
Two odd things about
computation

Daniel Murfet
University of Melbourne

Before I get started with the talk, I’d like to make a few meta comments. Firstly, this
was originally a colloquium talk, which I gave last year to the University of Vienna
mathematics department, at the invitation of my friend and collaborator Nils
Carqueville, who is a mathematical physicist. So the talk originally had a kind of
dual purpose. On the one hand, I wanted to entertain a room of non-logicians and
maybe convince them there was something interesting about logic, and on the
other hand I wanted to explain to my friend Nils some of the reasons why I had
suddenly become fascinated with sequent calculus and linear logic.

Now today’s audience is of course already convinced logic is interesting, and there
are people here that know far more than me about sequent calculus and
substructural logics, so this repeat of the talk is preaching to the choir in many
respects. But it’s my hope that at least one of the motivating examples I chose to
tell my mathematical friends about is still new to you.

Two odd things

I. Maxwell’s demon (1871)

II. Russell’s paradox (1901)

Energy cost of computation

Time and space cost of computation

So here are my two examples. They are both paradoxes, and they are both old.
And both of them played a fundamental role in the century after they were
formulated. In the former case, in physics and the theory of information, and in the
second case in logic. For the purpose of today’s talk, the link between these two
paradoxes is that they both eventually told us something deep about computation.

Now, computation is one of those words that is very hard to define precisely. And
I’m not going to try. However, it’s important for today’s talk that we admit a
concept of computation which is not overly tied to any particular choice of
mechanism which embodies computational processes. I’d like to suggest why this
is important using an analogy with geometry.

[0:40]

This is not geometry
Now these tools were undoubtedly important in the discovery of basic geometric
concepts, but after hundreds of years of development they no longer look so
fundamental.

[0:40]

This is not computation
Similarly, while it’s certainly true that these physical tools and practical problems
involving them continue to teach us new questions to ask about computation,
there is an abstract mathematical theory of computation which both predates them
and also involves questions not of immediate practical relevance. It is this broader
notion of computation that we’re going to be involved with today.

[0:40]

I. Maxwell’s demon

How much energy must be used
in carrying out a computation?

With that preface, let’s get into the first of my examples, a paradox known as
Maxwell’s demon. This is the same Maxwell from Maxwell’s equations, and his
demon is a thought experiment which played an important role in thermodynamics.
From the perspective of computation, it plays a decisive historical role in the
development of our current understanding of the minimal energy cost of carrying
out a computation.

[0:20]

Quasi-static flux of heat Q into a system at temperature T
is associated with an increase of entropy S of that system.

T1 T2

�Q

heat flux

�T1�S1 = �Q = T2�S2

�S = �S2 +�S1 =

✓
1� T2

T1

◆
�S2 =

(
> 0 T1 > T2

< 0 T1 < T2

�Q = T�S

To understand Maxwell’s demon we need just a little bit of undergraduate physics.
Entropy is a difficult concept, but for our purposes it is just a scalar quantity
attached to certain kinds of physical systems, which increases or decreases as
heat is added or removed from the system. Now, the catch is that the increase of
decrease of entropy for a given unit of heat depends on the current temperature
according to this equation.

Suppose we have two systems at temperatures T1, T2 and that a unit of heat delta
Q flows from the left to the right. Here delta Q is positive. This causes a decrease
in the entropy of the left hand system and an increase in the entropy of the right
hand system, but the decrease and increase are not of the same magnitude if the
temperatures are different. With delta Q fixed, the larger T2 is, for instance, the
smaller the increase in entropy of the right hand system.

The total change in entropy of the system is delta S2 plus delta S1, which a little
algebra will tell you is given by this expression which is positive if T1 > T2 and
negative otherwise. That is, the total change in entropy will be positive if heat flows
from high to low temperature, and negative if it flows the other way.

[2:00]

Second law: it is impossible to derive an engine which,
working in a cycle, shall produce no effect other than

the transfer of heat from a colder to a hotter body.

T1 T2

�Q

heat flux

�T1�S1 = �Q = T2�S2

�S = �S2 +�S1 =

✓
1� T2

T1

◆
�S2 =

(
> 0 T1 > T2

< 0 T1 < T2

�S
tot

� 0i.e. in a closed system always

This leads us to the second law of thermodynamics, which says that there is no
closed cycle which has the effect of moving heat from a colder to a hotter body,
that is, which has negative total entropy. Of course such flows are possible, but
they require work to be done from the outside; for instance, moving heat from a
cold body such as a refrigerator to a hot body such as the outside air, requires
work transferred via electricity from a power plant.

[1:20]

–Arthur Stanley Eddington

“If someone points out to you that your pet
theory of the universe is in disagreement with

Maxwell’s equations — then so much the worse
for Maxwell’s equations. If it is found to be
contradicted by observation — well these

experimentalists do bungle things sometimes.
But if your theory is found to be against the

second law of thermodynamics I can give you
no hope; there is nothing for it but to collapse in

deepest humiliation.”

[0:40]

1

In the cycle 1-2-3-4-1, Maxwell’s demon seems to
violate the second law of thermodynamics

3 4

heat bath

�Sbath = �k ln 2�W = �Q = �kT ln 2

2
So here is Maxwell’s demon. The original paradox is due to Maxwell in 1871 and
involves a multi-body gas, but the equivalent version due to Szilard with a single-
particle gas is more useful for emphasising the connection to information, and
dates from 1929.

It’s a paradox because it is a hypothetical system which can transfer heat from one
body to another, even if the second body is at a higher temperature than the first,
thus violating the second law of thermodynamics.

The system consists of (A) a box containing a single particle of some ideal gas, at
some temperature, bouncing around inside the box in such a way that it reflects
elastically off the walls, (B) the demon, who is able to make certain observations of
the system and perform certian mechanical actions, that we’ll enumerate in a
moment and (C) finally, there is a heat bath that will appear in the final step of the
process, and which I’ll explain then.

The system will be taken through 4 steps. Step 1 is the initial state. In Step 2, the
demon inserts an immovable partition quickly in the middle of the box. He does not
observe the particle before doing so, so after the partition is added the particle
could be in either the left or right half, and he does not know which.

In Step 3 he observes on which side the particle is located. Suppose it is on the
left. This means the right hand part of the box is a vacuum at zero pressure, while
the left hand side has some finite pressure on the walls from the particle bouncing
around. The idea is that we can use this pressure to do mechanical work.

In Step 4 we do two things. Firstly, we hook up a piston to the interior partition,
which extends outside the box. If we let the interior partition move quasi-statically,
then the pressure on the left will push it to the right, moving the piston and allowing
us to do work on some external system.

1

In the cycle 1-2-3-4-1, Maxwell’s demon seems to
violate the second law of thermodynamics

3 4

heat bath

�Sbath = �k ln 2�W = �Q = �kT ln 2

2
For instance, we could use this work to turn a fan and heat up a pool of water. Now
the temperature of the particle and thus the energy drops as it hits the interior
partition and does this work, but if the box is connected to a heat bath it is
possible to keep restoring this lost energy so that the system remains at a fixed
temperature. Now, this continues until the interior partition reaches the right hand
wall.

If the fixed temperature is T, a little calculation using the ideal gas law shows that
the work done is kTln2, where k is Boltzmann’s constant. The work is negative
because it represents a flow of energy out of the system. Moreover, the heat
transferred from the heat bath to the particle to keep it at a fixed temperature
equals this amount of work, which can be used to heat up our external pool of
water by the same amount kTln2. In conclusion, then, we have managed to
transfer an amount of heat delta Q from the heat bath to that external pool of
water, via this cycle 1-2-3-4.

BUT, the heat bath could have been at a lower temperature than the external pool
of water! In this case, we have designed a cycle which contradicts the second law
of thermodynamics. That is, the total entropy of the cycle is a negative number, -k
ln 2.

To be clear, the total system includes the box, particle, heat bath, demon and the
pool of water we’re heating up. Somehow this closed system underwent a cycle
with negative entropy. Now, since we believe in the second law of
thermodynamics, we believe that this analysis must be incomplete, that there must
be some part of the system which secretly INCREASED its entropy, so that the
overall change was in fact positive or zero. But, where is the gap? Which part?

[7:00]

What generates the missing
entropy?

• It’s the measurement! - Brillouin ’51, Gabor ’61.

• No, it’s not the measurement! It’s the change in
internal state of the demon, viewed as changing
over the course of a cyclic computational process -
Landauer ’61, Fredkin & Toffoli ’82, Bennett ’82.

For a long time Maxwell’s demon bothered people, but it was generally believed
since at least the 50’s and probably earlier that the culprit responsible for the
secret increase in entropy was the measurement process. This is plausible: for
example, you might think that to measure which half contains the particle you need
to shine light on it, and in order for that measurement to succeeed that light will
have to be sufficiently coherent, and producing this kind of light can be seen to
generate entropy. Many other examples of measurement schemes can also be
seen to unavoidably generate entropy, so it seems convincing that this is the
explanation for Maxwell’s demon. That is, you might be able to transfer heat from a
cold body to a hot body in one part of the system, but only because you used
energy from another part, and overall the second law of thermodynamics is
preserved.

But very clever arguments by Landauer, Fredkin & Toffoli and Bennett showed
firstly that there exist measurement schemes which DO NOT generate any entropy,
and secondly that the correct resolution of the paradox is more subtle, and has to
do with how we view the demon as a “computational process” in its own right, with
an internal state which evolves over the course of the cycle.

[1:10]

[Cumulative 19 min]

�S = k ln 2

�S = �k ln 2

Step 1

Step 2

Step 3

Step 4

erasure

(diagrams from
Bennett ’82)

I’d like to explain the resolution of Maxwell’s paradox due to Landauer and
Bennett, which seems to continue to be generally accepted.

Recall the four steps. But now in addition to the case where the particle was found
to be on the left in Step 2 we also consider the possibility that the particle was
found on the right. Now, the left hand part of this diagram just represents what we
already discussed - Step 2 is partition, Step 3 is observe and Step 4 is extract
work. Note that in Step 4 if the particle is on the right then of course the piston
connecting to the internal partition comes out to the left. Once the work is done we
are back to a box with no partition, and as discussed, the overall entropy (as far as
we understood it before) was -kln2.

The new part is on the right, which is a diagram representing the internal state of
the demon over the course of this cycle. The internal state is represented by a
table with three rows and two columns.

The rows stand for the internal state of the demon. He has three possible states: L,
S, and R where S is his standard or initial state. The columns stand for the two
branches in the diagram on the left. So to begin with the demon is in his internal
state, the box is unpartitioned. Then the box is partitioned, but the demon’s state
does not change. When the particle is observed in Step 3, his state changes to L if
he observed the particle on the left and to R if he observes it on the right. As the
partition moves the difference between the state of the two branches starts to
converge, until at the end of Step 4 they are the same state where the particle’s
position is unknown.

�S = k ln 2

�S = �k ln 2

Step 1

Step 2

Step 3

Step 4

erasure

(diagrams from
Bennett ’82)

However, while the state of the box has now returned to its original configuration,
the demon’s internal state has not. He still remembers which of the two
possibilities actually occurred. To complete the cycle he has to reset his internal
state to the standard state, and this 2:1 mapping of his state, or if you like the
erasure of one bit of information, is well-understood to incur an entropy cost of
kln2.

This increase in entropy precisely cancels the decrease in entropy from the heat
transfer out of the heat bath, and thus the second law of thermodynamics is saved
and Maxwell’s demon exorcised.

[4:00]

• Landauer’s principle: the only fundamental
computational operation which generates entropy
is erasure.

• Bennett’s exorcism: the resolution of Maxwell’s
paradox is that, in order to complete a cycle, the
demon’s internal state must be restored to its
original configuration by erasing its memory - thus
generating the entropy necessary to put the engine
back into compatibility with the second law.

This analysis led to the formulation of Landauer’s principle. The only computational
operation which cannot be done reversibly, and thus which incurs an unavoidable
energy cost, is erasure.

[1:30]

[Cumulative 23:00]

II. Russell’s paradox

How much time and space must be used
in carrying out a computation?

My second example of a paradox is Russell’s paradox, which is certainly more
familiar to this audience than Maxwell’s paradox, but it may not be clear to all of
you what Russell’s paradox has to do with the subtitle here regarding the time used
to carry out of a computation. I’d like to explain that, and then tie both Maxwell’s
paradox and Russell’s paradox together (in a fun but not very deep way) using a
perspective on computation offerred by sequent calculus.

[0:40]

R 2 R ` R /2 R

R /2 R ` R 2 R

R = {x |x /2 x}

Comprehension considered harmful
We’re all familiar with Russell’s paradox in naive set theory. I’d like to try and
perform a more thorough analysis of what exactly goes wrong, using the sequent
calculus of classical logic.

[2:00]

�,� stand for multisets of formulae

� ` A,�

�,¬A ` �

�, A ` �

� ` ¬A,�

�, A1, A2 ` �

�, A1 ^A2 ` �

� ` B1, B2,�

� ` B1 _B2,�

� ` B,B,�

� ` B,�

�, A,A ` �

�, A ` �
ctr

ctr

A ` A
� ` �, A A,�0 ` �0

�,�0 ` �,�0axiom cut

� ` �
� ` B,�

� ` �
�, B ` �

weak weak · · ·

The sequent A1, . . . , An ` B1, . . . , Bm says:
together the Ai prove at least one of the Bi

[5:30]

Example of a proof in the sequent calculus

ax

x ` x

ax

y ` y

weak

x, y ` y

cut

x, y ` y

x ^ y ` y

[1:00]

Theorem (Gentzen 1934). There is an algorithm which,
given a proof, produces a cut-free proof of the same

sequent. This algorithm is called cut-elimination.

logic programming

formula type

sequent input/output spec

proof program

cut-elimination execution

contraction copying

weakening erasure

Curry-Howard correspondence

[4:00]

� ` �, A[t/x]

� ` �, t 2 {x |A}
�, A[t/x] ` �

�, t 2 {x |A} ` �

A = x /2 x R = {x |A} = {x |x /2 x}

R /2 R = A[R/x]

comp comp

unrestricted comprehension

� ` �, R /2 R

� ` �, R 2 R

�, R /2 R ` �

�, R 2 R ` �
comp comp

Applying the new comprehension rule yields
...

...

[3:00]

` C

• The sequent calculus of naive set theory is inconsistent.
• The standard point of view is that the culprit is unrestricted

comprehension.

R 2 R ` R 2 R
` R /2 R,R 2 R

` R 2 R,R 2 R

` R 2 R

R /2 R ` R /2 R
R /2 R,R 2 R `
R 2 R,R 2 R `

R 2 R `
`

compcomp

ctr ctr

weak

ax ax

cut

[3:00]

logic programming

formula type

sequent input/output spec

proof program

cut-elimination execution

contraction copying

weakening erasure

Curry-Howard correspondence

[2:00]

• This refinement is called light linear logic.

• The subject of implicit computational complexity views time
and space complexity of programs as constraints on the
static “geometry” of proofs.

• This has been used to propose versions of System F (the
programming language on which Haskell is based) with
polytime as a typing constraint (Atassi-Baillot-Terui ’07).

• Derived from a close analysis of Russell’s paradox.

Theorem (Girard ‘98): there is a consistent refinement of
the sequent calculus with unrestricted comprehension but
restricted contraction in which the provably total functions
 are precisely the polynomial time functions.N �! N

[3:30]

logic programming

formula type

proof program

cut-elimination execution

contraction copying

weakening erasure

restricted
contraction

restricted
complexity

Maxwell’s paradox

Russell’s paradox

What is the physical meaning of complexity?

[3:00]

[Cumulative 2nd half: 28]

Simple ideal gas

PV= NRT U - CNRT

- lempemlune

Pm"§%m
.

mtfehmberhunivenalgasonstant entergy (
constant

, depends on

gas

attend'¥→m
.

FIFTH
-

; w ×

"

€¥
,

w=g"pav
-

5
"

"¥ "'

;

i

;
* *

* v

=

NRTF
,
's 'EN = NRTINKI)

= NRTINZ

.

'

. Wovkpermole YN = RTINZ .

