Stratifications and complexity in linear logic

Daniel Murfet

Curry-Howard correspondence

logic	programming	categories		
formula	type	objects		
sequent	input/output spec	-		
proof	program	morphisms		
cut-elimination	execution	-		
contraction	copying	coproducts		
stratification	complexity	$\boldsymbol{?}$		
this talk				

Outline

1. Turing machines
2. Sequent calculus of linear logic
3. Programs (Turing machines) as proofs
4. Stratification vs. complexity

Turing machines

A configuration is $\left(w_{L}, w_{R}, a\right) \in\{0,1\}^{*} \times\{0,1\}^{*} \times\{1, \ldots, q\}$

binary integer	binary integer	q-boolean

Shown configuration: $(1011 \cdots, 101 \cdots, 3)$

Turing machines

A Turing machine T is a function

$$
\begin{aligned}
& \delta_{T}:\{0,1\} \times\{1, \ldots, q\} \longrightarrow\{0,1\} \times\{1, \ldots, q\} \times\{L, R\} \\
& \text { read symbol current state } \text { write } \text { new state move to }
\end{aligned}
$$

$$
\{0,1\}^{*} \times\{0,1\}^{*} \times\{1, \ldots, q\} \longrightarrow\{0,1\}^{*} \times\{0,1\}^{*} \times\{1, \ldots, q\}
$$

Linear logic

- Discovered by Girard in the 1980s, linear logic is a substructural logic with contraction and weakening available only for formulas marked with an "exponential" connective, written "!".
- The usual connectives of logic (e.g. conjunction, implication) are decomposed into! together with a linearised version of that connective (called resp. tensor, linear implication).
- Under Curry-Howard, linear logic corresponds to a programming language with "resource management" and symmetric monoidal categories equipped with a special kind of comonad.
- We will use second-order intuitionistic linear logic with additives (as expressive as polymorphic lambda calculus).

Linear logic

variables: $\alpha, \beta, \gamma, \ldots$
formulas: $!F, F \otimes F^{\prime}, F \multimap F^{\prime}, F \& F^{\prime}, \forall \alpha F$, constants

$$
\text { int }=\forall \alpha!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)
$$

bint $=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha))$

Deduction rules for linear logic

$$
\begin{aligned}
& \text { (Axiom): } \overline{A \vdash A} \quad \text { (Cut): } \frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B} \text { cut (Exchange): } \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C} \\
& (\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L \quad(\text { Right } \otimes): \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R \\
& (\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R \quad(\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L \\
& \text { (Promotion): } \frac{!\Gamma \vdash A}{\Gamma \vdash!A} \text { prom (Dereliction): } \frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \text { der (Weakening): } \frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \text { weak } \\
& \text { (Contraction): } \frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \operatorname{ctr} \quad \frac{\Gamma, A[B / x] \vdash C}{\Gamma, \forall x \cdot A \vdash C} \forall L \quad \frac{\Gamma \vdash A}{\Gamma \vdash \forall x \cdot A} \forall R
\end{aligned}
$$

a sequent is $\Gamma \vdash A$ for a sequence of formulae Γ, where \vdash is the "turnstile"

Binary integers

lint $=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha))$
$S \in\{0,1\}^{*} \longmapsto$ proof t_{S} of \vdash bent

$$
t_{001}
$$

Aside on linear logic

Binary integers

lint $=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha))$
$S \in\{0,1\}^{*} \longmapsto$ proof t_{S} of \vdash bent

$$
t_{001}
$$

Binary integers

$$
\text { bint }=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha))
$$

$S \in\{0,1\}^{*} \longmapsto$ proof t_{S} of \vdash bint

Stratified Linear logic

variables: $\alpha, \beta, \gamma, \ldots$

formulas: $!F, \S F, F \otimes F, F \multimap F, F \& F, \forall \alpha F$, constants

$$
\boldsymbol{b i n t}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha))
$$

$$
\mathbf{i n t}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)
$$

Deduction rules for stratified linear logic

same rules as before... e.g.

A proof in the stratified sequent calculus is a proof in the usual sense, together with a stratification, which is an assignment of integers to all occurrences of formulas, such that conclusions are assigned 0 and the assignment changes across deduction rules are as shown in blue.

$$
\begin{aligned}
& (\text { Right } \multimap): \frac{\mathrm{i}^{\mathrm{i}}, \stackrel{\mathrm{i}}{\mathrm{i}}}{\Gamma \vdash A \nrightarrow B} \underset{\mathrm{i}}{\circ} \multimap R
\end{aligned}
$$

Binary integers

lint $=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha))$
$S \in\{0,1\}^{*} \longmapsto$ proof t_{S} of \vdash bent

$$
t_{001}
$$

Binary integers (stratified)

$\boldsymbol{b i n t}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha))$
$S \in\{0,1\}^{*} \longmapsto$ proof t_{S}^{\S} of \vdash bint §

Binary integers (stratified)

$\operatorname{bint}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap(!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha))$
$S \in\{0,1\}^{*} \longmapsto$ proof t_{S}^{\S} of \vdash bint §

Integers

$$
\text { int }=\forall \alpha!(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)
$$

$\forall n \in \mathbb{N}$ there is a proof \underline{n} of \vdash int

Addition is a proof of int, int \vdash int

Multiplication is a proof of int, int \vdash int

A polynomial of degree k is a proof of int \vdash int

Integers (stratified)

$$
\operatorname{int}^{\S}=\forall \alpha!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)
$$

$\forall n \in \mathbb{N}$ there is a proof \underline{n}^{\S} of \vdash int § (note that ! $(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)$ is not provable)

Addition is a proof of $\mathbf{i n t}^{\S}$ int $^{\S} \vdash \mathbf{i n t}^{\S}$

Multiplication is a proof of int §, int $^{\S} \vdash \S$ int §

A polynomial of degree k is a proof of int $^{\S} \vdash \S^{k}$ int §

Turing machines as proofs

Tur $=\boldsymbol{\operatorname { b i n t }} \otimes \mathbf{b i n t} \otimes \mathbf{b o o l}_{q}$

Configuration $\left(w_{L}, w_{R}, q\right)$ of Turing machine \longmapsto proof of \vdash Tur Instructions for a Turing machine $T \longmapsto$ proof of \vdash Tur \multimap Tur

Running a Turing machine

(Identify a Turing machine T with a proof of \vdash Tur \multimap Tur)

T	prepare initial state	
\vdash Tur \multimap Tur	bint \vdash Tur	Tur \vdash Tur
$\vdash!($ Tur \multimap Tur $)$	bint, Tur \multimap Tur \vdash Tur	
bint, !(Tur \multimap Tur) $\multimap($ Tur \multimap Tur) \vdash Tur		
bint, int \vdash Tur		
input binary integer number of steps n to run	\uparrow config of T	machine after

Running a Turing machine (stratified)

$$
\operatorname{Tur}^{\S}=\operatorname{bint}^{\S} \otimes \operatorname{bint}^{\S} \otimes \text { bool }_{q}^{\S}
$$

prepare initial state

Theorem (Girard)

A function $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is "polytime" if and only if it can be typed as a proof
π of bint \vdash bint which admits a stratification.

$$
\pi^{\S}
$$

$$
\begin{array}{cc}
\pi \\
\text { stratifies } & \vdots
\end{array}
$$

bint $^{\S} \vdash \S^{k+2}$ bint §
bint \vdash bint

Theorem (Girard)

> A function $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is "polytime" if and only if it can be typed as a proof π of bint \vdash bint which admits a stratification.
$f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ computed by a Turing machine T with polyclock P

Theorem (Girard)

> A function $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is "polytime" if and only if it can be typed as a proof π of bint \vdash bint which admits a stratification.
$f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ computed by a Turing machine T with polyclock P

Upshot: π computes f

Theorem (Girard)

> A function $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ is "polytime"
> if and only if it can be typed as a proof π of bint \vdash bint which admits a stratification.
$f:\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$ computed by a Turing machine T with polyclock P
copy
$\boldsymbol{b i n t}^{\S} \vdash \S\left(\boldsymbol{b i n t}^{\S} \otimes \boldsymbol{b i n t}^{\S}\right)$

P
$\mathbf{i n t}^{\S} \vdash \S^{k} \mathbf{i n t}^{\S}$
\S bint §, int $^{\S} \vdash \S \mathbf{T u r}^{\S}$

π^{\S}	π
\vdots	stratifies
bint $^{\S} \vdash \S^{k+2}$ bint §	
bint \vdash bint	

Summary

- There is a notion of stratification for proofs
- Turing machines can be encoded into linear logic
- If a Turing machine is polytime, the stratification of the clock polynomial gives a stratification of the corresponding proof in linear logic.
- Theorem: a function of binary integers is polytime iff. it admits a stratification.

References

J.Y. Girard, "Light linear logic", Information and Computation 14, 1995.
P. Baillot, D. Mazza "Linear logic by levels and bounded time complexity", Theoretical Computer Science 411.2, 2010.
P. Boudes, D. Mazza, and L. Tortora de Falco, An abstract approach to stratification in linear logic, Information and Computation 241, 2015.
D. Murfet, Logic and linear algebra: an introduction, arXiv: 1407.2650.

Slides of this lecture available at therisingsea.org

