
The category of open
simply-typed lambda terms

Daniel Murfet
based on joint work with William Troiani

Reminder on category theory

• Every adjunction gives rise to a monad

• Monads may be used to extend functional programming
languages in a principled way to include “effects” (Moggi,
Wadler). This is a foundational idea in Haskell.

C
F // D
G

oo

M = GF, M = GFGF �! GF

C(Fx, y) ⇠= D(x,Gy)

C(FGx, x) ⇠= D(Gx,Gx)

Let C be a Cartesian closed category

C
F=s⇥(�) // C
G=s)(�)

oo

C(Fx, y) = C(s⇥ x, y) ⇠= C(s, x) y) = C(s,Gy)

Reminder on category theory

• Aim: to define the category of lambda terms (the basic
example of a category of programs) and study monads
on this category.

• We take a nonstandard point of view, which is

• thoroughly monadic (following Lawvere),

• treats open and closed terms on an equal footing.

• Applications: leads to a Curry-Howard correspondence
between open lambda terms and proofs with
hypotheses, and shows that the structural rules of logic
(weakening, contraction, exchange) are monadic.

logic programming category theory

formula type object

proof program morphism

cut function application composition

implication intro lambda abstraction universal factorisation

structural rules - monad product, unit

open context free variables Kleisli categories

Curry-Howard correspondence

Simply-typed Lambda calculus

• Types:

• Preterms:

• -equivalence:

• -equivalence:

• -equivalence:

• Free variables:

↵

�

⌘

� ::= a | �1) �2, e.g. �) (⌧) �)

M ::= x� | (M�)⇢ N�) : ⇢ | (�x� . N⇢) : �) ⇢

�x� .M =↵ �y� .M [x := y]

((�x� .M)N) =� M [x := N]

�x� . (Mx) =⌘ M

FV(�x�)⇢ . (xy�)) = {y : �}

• Terms are preterms up to alpha equivalence

• For a type we refer to the set of terms of this type by
and the set of all terms of this type up to beta (or beta-
eta)-equivalence by

• Terms up to beta-equivalence do not have a well-defined
set of free variables, so we define

⇤�/=� ⇤�/=�⌘

FV�(M) =
\

N=�M

FV(N)

Simply-typed Lambda calculus

� ⇤�

Some examples

F : ⌧) ⇢ , G : �) ⌧ �x� . (F (Gx)) : �) ⇢

id� := �x� . x : �) �

�y� . (F (id� y)) = �y . (F ((�x . x)y))

=� �y . (Fy)

=⌘ F

(a)

(b)

(c)

Desiderata for a category of lambda terms

• Every type should be an object.

• Every term (open or closed) should be a morphism.

• The basic operations on lambda terms should have natural
categorical avatars:

• function application

• lambda abstraction

• structural rules (discarding, copying, re-ordering inputs)

• The usual approach (Lambek-Scott) assumes product types.

2. In order to have identity morphisms we should take morphisms to be �⌘-equivalence
classes of terms, since ⌘-equivalence is used in Remark 3.2.

3. In order to fulfill desiderata A, for � atomic, every term M : � must be interpreted
as a morphism a(M) in L. For this reason we add a new object 1 to our category,
and take a(M) 2 L(1, �).

Definition 3.6.The category L has objects

ob(L) = �) [{1}

and morphisms given for types �, ⌧ 2 �) by

L(�, ⌧) = ⇤�)⌧/=�⌘

L(1, �) = ⇤�/=�⌘

L(�,1) = {?}
L(1,1) = {?} ,

where ? is a new symbol. For �, ⌧, ⇢ 2 �) the composition rule is the function

L(⌧, ⇢)⇥ L(�, ⌧) �! L(�, ⇢)
(N,M) 7�! �x� . (N(Mx)) ,

where x /2 FV(N)[FV(M). We write the composite as N �M . In the remaining special
cases the composite is given by the rules

L(⌧, ⇢)⇥ L(1, ⌧) �! L(1, ⇢) , N �M = (NM) ,

L(1, ⇢)⇥ L(1,1) �! L(1, ⇢) , N � ? = N ,

L(1, ⇢)⇥ L(�,1) �! L(�, ⇢) , N � ? = �t� . N ,

where in the final rule t /2 FV(N). All other cases are trivial. Note that these functions,
which have been described using a choice of representatives from a �⌘-equivalence class,
are nonetheless well-defined.

For terms M,N : �) ⌧ the expression M = N is currently ambiguous, since it could
either denote an equality of terms up to ↵-equivalence (as it has done up to now) or an
equality of morphisms in L (which would mean �⌘-equivalence).

Proposition 3.7. L is a category.

Proof. The calculation in Remark 3.2 shows that id� 2 L(�, �) is an identity at �, and ?
is clearly an identity at 1. For associativity there are a few cases to check:

5

2. In order to have identity morphisms we should take morphisms to be �⌘-equivalence
classes of terms, since ⌘-equivalence is used in Remark 3.2.

3. In order to fulfill desiderata A, for � atomic, every term M : � must be interpreted
as a morphism a(M) in L. For this reason we add a new object 1 to our category,
and take a(M) 2 L(1, �).

Definition 3.6.The category L has objects

ob(L) = �) [{1}

and morphisms given for types �, ⌧ 2 �) by

L(�, ⌧) = ⇤�)⌧/=�⌘

L(1, �) = ⇤�/=�⌘

L(�,1) = {?}
L(1,1) = {?} ,

where ? is a new symbol. For �, ⌧, ⇢ 2 �) the composition rule is the function

L(⌧, ⇢)⇥ L(�, ⌧) �! L(�, ⇢)
(N,M) 7�! �x� . (N(Mx)) ,

where x /2 FV(N)[FV(M). We write the composite as N �M . In the remaining special
cases the composite is given by the rules

L(⌧, ⇢)⇥ L(1, ⌧) �! L(1, ⇢) , N �M = (NM) ,

L(1, ⇢)⇥ L(1,1) �! L(1, ⇢) , N � ? = N ,

L(1, ⇢)⇥ L(�,1) �! L(�, ⇢) , N � ? = �t� . N ,

where in the final rule t /2 FV(N). All other cases are trivial. Note that these functions,
which have been described using a choice of representatives from a �⌘-equivalence class,
are nonetheless well-defined.

For terms M,N : �) ⌧ the expression M = N is currently ambiguous, since it could
either denote an equality of terms up to ↵-equivalence (as it has done up to now) or an
equality of morphisms in L (which would mean �⌘-equivalence).

Proposition 3.7. L is a category.

Proof. The calculation in Remark 3.2 shows that id� 2 L(�, �) is an identity at �, and ?
is clearly an identity at 1. For associativity there are a few cases to check:

5

: (let �) = {simple types})

Function application is composition

Definition 3.8.Let L 6=1 denote the full subcategory of L whose object set is �). That
is, we omit the terminal object 1.

So far we have realised Desiderata A and B, and it remains to explain how function
application and lambda abstraction are interpreted by natural categorical operations.
Function application is clearly present in L, since given terms M : ⌧ and N : ⌧) ⇢ we
have a commutative diagram in L

(3.5) 1 M
//

(NM)

!!

⌧

N

✏✏

⇢

Remark 3.9.Returning now to Example 3.3, we have morphisms M12 2 L(T1, T2) and
M21 2 L(T2, T1) and we have calculated that M12 �M21 = 1T2 and M21 �M12 = 1T1 in L,
so that the objects T1, T2 are isomorphic.

More generally, it is easy to check that

Proposition 3.10. Given types ⌧1, . . . , ⌧k, �, ⇢ and a permutation ✓ 2 Sk, the term

P✓ :
�
⌧1) · · ·) ⌧k) ⇢

�
)

�
⌧✓(1)) · · ·) ⌧✓(k)) ⇢

�

P✓ = �U ⌧1)···)⌧k)⇢v
⌧✓(1)
1 v

⌧✓(2)
2 · · · v⌧✓(k)k .

�
· · · ((Uv✓�1(1))v✓�1(2)) · · · v✓�1(k)

�

is an isomorphism in L between the objects

�
⌧1) · · ·) ⌧k) ⇢

� ⇠=
�
⌧✓(1)) · · ·) ⌧✓(k)) ⇢

�
.

With the notation of the proposition:

Corollary 3.11. There is a bijection

⇤⌧1)···)⌧k)⇢/=�⌘
⇠=

// ⇤⌧✓(1))···)⌧✓(k))⇢/=�⌘ .

Proof. We have, by the proposition

⇤⌧1)···)⌧k)⇢/=�⌘ = L(1, ⌧1) · · ·) ⌧k) ⇢)
⇠= L(1, ⌧✓(1)) · · ·) ⌧✓(k)) ⇢)

= ⇤⌧✓(1))···)⌧✓(k))⇢/=�⌘ .

By construction 1 is a terminal object in L. It is also a generator [?, Definition 4.5.1].

7

M : ⌧ N : ⌧) ⇢

Lambda abstraction is factorisation

Let Y be the set of all variables, then Q ✓ Y is cofinite if Y \Q is finite.

Definition. Let Q be a cofinite set of variables. A Q-factorisation of a term
M : �) ⇢ is a commutative diagram in L with FV�(f) ✓ Q:

�
M //

f

��

⇢

??

FV�(M) =
\

N=�M

FV(N)

Q = Y \ {q : ⌧}
q /2 FV�(f)

Theorem. There is a universal Q-factorisation.

�
M //

f

⇢⇢

fu

$$

⇢

u

;;

✏✏

DD

Lambda abstraction is factorisation

If Q = Y \ {q : ⌧} then

u = ⌧) ⇢

fu = �q .M

Definition 4.6.Let Var denote the partially ordered set of finite subsets of

Y =
[

�2�)

Y� .

At this point we may view FV�(�) as a function on L, sending morphisms to elements
of the partially ordered set Var and having a weak functoriality expressed by (4.2). To
make sense of this, we adopt the convention that FV�(?) = ;. In fact, if we view L as a
2-category with only identity 2-morphisms and Var as a 2-category with one object, and
composition of 1-morphisms (finite subsets of Y) as union, then FV� is a colax functor
L �! Var.

Definition 4.7.For a subset Q ✓ Y we define a subcategory LQ ✓ L by

ob(LQ) = ob(L) = �) [{1}

and for types �, ⇢

LQ(�, ⇢) = {M 2 L(�, ⇢) | FV�(M) ✓ Q} ,
LQ(1, �) = {M 2 L(1, �) | FV�(M) ✓ Q} ,
LQ(�,1) = L(�,1) = {?} ,
LQ(1,1) = L(1,1) = {?} .

Note that the last two lines have the same form as the first two, using the convention
that FV�(?) = ;. We denote the inclusion functor by IQ : LQ �! L. We write Lcl for
LQ when Q = ; and call this the category of closed lambda terms.

The fact that LQ is a subcategory follows from Lemma 4.5. We claim that the inclusion
IQ has a right adjoint, provided Q is cofinite, by which we mean that Qc = Y \Q is a finite
set. Our convention is to use letters p, q, . . . for ordered sets of variables, with q always
denoting an ordering on the finite unordered set of variables Qc. With this notation, we
next define a functor

�q : L �! LQ

which we will prove is right adjoint to IQ, with counit a natural transformation

U q : IQ � �q �! 1L .

For the rest of this section let Q be a cofinite set of variables and q = (q1 : ⌧1, . . . , tk : ⌧k)
an ordering of the complement. While the functor �q and natural transformation U q

depend on the choice of ordering, by the uniqueness of adjoints they are independent of
the ordering up to unique natural isomorphism.

Definition 4.8.For a type ⇢ we define

�q(⇢) = ⌧1) ⌧2) · · ·) ⌧k) ⇢

10

Theorem. If Q is cofinite, the functor IQ : LQ ! L has a right adjoint.

Theorem. If A is finite, the functor IA : Lcl ! LA has a right adjoint.

Theorem 5.1. There is an equivalence of categories

F : C) ! L 6=1
cl

which is the identity F (⌧) = ⌧ on objects, and is defined on morphisms by

F�,⇢ : C)(�, ⇢) �! L 6=1
cl (�, ⇢) , (x : �,M : ⇢) 7! �x .M .

Proof. Note that by definition if (x : �,M : ⇢) 2 C)(�, ⇢) then FV(M) ✓ {x} and so
�x .M is a closed term. To see that F is a functor, consider two morphisms

(x : �,M : ⇢) 2 C)(�, ⇢) , (y : ⇢, N : ⌧) 2 C)(⇢, ⌧) .

Then

F ((y : ⇢, N : ⌧) � (x : �,M : ⇢)) = F (x : �, ((�y⇢ . N)M))

= �x� . ((�y⇢ . N)M)

= �z� .
�
(�y⇢ . N) ((�x� .M)z)

�

= (�y⇢ . N) � (�x� .M)

= F (y : ⇢, N : ⌧) � F (x : �,M : ⇢)

where in the equality marked by ⇤, z is such that z 62 {FV(�y⇢.N) [FV(�x⌧ .M)}. The
proof that F preserves identities is similarly straightforward.

The function F�,⇢ is injective, since if �x� .M⇢ = �y� . N⇢ in L then

M =� ((�x .M)x) =�⌘ ((�y .N)x) =� N [y := x] .

But this is the definition of the equivalence relation on morphisms in C), see [5, p.78].
To see that F�,⇢ is surjective for all �, ⇢, let us suppose otherwise for a contradiction.

Then among all pairs (�, ⇢) for which F�,⇢ fails to be surjective, and among all N 2
L 6=1

cl (�, ⇢) not in the image of F�,⇢, we may choose an N in normal form and of minimal
length. By hypothesis there is no variable x : � and term M : ⇢ with FV(M) ✓ {x} and
N =�⌘ �x .M , and consequently N must either be a variable or a function application. It
cannot be a variable since it is closed, and if it were a function application N = (PQ) then
P : ↵) (�) ⇢) and Q : ↵ for some type ↵. But now P is shorter than N and cannot
be a lambda abstraction (else N would not be normal), which is a contradiction.

5.1 Monads

As above, let Lcl denote the category of closed lambda terms. Throughout this section,
A ✓ Y is finite and so in particular the inclusion ; ✓ A satisfies the conditions of Theorem
4.15 and there is a right adjoint �a to the inclusion I for any ordering a of A:

(5.1) Lcl

I
// LA

�a

oo

.

15

Ta = �a � I is a monad

(a an ordering of A)

Relation to the Lambek-Scott category

which does not have an interpretation as an arrow into ⇢, and therefore cannot be the
second morphism in a pair factorising M in L. If we add product types to the underlying
language, then we can interpret the term in (4.11) as being of type ⌧2 ⇥ ⌧1) ⇢ and there
is a factorisation of the desired kind

(4.12) 1 M
//

hq1,q2i
""

⇢

⌧1 ⇥ ⌧2

�q2q1 .M

<<

.

Note also that the diagram (4.10) cannot be generalised to arrows M 2 L(�, ⇢) without
products, since what we want to write is the commutative diagram

(4.13) � M
//

q1

""

⇢

⌧1 ⇥ �

�q1 .M

<<

where q1 here denotes the composite

� ⇠= 1⇥ �

0

@q1
1�

1

A

// ⌧1 ⇥ �

and we identify �q1 .M : ⌧1) (�) ⇢) with a term of type ⌧1 ⇥ �) ⇢ in the natural
way. In this way one can show that if we add products, the inclusion LQ �! L (again
in the case where Q is cofinite) has also a left adjoint given by � 7! ⌧1 ⇥ · · · ⇥ ⌧k ⇥ �,
see [1, 2, 8]. This distinction between left and right adjoints is referred to as context
completeness versus functional completeness in [8, Definition 2.1]. The structural rules of
weakening and contraction can be interpreted in terms of the counit and comultiplication
of the comonad, in the case where Lcl �! LQ has a left adjoint [8, p.505].

5 Comparison to standard approach

In the standard approach to associating a category to the simply-typed lambda calculus,
due to Lambek and Scott [5, §I.11], one extends the lambda calculus to include product
types, denoted � ⇥ ⌧ , and the objects of the category C),⇥ are the types of the extended
calculus (which includes an empty product 1) and the set C),⇥(�, ⇢) is a set of equivalence
classes of pairs (x : �,M : ⇢) where x is a variable and M is a term with FV(M) ✓ {x}.

Despite appearances, C),⇥ should really be thought of as the category of closed lambda
terms, as the following theorem makes clear. Let C) denote the full subcategory of C),⇥
whose objects are elements of the set �).

14
Theorem 5.1. There is an equivalence of categories

F : C) ! L 6=1
cl

which is the identity F (⌧) = ⌧ on objects, and is defined on morphisms by

F�,⇢ : C)(�, ⇢) �! L 6=1
cl (�, ⇢) , (x : �,M : ⇢) 7! �x .M .

Proof. Note that by definition if (x : �,M : ⇢) 2 C)(�, ⇢) then FV(M) ✓ {x} and so
�x .M is a closed term. To see that F is a functor, consider two morphisms

(x : �,M : ⇢) 2 C)(�, ⇢) , (y : ⇢, N : ⌧) 2 C)(⇢, ⌧) .

Then

F ((y : ⇢, N : ⌧) � (x : �,M : ⇢)) = F (x : �, ((�y⇢ . N)M))

= �x� . ((�y⇢ . N)M)

= �z� .
�
(�y⇢ . N) ((�x� .M)z)

�

= (�y⇢ . N) � (�x� .M)

= F (y : ⇢, N : ⌧) � F (x : �,M : ⇢)

where in the equality marked by ⇤, z is such that z 62 {FV(�y⇢.N) [FV(�x⌧ .M)}. The
proof that F preserves identities is similarly straightforward.

The function F�,⇢ is injective, since if �x� .M⇢ = �y� . N⇢ in L then

M =� ((�x .M)x) =�⌘ ((�y .N)x) =� N [y := x] .

But this is the definition of the equivalence relation on morphisms in C), see [5, p.78].
To see that F�,⇢ is surjective for all �, ⇢, let us suppose otherwise for a contradiction.

Then among all pairs (�, ⇢) for which F�,⇢ fails to be surjective, and among all N 2
L 6=1

cl (�, ⇢) not in the image of F�,⇢, we may choose an N in normal form and of minimal
length. By hypothesis there is no variable x : � and term M : ⇢ with FV(M) ✓ {x} and
N =�⌘ �x .M , and consequently N must either be a variable or a function application. It
cannot be a variable since it is closed, and if it were a function application N = (PQ) then
P : ↵) (�) ⇢) and Q : ↵ for some type ↵. But now P is shorter than N and cannot
be a lambda abstraction (else N would not be normal), which is a contradiction.

5.1 Monads

As above, let Lcl denote the category of closed lambda terms. Throughout this section,
A ✓ Y is finite and so in particular the inclusion ; ✓ A satisfies the conditions of Theorem
4.15 and there is a right adjoint �a to the inclusion I for any ordering a of A:

(5.1) Lcl

I
// LA

�a

oo

.

15

Relation to the Lambek-Scott category

C)(� ⇥ ⇢, ⌧) ⇠= C)(�, ⇢) ⌧)

(z : � ⇥ ⇢,M : ⌧) 7! �x�y⇢ . ((�z .M)hx, yi)

5.2 The structural rules are monadic

The structural rules of the sequent calculus of intuitionistic logic are

b, q : ⌧, q0 : ⌧ ` M(q, q0) : �
(Contraction): ctr

b, q : ⌧ ` M(q, q) : �

b ` M : �(Weakening): weak
b, q : ⌧ ` M : �

b, q1 : ⌧1, q2 : ⌧2 ` M : �
(Exchange): ex

b, q2 : ⌧2, q1 : ⌧1 ` M : �

where b denotes a typing context, which is an ordered list of typed variables. From the
point of view of lambda calculus these rules correspond respectively to the identification
of two free variables (contraction) the introduction of a spurious dependence on a free
variable (weakening) and the exchange of the order of two free variables in the context
which is viewed as an ordered list (exchange). These structural rules can be recognised
in the categorical presentation of lambda calculus given in this paper, using the structure
presented on the category Lcl by the monads Ta discussed above.

Let us first explain the interpretation J�K of typing judgements for open lambda terms
in L. If there is a typing judgement for M : � of the form

a ` M : �

then the denotation is just the term M , but with the context a recorded either by the
monad Ta or by working in the category LA where A is the underlying set of a:

Ja ` M : �K = M 2 Lcl(1, Ta�) = LA(1, �) .

Now, observe that

Jb, q : ⌧, q0 : ⌧ ` M : �K = M 2 Lcl(1, Tb,q,q0�) .

But there is an obvious isomorphism of monads T{q:⌧} ⇠= T{q0:⌧} on Lcl, so that we have,
using the multiplication on the monad T{q:⌧}, the map

Lcl(1, Tb,q,q0�) ⇠= Lcl(1, TbT{q:⌧}T{q0:⌧}�)
⇠= Lcl(1, TbT{q:⌧}T{q:⌧}�)

�! Lcl(1, TbT{q:⌧}�)
⇠= Lcl(1, Tb,q:⌧�) .

The image under this map of Jb, q : ⌧, q0 : ⌧ ` M : �K is precisely the result of applying
the contraction rule to the typing judgement.

Similarly, given
Jb ` M : �K = M 2 Lcl(1, Tb�)

20

Structural rules are monadic

5.2 The structural rules are monadic

The structural rules of the sequent calculus of intuitionistic logic are

b, q : ⌧, q0 : ⌧ ` M(q, q0) : �
(Contraction): ctr

b, q : ⌧ ` M(q, q) : �

b ` M : �(Weakening): weak
b, q : ⌧ ` M : �

b, q1 : ⌧1, q2 : ⌧2 ` M : �
(Exchange): ex

b, q2 : ⌧2, q1 : ⌧1 ` M : �

where b denotes a typing context, which is an ordered list of typed variables. From the
point of view of lambda calculus these rules correspond respectively to the identification
of two free variables (contraction) the introduction of a spurious dependence on a free
variable (weakening) and the exchange of the order of two free variables in the context
which is viewed as an ordered list (exchange). These structural rules can be recognised
in the categorical presentation of lambda calculus given in this paper, using the structure
presented on the category Lcl by the monads Ta discussed above.

Let us first explain the interpretation J�K of typing judgements for open lambda terms
in L. If there is a typing judgement for M : � of the form

a ` M : �

then the denotation is just the term M , but with the context a recorded either by the
monad Ta or by working in the category LA where A is the underlying set of a:

Ja ` M : �K = M 2 Lcl(1, Ta�) = LA(1, �) .

Now, observe that

Jb, q : ⌧, q0 : ⌧ ` M : �K = M 2 Lcl(1, Tb,q,q0�) .

But there is an obvious isomorphism of monads T{q:⌧} ⇠= T{q0:⌧} on Lcl, so that we have,
using the multiplication on the monad T{q:⌧}, the map

Lcl(1, Tb,q,q0�) ⇠= Lcl(1, TbT{q:⌧}T{q0:⌧}�)
⇠= Lcl(1, TbT{q:⌧}T{q:⌧}�)

�! Lcl(1, TbT{q:⌧}�)
⇠= Lcl(1, Tb,q:⌧�) .

The image under this map of Jb, q : ⌧, q0 : ⌧ ` M : �K is precisely the result of applying
the contraction rule to the typing judgement.

Similarly, given
Jb ` M : �K = M 2 Lcl(1, Tb�)

20

5.2 The structural rules are monadic

The structural rules of the sequent calculus of intuitionistic logic are

b, q : ⌧, q0 : ⌧ ` M(q, q0) : �
(Contraction): ctr

b, q : ⌧ ` M(q, q) : �

b ` M : �(Weakening): weak
b, q : ⌧ ` M : �

b, q1 : ⌧1, q2 : ⌧2 ` M : �
(Exchange): ex

b, q2 : ⌧2, q1 : ⌧1 ` M : �

where b denotes a typing context, which is an ordered list of typed variables. From the
point of view of lambda calculus these rules correspond respectively to the identification
of two free variables (contraction) the introduction of a spurious dependence on a free
variable (weakening) and the exchange of the order of two free variables in the context
which is viewed as an ordered list (exchange). These structural rules can be recognised
in the categorical presentation of lambda calculus given in this paper, using the structure
presented on the category Lcl by the monads Ta discussed above.

Let us first explain the interpretation J�K of typing judgements for open lambda terms
in L. If there is a typing judgement for M : � of the form

a ` M : �

then the denotation is just the term M , but with the context a recorded either by the
monad Ta or by working in the category LA where A is the underlying set of a:

Ja ` M : �K = M 2 Lcl(1, Ta�) = LA(1, �) .

Now, observe that

Jb, q : ⌧, q0 : ⌧ ` M : �K = M 2 Lcl(1, Tb,q,q0�) .

But there is an obvious isomorphism of monads T{q:⌧} ⇠= T{q0:⌧} on Lcl, so that we have,
using the multiplication on the monad T{q:⌧}, the map

Lcl(1, Tb,q,q0�) ⇠= Lcl(1, TbT{q:⌧}T{q0:⌧}�)
⇠= Lcl(1, TbT{q:⌧}T{q:⌧}�)

�! Lcl(1, TbT{q:⌧}�)
⇠= Lcl(1, Tb,q:⌧�) .

The image under this map of Jb, q : ⌧, q0 : ⌧ ` M : �K is precisely the result of applying
the contraction rule to the typing judgement.

Similarly, given
Jb ` M : �K = M 2 Lcl(1, Tb�)

20

