Monoidal (bi) categories of critical points

Part I : Review of non-linear dynamics

Why lo we care about critical points of functions? Recall that the differential equation $m \ddot{x}=F(x, \dot{x})$ governing the motion $x=x(t)$ of a particle can be written as a system of $D E_{s}$

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=\frac{1}{m} F(x, y)
\end{aligned}
$$

which centers the analysis of dynamics on the vector field $\left(y, \frac{1}{m} F(x, y)\right)$ in the phase plane. If the force F clepends explicitly on time, then this vector field also depends ontime. A general non-linear dynamical system in n-dimensions is given by a system of $D E_{s}$

$$
\left.\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\dot{x}_{2}=f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\dot{x}_{n}=f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right\} \quad \begin{aligned}
& \quad \begin{array}{l}
\dot{x} \\
\end{array} \quad \begin{array}{l}
f(\underline{x})
\end{array} \\
& \quad \begin{array}{l}
\\
n
\end{array} \mathbb{R}^{n}
\end{aligned}
$$

and central to its analysis is the cowesponding vector field on \mathbb{R}^{n}. Once again, we are interested in one-parameter families of such vector fields, or just infinitesimal perturbations, because those are physically natural. It is typically impossible to solve such a system (see e.g. Strogatz "Nonlinear dynamics and chaos") but nonetheless a good qualitative understanding of the phase portrait is still possible, and this understanding is organised by

- fixed points i.e. $x \in \mathbb{R}^{n}$ such that $f(\underline{x})=\underline{0}$
- closed orbits and limit cycles.

Example Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

$$
\underline{\dot{x}}=\overbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \underline{x}}^{A}
$$

Of course we know solution trajectories to this look like $\underline{x}(t)=\left(A e^{t}, B e^{-t}\right)$ for any $A, B \in \mathbb{R}$ and the phase portrait is

The in formation in the phase portrait is completely captured by the fixed point, and the eigenvector and eigenvalues of A.

For a general n-dimensional system, the behaviour near any isolated fixed point can be analysed in the same way using the Jacobian of F at the fixed point, and studying its eigenvalues and eigenvectors. An important class of dynamical systems are those which are conservative, in the sense that there is a scalar potential $f: U \longrightarrow \mathbb{R}$ with $U \subseteq \mathbb{R}^{n}$,

$$
F=\nabla f
$$

At least if U is simply connected, such a potential exists iff. F is inotational, .e. $\quad \partial F_{i} / \partial x_{j}=\partial F_{j} / \partial x_{i}$ for all $i \neq \hat{\jmath}\left(\right.$ since $\left.H_{d R}^{1}(U)=0\right)$.

Example $f_{1,1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$ gives the system of the previous example. In general we define for $p+q=n$

$$
f_{p, q}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{n}^{2}
$$

which gives a dynamical system in which p directions "repel" solutions from the origin and q directions "attract".

Notice that

$$
\{\text { fixed points of system }\}=\{\text { critical points of } f\}
$$

and to understand (to a fins degree of approximation) the dynamics near an isolated critical point we need to analyse the Hessian of f, ie.

$$
H_{f}:=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq n}
$$

its eigenvectors and eigenvalues. Actually the right way to think of this data is as a symmetric bilinear form on the tangent space $T_{\underline{x}} \cup U$ at a critical point $\underline{x}^{*} \in U$, ie.

$$
\left(T_{\underline{x}^{*}} U,\langle,\rangle\right) \text { where }\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\underline{x}=\underline{x}^{*}}
$$

Such a pair is called a quadratic space.

Let $\underline{x}^{*} \in U$ be a critical point. Then with $\underline{u}=\underline{x}-\underline{x}^{*}$ we get
$\underline{\dot{u}}=\left.H_{f}\right|_{\underline{x^{*}}} \underline{u}+$ quadratic terms in \underline{u} involving higher clen'vatives of f
linear system
To what extent is this linear system actually a good match for the local dynamics of the original non-linear system?

Morse Lemma If $\left.H_{f}\right|_{\underline{x}^{*}}$ is invertible (1.e. the comesponding bilinear form is nondegenerate) then there is a coordinate neighborhood around \underline{x}^{*} where $f=f_{p, q}$ for some $p+q=n$, so

$$
\left.H_{f}\right|_{\underline{x}^{*}}=\left(\begin{array}{cccc}
1 & & & \\
p & & & \\
& & \ddots & \\
q & & \\
& & & -1 \\
& & & \\
& & & -1
\end{array}\right)
$$

In this case there are no higher derivatives, and the local clynamics are completely captured by the quadratic space ($T_{\underline{x_{*}}} U, H_{f}$), which in turn are classified by their signature (p, q) (Sylvester's law of inertia).

Def A critical point \underline{x}^{*} is nondegenerate if $\left.H_{f}\right|_{x^{*}}$ is invertible.

Moreover, every degenerate critical point "bifurcates" into some nonclegenerate points after an arbitrarily small perturbation (e.g. x^{3} has a degenerate critical point at $x^{*}=0$, while $x^{3}-\lambda x$ for $\lambda>0$ has nondegenerate critical points at $\pm \sqrt{\lambda} / \sqrt{3}$) so generically every critical point is nondegenevate. (for a good telling of this story see Arnold's ICM address "Critical points of smooth functions" from 1974).

Upshot: if our dynamical system has a scalar potential, and we are willing to infinitesimally perturb the system, the dynamics near critical points are easily understood, and look like:

However If we consider a time varying potential, and vector field, there may be no perturbation of the family of potentials which "bifurcates" a degenerate singularity at time $t=0$ (e.g. $x^{3}-t x$), and so degenerate singularities are also of physical interest. In such cases the local dynamics involves higher terms in (4.1).

Part II: A category of critical points "critical points should communicate"

Restricting for the moment to nondegenerate critical points, can these be viewed as objects of a category? Equivalently, is there a natural notion of movphism between critical points? Well, clearly it makes sense to talk about symmetries of critical points (egg. $x_{1} \leftrightarrow-x_{2}$ in $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}$), and thus about local symmetries of trajectories near the critical point, but perhaps it is not clear there are any other interesting mouphisms, a prior.

Nonetheless, let us proceed with an analysis of symmetries and see chat turns up.

The correct notion of symmetry of the critical point \underline{x}^{*} of $f: U \rightarrow \mathbb{R}$ is an isometry of the quadratic pair $(x,\langle\rangle):,=\left(T_{\underline{x}^{*}} U, H_{f}\right)$ where

$$
\langle u, v\rangle=u^{\top} H_{f} v
$$

That is, a linear map $T: V \rightarrow V$ (necessarily iso) with $\langle T u, T v\rangle=\langle u, v\rangle$. This suggests that we consider

Def n The category Q of quadratic spaces has

- objects are f.d. vector spaces equipped with a nondeg enerate symmetric bilinear form.
- monhisms $\operatorname{Hom}_{Q}(V, W)=\{T: V \rightarrow W$ linear $\mid\langle T u, T v\rangle=\langle u, v\rangle \forall u, v\}$.

Example $X_{1,0}=\left(\mathbb{R} \frac{\partial}{\partial x_{1}},(1)\right) \longrightarrow\left(\mathbb{R} \frac{\partial}{\partial x_{1}} \oplus \mathbb{R} \frac{\partial}{\partial x_{2}},\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right)=: X_{1,1}$

$$
\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=1 \quad\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}}\right\rangle=1,\left\langle\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{2}}\right\rangle=-1
$$

This monphism comesponds to viewing the "black" dynamics as a subset of the overall phase portrait given below. If we write $X_{p, q}$
 for the quadratic space with signature p, q then there is also a mouphism $X_{0,1} \rightarrow X_{1,1}$.
However it is not the case that $X_{1,1} \cong X_{0,1} \oplus X_{1,0}$, since there is no mouphism $X_{1,1} \rightarrow X_{1,0}$!
$r_{\text {since if }} T\left(\frac{\partial}{\partial x_{2}}\right)=\alpha \frac{\partial}{\partial x_{1}}$ wed need

$$
-1=\left\langle\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{2}}\right\rangle=\left\langle\alpha \frac{\partial}{\partial x_{1}}, \alpha \frac{\partial}{\partial x_{1}}\right\rangle=\alpha^{2}
$$

Lemma Q is a monoidal category under direct sum of v. spaces, with unit $0=X_{0,0}$. (totensor two quadratic spaces we add their potentials, in disjoint variable sets)

Example $X_{1,0} \otimes X_{0,1} \cong X_{1,1}$, and move generally $X_{p, q} \otimes X_{p^{\prime}, q 1} \cong X_{p+p^{\prime}, q+q}$.

Clearly Q is generated as a monoidal category (1.e. under \otimes) by the quadratic spaces $X_{1,0}$ and $X_{0,1}$. Actually Q is a monoidal category with duals and $X_{1,0} V^{V}=X_{0,1}$. So Q is generated, as a monoidal category with duals, by one object. So that's amusing, but this isn't so far a compelling case that there is any sleep content to considering moyphisms of quadratic spaces beyond isometries.

Nonetheless let us persist. Associated to each quadratic space V is an algebra $C(V)$, the Clifford algebra, which is univenal among \mathbb{R}-algebras C (associative and unital) equipped with a linear map $l: V \longrightarrow C$ satisfying

$$
\begin{aligned}
& l(v) l(w)+l(w) l(v)=2\langle v, w\rangle \cdot 1_{c} . \\
& \quad\left(\text { so e.g. } l(v)^{2}=\langle v, v\rangle \cdot 1_{c}\right)
\end{aligned}
$$

This thing exists, is naturally \mathbb{Z}_{2}-graded, $V C C(V)^{1}$ is injective and $C(V)$ is $2^{\operatorname{dim}(V)}$ climensional. Obsewe that if $T: V \rightarrow W$ is a mouphism in Q that we get a unique moyphism of $\left(\mathbb{Z}_{2}\right.$-graded) algebras $C(T)$ making the following diagram commute:

$$
\begin{aligned}
T(v) T(w)+T(w) T(v) & =2\langle T v, T w\rangle \cdot 1 \\
& =2\langle v, w\rangle \cdot 1
\end{aligned}
$$

$$
C(V) \underset{C(T)}{C \rightarrow} C(W)
$$

Lemma $C(-)$ is a strong monoidal functor $Q \longrightarrow A \lg _{\mathbb{R}}^{\mathbb{Z}_{2}}$, ie. there are natural isomorphisms $C(0) \cong \mathbb{R}$ and

$$
C(\underbrace{V \otimes W}) \cong C(V) \otimes_{\mathbb{R}} C(W)
$$

really direct sum!

You know these algebras:
$C\left(X_{0,0}\right) \cong \mathbb{R}$
$C\left(X_{0,1}\right) \cong \mathbb{C} \quad\left(\right.$ spanned by $1, \frac{\partial}{\partial x}$, with $\left.\left(\frac{\partial}{\partial x},\right)^{2}=-1\right)$
$C\left(X_{0,2}\right) \cong \mathbb{H} \quad$ (spanned by $1_{1} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x}, \frac{\partial}{\partial x_{2}}$, the last three of which square to -1 and anticommute)

Remark The functor $C(-)$ is faithful but not full, as eeg. the linear $\operatorname{map} \mathbb{R} \frac{\partial}{\partial x_{1}} \longrightarrow C\left(X_{0,2}\right)$ sending $\frac{\partial}{\partial x_{1}} \mapsto \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{2}}$ lifts to a monphism of \mathbb{Z}_{2}-graded algebras $C\left(X_{0,1}\right) \rightarrow C\left(X_{0,2}\right)$ not in the image of $C(-)$.

OK, so there are some interesting things to say about mophisms between these Clifford algebras. But for the truly deep statement we need to go one level up, to categories of modules:
critical point x^{*} of $f \leadsto$ quadratic spare $\left(T_{\underline{x}^{*}} U, H_{f} l_{\underline{x}^{*}}\right)$ \leadsto Clifford algebra $C\left(T_{\underline{x}^{*}} U, H_{f} /_{\underline{x}^{*}}\right)$
\leadsto Abelian category $\operatorname{Mod}^{\mathbb{T}_{2}} C\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{x^{*}}\right)$.

- quadratic spare $\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$

$$
\begin{aligned}
C(V) & \stackrel{C(T)}{\longrightarrow} C(W) \\
\operatorname{Mod} C(V) & \stackrel{C(T)^{*}}{\stackrel{\pi_{2}}{C(T)_{*}}} \operatorname{Modl}^{\bar{a}_{2}} C(W)
\end{aligned}
$$

Remarkable There are more functor than algebra monphisms! And it is at this level of generality that we find something sufficiently nontrivial to justify talking about monphisms of critical points in the font place.

Theorem (Bott periodicity) There is an equivalence of categories, for all p, q

$$
\operatorname{Mod}^{\mathbb{Z}_{2}} C\left(X_{p, q+8}\right) \cong \operatorname{Mod}^{\mathbb{Z}_{2}} C\left(X_{p, q}\right)
$$

(not induced by an algebra isomorphism)

I do not know an interpretation of this for classical physics, but such periodicity results have been used in the context of $N=2$ supersymmetric conformal field theories and Landau-Ginzburg models, where the content is that theories with these potentials are "the same" (e.g. their bound ar conditions and defects with any other theory are equivalent). (see Vafa-Warner "Catastrophes and the classification of conformal field theories" for the general story of singularities vs. CFT, and Bunner-Honi-Hosomichi-Walcher "Orientifolds of Gepner models" for relevance of periodicity).
So we have (pseudo) functor which are both suitably strongly monoidal

$$
Q \longrightarrow A \lg _{\mathbb{R}}^{\mathbb{Z}_{2}} \longrightarrow \lg _{\mathbb{R}}^{\mathbb{Z}_{2}}
$$

quadratic spaces
\mathbb{Z}_{2}-graded algebras (algebramaps)
\mathbb{Z}_{2}-graded algebras bimodules (fid.) bimodule maps (bicategory)

Def n The "correct" category of nondegenerate critical points is the symmetric monoidal bicategory Crit ${ }^{n d g}$ of Clifford algebras $C(V)$ and \mathbb{Z}_{2}-graded f.d. bimodules.

so for each V, W we have a category

$$
\operatorname{\zeta rit}^{n d g}(V, w)=\operatorname{Bimod}_{f \cdot d}^{\mathbb{Z}_{2}}(C(V), C(w))
$$

a composition functor and a functor of bicategovies

$$
\begin{aligned}
\otimes & : \text { Crit }^{\text {ndg }} \times \text { Crt }^{\text {nog }} \longrightarrow \text { Crit }^{\text {nd }} \\
& (C(v), C(W)) \longmapsto C(v) \otimes C(W) \cong C(V \otimes W)
\end{aligned}
$$

satisfying a longlist of wherence conclitions. (inc. braiding and syllepsis) 1.e. Morita equivalence

Remark In a bicategory β we unite $X \cong Y$ if there are $F: X \rightarrow Y, G: Y \rightarrow X$ such that $F \circ G \cong 1_{y} G \circ F \cong 1_{x}$. Then in Crit ${ }^{\text {nd g, }}$, Bott-periudicity says

$$
X_{0,1}^{\otimes 8} \cong X_{0,0}, \quad\left(X_{1,0}^{\otimes 8} \cong X_{0,0}\right)
$$

In fact Crit ${ }^{\text {nd g }}$ is a monoidal bicategory with duals and $X_{1,0}^{V} \cong X_{0,1}$. Really we should unite Unit $\mathbb{R}_{\mathbb{R}}$, as this monoidal bicategouy with duals exists for any (char. O, let's say) field k, and Unit $_{\mathbb{C}}^{\text {nd g }}$ is generated (using also duals) by an object which is 2 -periodic, ie. $X_{0,1}^{\otimes 2} \cong X_{0,0}$, this is usually called Knörer periodicity.

Part III: Degenerate critical points

As we have already discussed, if wecare about families of vector fields (egg. time-varying potentials), and we do, then to understand the dynamical implications of a critical point it is not enough to only consider nondegenerate critical points. In fact the story of general (still isolated) critical points is much more interesting

Question: is there a symmetric monoidal bicategony with duals $\zeta_{\text {rit }}$ of all isolated critical points and a monoidal functor

$$
\text { Unit }_{\mathbb{R}}^{n d g} \stackrel{\otimes}{\longleftrightarrow} \text { Crit }_{\mathbb{R}} \text { ? }
$$

The obvious problem is that it is not clear what algebra we should attach to a critical point that is degenerate. Somehow this algebra should know not only about the second derivatives of f (which went into the product in the Clifford algebra) but about all derivatives, but how to put this information in? Here is the idea:

- $C\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$ was associative but failed to be commutative, with the failure measured by the Hessian $H_{f}=\left(\partial^{2} f / \partial x_{i} \partial x_{j}\right)_{i, j}$.
- to a critical point \underline{x}^{*} of a potential f we associate a \mathbb{Z}_{2}-graded A>-algebra $C\left(f, \underline{x}^{*}\right)$, a cleformation of the C lifford algebra of the quadratic part of f at \underline{x}^{*}, whose higher products contain the information from the rest of the Taylor expansion of f around x^{*}. (via matrix factorisations, see e.g. M"Constucting Aoo-categories of matrix factorisations" for references).

degenerate critical pt
(eng. $x_{1}^{3}-x_{2}^{2}$)

$$
\begin{aligned}
& \dot{x}_{1}=3 x_{1}^{2} \\
& \dot{x}_{2}=-2 x_{2}
\end{aligned}
$$

nontrivial, via matrix factorisations and
Am-minimal models
(Seidel, Dyckerhoff, Efimor, Sheridan, Tu,...)

There is a bicategoy $\epsilon_{r i} \mathbb{R}_{\mathbb{R}}$ whose objects are these A_{∞}-algebras $C\left(f, \underline{x}^{*}\right)$ and whose 1-mophisms ave A_{∞}-bimodules (this is a restatement of a result in N. Carqueville - D.M. "Adjoint and defects in Landau-Ginzburg models"), and move recently it has been shown that:

Theorem (Carqueville - Montoya '18) Crit \mathbb{R}_{R} is a symmetric monoidal bicategory in which every object is fully dualisable, and therefore determines an extended 2D framed TFT

$$
\text { Ford }_{2,1,0}^{\text {fr }} \longrightarrow \text { Grit }_{\mathbb{R}}
$$

Moreover Crit ${ }_{\mathbb{R}}^{\text {nd }} \subset$ Crit $_{\mathbb{R}}$. notation
$\uparrow_{\text {essentially due to Buchweitz-Eisenbud-Herzog. }}$

Remark Given a monoidal bicategong β and $A \in \beta$ a ightclual to A is an object A^{*} and 1 -mophisms $e v_{A}: A \otimes A^{*} \longrightarrow I$, coev $_{A}: I \longrightarrow A^{*} \otimes A$ together with cusp 2 -isomonphisms (think Zorro moves $\zeta \Rightarrow 1, ~ \Omega \Rightarrow 1$ but for 2-dimensionalregions) If β is symmetric monoidal, A is fully dualisable if it has a dual object such that both eva, coev A_{A} have both left and right adjoints.

Remark We are eliding the difference between germs of smooth (holomonphic) functions, ie. convergent powersevies, and polynomials (the clef ${ }^{N}$ s of the bicategory $\mathcal{L} \mathcal{G}_{\mathbb{R}}$ is algebraic and only allows polynomial potentials). This is harmless because of finite determinacy (see \{工.2.2. of Greuel-Lossen-Shustin "Introduction to singularities and deformations").

