,I ′) = D ⊗ RFlat(Homqc(D ,I ),Homqc(D ,I ′))

This needs some simplification. By Lemma 8.8 the complex Homqc(D ,I ′) belongs to the
orthogonal E(X)⊥ so we have an isomorphism

Inj(I ,I ′) ∼−→ D ⊗Flat(Homqc(D ,I ),Homqc(D ,I ′)) (Lemma B.5)
∼−→ D ⊗Flat(Homqc(D ,I )⊗D ,I ′) (Adjunction)
∼−→ D ⊗Flat(I ,I ′) (By (B.6))

We already know that Km(ProjX) is closed symmetric monoidal, and that this structure
is compatible with the triangulation, so this completes the proof. Note that it really should
be possible to replace Flat(I ,I ′) by Homqc(I ,I ′) after some technical improvements;
see the next remark.

Remark B.7. Over a noetherian ring A any product of flat modules is flat. For complexes
I and I ′ of injective A-modules, HomA(I, I ′) is a complex of flat modules and we have an
isomorphism Flat(I, I ′) ∼−→ HomA(I, I ′). Thus the function object in K(InjA) has the
form Inj(I, I ′) = D ⊗A HomA(I, I ′). I do not know if the same is true of schemes; that
is, given a noetherian scheme X, I do not know if flat quasi-coherent sheaves are closed
under products in the category Qco(X).
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Appendix C

Function Objects from Brown

Representability

Let T be a tensor triangulated category. This is an additive category with the structure
of a triangulated category and the structure of a symmetric monoidal category, such that
the tensor product − ⊗ − respects the triangulation; see [MVW06, Definition 8A.1]. If
cohomological functors on T are representable and the tensor product commutes with
coproducts, then we obtain function objects in T for free: simply define Map(x, y) to be
the object representing the cohomological functor

z 7→ HomT (z ⊗ x, y)

This makes T into a closed symmetric monoidal category, but it is not immediately clear
that the closed structure respects the triangulation. While it is well-known that Map(x,−)
is a triangulated functor (it is the right adjoint of the triangulated functor − ⊗ x) the
argument which shows that Map(−,−) is triangulated in the first variable does not appear
to be widely known. In this appendix we give the proof, assuming one mild compatibility
condition on the tensor product introduced by May in [May01]. It is a pleasure to thank
Amnon Neeman for explaining the result to us, and kindly allowing us to include it here.

Before proceeding, it is worth making some general comments about the state of tensor
triangulated categories in the literature. The definition we adopt from [MVW06] is what
everybody agrees on: the tensor product is triangulated in each variable, and there is some
bookkeeping involving signs and the suspension; see also [HPS97, Definition A.2.1]. This is
enough for many applications, but there are further properties of the tensor product in the
natural examples that one could consider adding as axioms. The first person to really take
this seriously was May, who in [May01] gives several additional axioms (TC1)-(TC5). A
later article by Keller and Neeman [KN02] sheds further light on May’s axioms. Assuming
that T satisfies May’s axiom (TC3) we will prove that Map(−,−) is triangulated in both
variables. To be precise, we prove the following for any tensor triangulated category T .

Theorem C.1 (Neeman). Suppose that T satisfies (TC3) and that every cohomological
functor on T is representable. If the tensor product in T commutes with coproducts, then
T has a closed structure Map(−,−) compatible with the triangulation.
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When we say that the closed monoidal structure is compatible with the triangulation,
we mean it in the sense of [HPS97, Definition A.2.1] and when we say that a functor is
cohomological we mean that it is a cohomology functor in the sense of [HPS97, Definition
1.1.3]. This theorem resolves a difficulty pointed out in [HPS97, Remark 1.4.11].

The example we care about is the mock homotopy category Km(ProjX) of projectives.
The monoidal structure on this category is simple, and using the theorem we deduce the
closed structure very cheaply. A word on the structure of this appendix: to begin with
we keep the arguments general, then in Section C.1 we check that the results apply to our
examples of interest, Km(ProjX) and D(QcoX). We will make heavy use of the concept
of a homotopy pushout, so for the reader’s convenience we include the definition.

Definition C.2. [Nee01b, §1.4] Let T be a triangulated category. A commutative diagram

Y

g

��

f // Z

g′

��
Y ′

f ′
// Z ′

(C.1)

is a homotopy pushout if there is a triangle in T of the following form

Y

“ g
−f

”
// Y ′ ⊕ Z

( f ′ g′ ) // Z ′ // ΣY (C.2)

What we call a triangle in this thesis is sometimes qualified as a distinguished triangle in
the literature. There is a weaker notion of an exact triangle, and if in (C.2) we have only
an exact triangle, then we say that (C.1) is a pushpull square; see [May01, Definition 3.5].
Any homotopy pushout is a pushpull square. Any pushpull square (C.1) has the property
that, given morphisms a : Y ′ −→ Q, b : Z −→ Q with a ◦ g = b ◦ f , there is a (non-unique)
morphism θ : Z ′ −→ Q with a = θ ◦ f ′ and b = θ ◦ g′.

To explain the axiom (TC3) of May that we need, consider the following situation: let
T be a tensor triangulated category, and suppose we are given two triangles

x // y // z // Σx (C.3)

x′ // y′ // z′ // Σx′ (C.4)

We can form the tensor product of these triangles. This is a diagram in which all columns
and rows are triangles, and every square commutes except for (?) which anticommutes

x⊗ x′

��

// y ⊗ x′

��

// z ⊗ x′

��

// Σx⊗ x′

��
x⊗ y′

��

// y ⊗ y′

��

// z ⊗ y′

��

// Σx⊗ y′

��
x⊗ z′

��

// y ⊗ z′

��

// z ⊗ z′

(?)

��

// Σx⊗ z′

−
��

Σx⊗ x′ // Σy ⊗ x′ // Σz ⊗ x′ −
// Σ2x⊗ x′

(C.5)
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In the natural examples it is possible to associate an additional object w and several
morphisms with this diagram, satisfying some conditions. May axiomatizes this situation,
in two equivalent ways, in his axioms (TC3) and (TC3’). It is actually his presentation
(TC3’) of the axiom that is closest to our needs, so it is what we will state.

Definition C.3. Following May [May01, §4] we say that a tensor triangulated category
T satisfies (TC3) if, for any pair of triangles (C.3), (C.4) as above, their tensor product
(C.5) comes with Verdier structure, by which we mean that there exists an object w and
six morphisms k1, k2, k3, q1, q2, q3 fitting into a commutative diagram

Σ−1w

Σ−1q2
��

Σ−1q3 //

(1)

Σ−1y ⊗ z′

''OOOOOOOOOOO

��
Σ−1w

Σ−1q1
��

Σ−1q2 //

(2)

x⊗ x′

''OOOOOOOOOOO

��

// y ⊗ x′

��

//

(4)

z ⊗ x′

k3

��
Σ−1w

Σ−1q3
��

Σ−1q1 //

(3)

Σ−1z ⊗ y′

''NNNNNNNNNNN

��

// x⊗ y′

��

//

(5)

y ⊗ y′
k2

//

k2

��

w

Σ−1y ⊗ z′ // Σ−1z ⊗ z′

−
��

//

(6)

x⊗ z′

k1

��

k1

// w

z ⊗ x′
k3

// w

We also require that various other diagrams commute, and that certain triangles exist,
but we direct the reader to the statement of [May01, Lemma 4.7] for the list. The diagram
above is all that we need to prove Theorem C.1. If further we can arrange for the squares
labeled (1)-(6) to be homotopy pushout squares, we say that T satisfies (TC3+). Note
the sign carried by the lefthand side of (6).

Remark C.4. The examples of interest to us will satisfy (TC3+), but we will only need
the weaker (TC3) to prove the main theorem. The emphasis on homotopy pushouts can
be traced to the approach of Keller and Neeman in [KN02] where the large diagram in
Definition C.3 is given as (??) on p.547.

Let T be a tensor triangulated category with the property that cohomological functors
on T are representable, and the tensor product commutes with coproducts. Given objects
x and y in T we define Map(x, y) to be the object of T that represents the cohomological
functor z 7→ HomT (z ⊗ x, y). In the standard way we make Map(−,−) into a bifunctor
contravariant in the first variable, such that the following isomorphism is natural

HomT (z ⊗ x, y) ∼= HomT (z,Map(x, y))

This definition makes T into a closed monoidal category.

Proof of Theorem C.1. For a fixed object x ∈ T , the functor Map(x,−) is triangulated,
because it is the right adjoint of a triangulated functor. Replacing x by its desuspension
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Σ−1x we have a natural isomorphism

HomT (z,Map(Σ−1x, y)) ∼= HomT (z ⊗ Σ−1x, y)
∼= HomT (Σ−1(z ⊗ x), y)
∼= HomT (z,Σ Map(x, y))

(C.6)

which yields a natural isomorphism Map(Σ−1x, y) ∼= Σ Map(x, y). Let τ be the additive
inverse of this isomorphism (−τ makes the diagram coming from (C.6) commute, but the
correct morphism makes it anticommute, so we change the sign). To complete the proof of
the theorem it suffices to check that the pair (Map(−, y), τ) defines a triangulated functor
T op −→ T , because the other conditions of [HPS97, Definition A.2.1] are already verified.
Let a triangle in T be given

x −→ x′ −→ x′′ −→ Σx (C.7)

We have a candidate triangle

Map(x′′, y) −→ Map(x′, y) −→ Map(x, y) −→ Σ Map(x′′, y) (C.8)

that we have to show is actually a triangle. The trick is to take the mapping cone of the
first morphism in (C.8), and then argue that it agrees with Map(x, y). That is, we extend
to an actual triangle in T

Map(x′′, y) −→ Map(x′, y) −→ T −→ Σ Map(x′′, y)

Take the tensor product of this triangle with the original triangle (C.7) to obtain a diagram
of the form (C.5). The large diagram is not so important; what we need are the following
commutative squares, provided by (TC3)

Map(x′, y)⊗ x

��

//

(4)

T ⊗ x

��
Map(x′, y)⊗ x′ // w

Map(x′′, y)⊗ x′

��

//

(5)

Map(x′, y)⊗ x′

��
Map(x′′, y)⊗ x′′ // w

Σ−1T ⊗ x′′

−
��

//

(6)

Map(x′′, y)⊗ x′′

��
T ⊗ x // w

From the adjunction between the tensor product and function object in T , we obtain a
counit morphism ε : Map(t, y)⊗ t −→ y for any object t ∈ T . Moreover, this morphism is
natural in t, and in particular the following diagram commutes

Map(x′′, y)⊗ x′

��

//Map(x′, y)⊗ x′

ε

��
Map(x′′, y)⊗ x′′ ε

// y

(C.9)
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By [May01, Lemma 4.9] the commutative squares (4)-(6) provided by (TC3) are pushpull
squares, so from (C.9) we deduce f : w −→ y making the following diagram commute

Map(x′′, y)⊗ x′

��

//

(5)

Map(x′, y)⊗ x

�� ε

��

Map(x′′, y)⊗ x′′

ε
--

// w

f
MMMMM

&&MMMMMMMM

y

By adjunction the composite T ⊗ x −→ w −→ y determines a morphism T −→ Map(x, y)
fitting into the following diagram, in which the top row is a triangle and the bottom row
is a candidate triangle

Map(x′′, y)

1
��

//Map(x′, y)

1
��

(i)

// T

��

//

(ii)

Σ Map(x′′, y)

1
��

Map(x′′, y) //Map(x′, y) //Map(x, y) // Σ Map(x′′, y)

(C.10)

We deduce commutativity of (i) from commutativity of (4), but commutativity of (ii) is
more subtle. To prove it, it suffices to establish that applying HomT (t,−) to (ii) leaves
a commutative diagram of abelian groups for t ∈ T . By the adjunction, this diagram of
abelian groups is

HomT (t, T )

�� ##
HomT (t⊗ x, y) // HomT (t⊗ Σ−1x′′, y)

Chasing a morphism t −→ T around this diagram, we conclude that commutativity of (ii)
follows from commutativity of (6), so (C.10) is a morphism of candidate triangles. Apply-
ing HomT (t,−) to this morphism of candidate triangles yields a morphism of complexes of
abelian groups, the top row of which is exact because the top row of (C.10) is a triangle.
The bottom row is exact because of the adjunction isomorphism

HomT (t,Map(−, y)) ∼= HomT (t⊗−, y)

From the Five Lemma we deduce that T −→ Map(x, y) is an isomorphism, so the bottom
row of (C.10) is a triangle and the proof is complete.

C.1 Examples satisfying May’s axiom

We prove that, given a symmetric monoidal abelian category A, the homotopy category
K(A) is a tensor triangulated category satisfying the axiom (TC3+) of the previous section
(see Definition C.3). It will follow easily that the mock homotopy category Km(ProjX)
and the derived category D(QcoX) satisfy this axiom for any scheme. The reader can find
similar arguments in [May01, §6] and [KN02, §3], but one of our results (Proposition 6.2)
depends crucially on these facts, so we feel it is worth including a detailed proof here.
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Setup. In this section A is an abelian category with a tensor product − ⊗ − making it
into a symmetric monoidal category. We assume that the tensor product commutes with
coproducts. The examples we have in mind are categories of modules over a commutative
ring, and quasi-coherent sheaves over a scheme.

The structure that makes K(A) into a triangulated category is the mapping cone.
In verifying that K(A) satisfies (TC3+) we will be inevitably drawn into some technical
details involving mapping cones and homotopies; since sign errors are the bane of such
verifications, we remind the reader of our conventions: given a morphism u : x −→ y of
complexes, the mapping cone is the complex cone(u) with differential

∂n =

(
−∂n+1

x 0
un+1 ∂ny

)
: xn+1 ⊕ yn −→ xn+2 ⊕ yn+1

Next we recall some definitions.

Definition C.5. A morphism of triangles in a triangulated category T is a commutative
diagram in T , with triangles for rows

x

f

��

// y

g

��

// y

h
��

// Σx

Σf

��
x′ // y′ // z′ // Σx′

We say that this is a good morphism of triangles if its mapping cone is a triangle; this idea
is due to Neeman, and is explained at length in [Nee01b, §1.3].

Example C.6. Suppose that we have a commutative diagram of complexes in A

x

f

��

u //

D

y

g

��
x′

u′
// y′

The morphism of complexes cone(D) : cone(u) −→ cone(u′) given by cone(D)n = fn+1⊕gn

makes the following diagram a good morphism of triangles

x

f

��

u // y

g

��

// cone(u)

cone(D)
��

// Σx

Σf

��
x′

u′
// y′ // cone(u′) // Σx′

Example C.7. Suppose that we have a commutative diagram of complexes in A

0 // x

f

��

a // y

g

��

b // z

h
��

// 0

0 // x′
a′
// y′

b′
// z′ // 0
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where the rows are degree-wise split exact. By Lemma 2.15 there are canonical morphisms
z : z −→ Σx and z′ : z′ −→ Σx′ in K(A), making a morphism of triangles in K(A)

x

f

��

a // y

g

��

b // z

h
��

−z // Σx

Σf

��
x′

a′
// y′

b′
// z′ −z′

// Σx′

(C.11)

Comparing this morphism of triangles with the one in Example C.6, we find after a short
calculation that (C.11) is also a good morphism of triangles.

Lemma C.8. Let T be a triangulated category, and suppose that we have a good morphism
of triangles

x

f

��

// y

g

��

//

(I)

z

��

//

(II)

Σx

��
x′ // y′ // z′ // Σx′

(C.12)

If f = 1 then (I) is a homotopy pushout, and if g = 1 then (II) is a homotopy pushout.

Proof. To prove that a square is a homotopy pushout, we have to prove that a triangle of a
certain type exists. In the situation where f = 1 (resp. g = 1) a suitable triangle exists as
a direct summand of the mapping cone of (C.12), which is a triangle by assumption. Any
direct summand of a triangle is a triangle; see the proof of [Nee01b, Lemma 1.4.3].

To prove that (TC3+) holds for K(A), we need to construct six homotopy pushouts.
The idea is to construct good morphisms of triangles using Example C.7, and apply Lemma
C.8 to these morphisms to produce the desired homotopy pushouts.

Proposition C.9. Suppose that we have a commutative diagram of complexes in A

x

gf ""FFFFFFFFFF
f // y

g

��
y′

where g and f are degree-wise split monomorphisms. There is an induced degree-wise split
exact sequence of complexes

0 −→ y/x −→ y′/x −→ y′/y −→ 0 (C.13)

If we extend f, g, gf and (C.13) canonically to triangles in K(A), using Lemma 2.15

x
f // y // y/x

−z // Σx

x
gf // y′ // y′/x

−z′ // Σx

y
g // y′ // y′/y

−z′′ // Σy

y/x // y′/x // y′/y
−z′′′ // Σy/x

then these triangles fit into a commutative diagram in K(A)
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x

y

y/x

Σx

y′

y′/x

Σx

y′/y

Σy

Σy/x

f

g

gf

1

Σf

α

β

in which (α) and (β) are homotopy pushouts.

Proof. We have commutative diagrams of complexes with degree-wise split exact rows

0 // x
f //

1

��

y

g

��

// y/x

h
��

// 0

0 // x
gf
// y′ // y′/x // 0

(C.14)

0 // x
gf //

f

��

y′

1
��

// y′/x

i
��

// 0

0 // y
g
// y′ // y′/y // 0

(C.15)

We deduce that h is a split monomorphism in each degree, so there is a third morphism
of degree-wise split exact sequences of complexes

0 // y

��

g // y′

��

// y′/y

1
��

// 0

0 // y/x
h
// y′/x

i
// y′/y // 0

(C.16)

Applying Example C.7 to the diagrams (C.14-C.16) produces the desired large diagram,
and Lemma C.8 yields that (α) and (β) are homotopy pushouts.

We will need the following variant, where g is a degree-wise split epimorphism.

Proposition C.10. Suppose that we have a commutative diagram of complexes in A

x

gf ""FFFFFFFFFF
f // y

g

��
y′
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where f, gf are degree-wise split monomorphisms, and g a degree-wise split epimorphism.
There are degree-wise split exact sequences of complexes, where k = Ker(g)

0 −→ k
t−→ y

g−→ y′ −→ 0 (C.17)

0 −→ k
t′−→ y/x

h−→ y′/x −→ 0 (C.18)

If we extend f, gf and (C.17, C.18) canonically to triangles in K(A), using Lemma 2.15

x
f // y // y/x

−z // Σx

x
gf // y′ // y′/x

−z′ // Σx

k
t // y

g // y′
−w // Σx

k
t′ // y/x

h // y′/x
−w′ // Σk

then these triangles fit into a commutative diagram in K(A)

x

y

y/x

Σx

y′

y′/x

Σx

Σy

Σy/x

f

g

gf

1

Σf

α

β

Σk

h

w′

w

Σt

Σt′

in which (α) and (β) are homotopy pushouts.

Proof. We have a commutative diagram of complexes, where the rows are degree-wise split
exact sequences

0 // x
f //

1

��

y

g

��

// y/x

h
��

// 0

0 // x
gf
// y′ // y′/x // 0

(C.19)

One deduces that h is a degree-wise split epimorphism, and using the Nine Lemma we
obtain a commutative diagram of complexes where the rows are degree-wise split exact

0 // k

1

��

t // y

��

g // y′

��

// 0

0 // k
t′
// y/x

h
// y′/x // 0

(C.20)



134 Function Objects from Brown Representability

Applying Example C.7 to these two diagrams takes care of commutativity in the larger
diagram of every square except for the one marked (β). Commutativity of this square will
be established at the same time that we check it is a homotopy pushout: we claim that
the following diagram is a good morphism of triangles in K(A)

x

f

��

gf //

(I)

y′

1
��

// y′/x

w′

��

−z′ //

(β)

Σx

Σf

��
y

g
// y′ w

// Σk
Σt
// Σy

(C.21)

To prove this, compare (C.21) with the good morphism of triangles arising, as in Example
C.6, from the commutative square (I). Here z′, w, w′ are the “connecting morphisms” from
degree-wise split exact sequences of complexes. These morphisms are described abstractly
in Lemma 2.15, but one can describe them more explicitly by choosing, in each degree, a
splitting of the relevant exact sequence. For example: choose a splitting of (C.17) in each
degree, given by s(t)n : yn −→ kn and s(g)n : (y′)n −→ yn such that

s(t)n ◦ tn = 1, gn ◦ s(g)n = 1, tn ◦ s(t)n + s(g)n ◦ gn = 1

Then we can choose w (which is, after all, only claimed to be canonical up to homotopy)
to be the morphism with wn = s(t)n+1 ◦ ∂ny ◦ s(g)n. If we also choose a splitting s(f)n of
fn in each degree, such that s(t)n ◦ fn and s(f)n ◦ tn both vanish (this is possible: first
take splittings of k −→ y/x and x −→ y′) then it is straightforward to check that there are
homotopy equivalences cone(gf) ∼−→ y′/x and cone(g) ∼−→ Σk making (C.21) isomorphic
to the good morphism of triangles coming from Example C.6. We conclude that (C.21) is
good, so by Lemma C.8 the square marked (β) is a homotopy pushout, as claimed.

It is well-known that, up to isomorphism, every triangle in K(A) is obtained via Lemma
2.15 from an exact sequence of complexes that is degree-wise split exact (the proof usually
goes by way of the mapping cylinder). Therefore, in verifying (TC3+) for K(A), it suffices
to understand the tensor product of two such triangles. For the rest of this section, let us
fix two degree-wise split exact sequences of complexes in A

0 −→ x
f−→ y

u−→ z −→ 0 (C.22)

0 −→ x′
g−→ y′

v−→ z′ −→ 0 (C.23)

We can take the tensor product of these exact sequences, to obtain a commutative diagram
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in which each row and column is degree-wise split exact

0

��

0

��

0

��
0 // x⊗ x′

��

// y ⊗ x′ //

��

z ⊗ x′ //

��

0

0 // x⊗ y′

��

// y ⊗ y′

��

// z ⊗ y′

��

// 0

0 // x⊗ z′

��

// y ⊗ z′

��

// z ⊗ z′

��

// 0

0 0 0

(C.24)

From (C.22) and (C.23) we obtain canonical triangles in K(A)

x
f−→ y

u−→ z
−w−→ Σx (C.25)

x′
g−→ y′

v−→ z′
−q−→ Σx′ (C.26)

whose tensor product is the diagram (C.5) given at the beginning of this appendix. To
establish (TC3+) we have to produce an object w and six morphisms k1, k2, k3, q1, q2, q3

that fit into six homotopy pushout squares, marked (1)-(6) in Definition C.3. For our choice
of triangles (C.25, C.26) we define the object w to be the cokernel of f⊗g : x⊗x′ −→ y⊗y′.
Note that we have a degree-wise split exact sequence

0 // x⊗ x′
f⊗g // y ⊗ y′ // w // 0

Applying Proposition C.9 to the degree-wise split monomorphisms x⊗ x′ −→ y ⊗ x′ and
y ⊗ x′ −→ y ⊗ y′ in the first instance, and x ⊗ x′ −→ x ⊗ y′ and x ⊗ y′ −→ y ⊗ y′ in the
second instance, we deduce the following four homotopy pushout squares in K(A)

y ⊗ x′

��

//

(4)

z ⊗ x′

k3

��
y ⊗ y′

k2

// w

x⊗ y′

��

//

(5)

y ⊗ y′

k2

��
x⊗ z′

k1

// w

Σ−1w

Σ−1q2
��

Σ−1q3 //

(1)

Σ−1y ⊗ z′

��
x⊗ x′ // y ⊗ x′

Σ−1w

Σ−1q1
��

Σ−1q2 //

(2)

x⊗ x′

��
Σ−1z ⊗ y′ // x⊗ y′

For the two remaining homotopy pushout squares (3) and (6), observe that we have com-
mutative diagrams of complexes, in which the rows are degree-wise split exact

0 // x⊗ x′

1

��

// x⊗ y′

��

// x⊗ z′

h′

��

// 0

0 // x⊗ x′ // y ⊗ y′ // w // 0
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0 // x⊗ x′

1

��

// y ⊗ x′

��

// z ⊗ x′

i

��

// 0

0 // x⊗ x′ // y ⊗ y′ // w // 0

We infer that the morphism marked h′ is a degree-wise split monomorphism, and the mor-
phism marked i a degree-wise split epimorphism. The composite ih′ is just the morphism
x⊗ z′ −→ y ⊗ z′ from (C.24), which is a degree-wise split monomorphism, so we are in a
position to apply Proposition C.10 to construct two homotopy pushout squares

Σ−1w

Σ−1q3
��

(3)

Σ−1q1 // Σ−1z ⊗ y′

��
Σ−1y ⊗ z′ // Σ−1z ⊗ z′

Σ−1z ⊗ z′

−
��

//

(6)

x⊗ z′

k1

��
z ⊗ x′

k3

// w

Note the sign in the second square: we desuspend the morphism z ⊗ z′ −→ Σ(z ⊗ x′) and
change the sign. This happens in our case because w′ occurs without a sign in the large
diagram of Proposition C.10.

Proposition C.11. The tensor triangulated category K(A) satisfies (TC3+).

Proof. Every triangle in K(A) is isomorphic to a triangle arising from a degree-wise split
exact sequence of complexes, so in verifying (TC3+) we can work exclusively with such
triangles. In this case, the discussion above constructs homotopy pushouts (1)-(6) of the
necessary form, and when one checks the details of the diagrams produced by Proposition
C.9 and Proposition C.10 the other conditions for (TC3’) given in [May01, Lemma 4.7]
are satisfied.

Given a tensor triangulated category T , we say that S is a tensor triangulated subcate-
gory of T if it is a triangulated subcategory closed under the tensor product, that contains
the unit object of the tensor product in T . Clearly S is then a tensor triangulated category.

Lemma C.12. Let T be a tensor triangulated category satisfying (TC3+), and let S be
a tensor triangulated subcategory of T . Then S also satisfies (TC3+).

Proof. Let two triangles in S be given, and let the object w be part of the Verdier structure
on the tensor product of these triangles in T . It is clear from the triangles listed in [May01,
Lemma 4.7] that w is an object of S, and it follows that (TC3+) holds for S.

Proposition C.13. Given a scheme X the tensor triangulated categories

K(QcoX), K(FlatX), Km(ProjX), D(QcoX)

all satisfy (TC3+).

Proof. We know from Proposition C.11 that K(QcoX) satisfies the axiom, and by Lemma
C.12 it must also hold for K(FlatX). The quotient Km(ProjX) has the tensor product
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that descends from K(FlatX), and every triangle in the quotient is, up to isomorphism,
the image of a triangle in K(FlatX), so it follows that Km(ProjX) satisfies (TC3+).

Now consider the subcategory S = ⊥Km,ac(ProjX) in Km(ProjX). By Proposition
5.2 this is the full subcategory of K-flat complexes in Km(ProjX), and from Theorem 5.5
we have an equivalence of triangulated categories

S inc−→ Km(ProjX) can−→ D(QcoX)

As observed in Proposition 6.4, this is an equivalence of tensor triangulated categories.
Because S is a tensor triangulated subcategory of Km(ProjX) it satisfies (TC3+) by
Lemma C.12, so the same must be true of D(QcoX).

Remark C.14. If X is a noetherian scheme then Km(ProjX) is compactly generated
(Theorem 4.10) and thus cohomological functors on T are representable. Tensor products
in Km(ProjX) commute with coproducts, and May’s axiom (TC3) holds by the previous
proposition, so we conclude that Theorem C.1 applies to Km(ProjX). The same is true
of D(QcoX) without the noetherian hypothesis.
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pp. 247–435.

[Ver77] Jean-Louis Verdier, Catégories dérivées. quelques résultats (etat 0),
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