Spectral sequences for vertex algebras
The aim of this talk is to introduce the relevant material on spectral sequences for Ch .15 of Frenkel \& Ben- Lvi's book on vertex algeloras, that is, for the quantum Drinfeld-Sokolor reduction.

The situation is that there is a bicomplex $C=C_{k}^{\dot{k}}(9)$ o with horizontal differential $\partial_{1}=\chi$ (from the Drinfeld-Sokolov character) and vertical differential $\partial_{2}=d_{s t}$ (semi-infinite cohomology of $12+((t))$), which anticommute $\partial_{1} \partial_{2}+\partial_{2} \partial_{1}=0$. That is to say,

$$
\begin{align*}
C=\bigoplus_{i, j \in \mathbb{Z}} C^{i j}, & \partial_{1}: C^{j} \longrightarrow C^{i+1, j} \tag{1.1}\\
& \partial_{2}: C^{i j} \longrightarrow C^{i, j+1}
\end{align*}
$$

The aim is to put a vertex algebra structure on the cohomology of the total complex $\left(C_{1} \partial_{1}+\partial_{2}\right)$. This vertex algebra is the W-algebra $W_{k}(g)$. To compute this whomology we use the standard spectral sequence for bicomplexes

$$
\underbrace{H^{j}\left(H^{i}\left(C, \partial_{1}\right), \partial_{2}\right)}_{\begin{array}{c}
\text { pagetwo of the ss has } \tag{1.2}\\
\text { these entries + differentials }
\end{array}} \Longrightarrow \underbrace{H^{i+j}(C, \partial)}_{\begin{array}{c}
\text { page o of the Is } \\
\text { computes the filler } \\
\text { quotient of this }
\end{array}}
$$

Note The \mathbb{Z}-grading on the total complex is the obvious one

$$
C^{n}:=\bigoplus_{i+j=n} C^{i j} \quad n=\text { "total degree" } \quad(i, j)=\text { "bidegree" }
$$

In this particular case there is an is omouphism of complexes

$$
\begin{equation*}
\left(C, \partial_{1}\right) \cong(V, 0) \otimes\left(\widetilde{C}, \tilde{\partial_{1}}\right) \tag{2.1}
\end{equation*}
$$

(where $V=V\left(a_{-}\right), \widetilde{C}=\widetilde{C}_{k}(g)_{0}$ in the book) and a filtration of \widetilde{C} by subcomplexes $\left\{F^{P} \widetilde{C}\right\}_{p \leq 0}$, with the property that de creasing filtration
(1) $H^{\cdot}\left(F^{p} \widetilde{C} / F^{p+1} \widetilde{C}\right) \cong \begin{cases}\mathbb{C} \text { in bidegree }(0,0) & p=0 \\ 0 & p \neq 0\end{cases}$

Note: $F^{P} \widetilde{C}$ is spanned by monomials of length $\leqslant-p$ applied to $|0\rangle$. We use the grading by total degree on \widetilde{C}, so $H^{\circ}\left(F^{\circ} \widetilde{C}\right)$ means elements of total $\operatorname{deg} O$ in the kernel, mod boundaries.

The next step is to deduce:
(2) $H^{0}\left(\tilde{c}, \tilde{\partial}_{1}\right) \cong$ (C using the spectral sequence associated to a filtered complex and (1).

Note Again, $\widetilde{C}^{0} \subseteq C^{0}=\oplus_{i+j=0} C^{i j}$ and the generator of the above cohomology lives in $C^{\infty 0}$. It's important that $C^{i j}=0$ for $i<0$ and $i+j<0$, wee. the total degree is always $\geqslant 0$

A diagram of the nonzew bidegreen of C is therefore

We are told that $V \subseteq \operatorname{Ker}\left(\partial_{1}\right)$ and $V \subseteq C^{0}$, so while element of V may have bidegree $\neq(0,0)$ they all have total degree zero.

Next, since (2.1) is an isomorphism of complexes identifying bidegrees on the left and right (this is clear form the construction),
(3) $H^{*}\left(C, \partial_{1}\right)=V$ using (2) and (2.1), meaning that

$$
\begin{equation*}
\left(H^{\circ}\left(C^{0} \xrightarrow{\partial_{1}} C^{\prime} \xrightarrow{\partial_{1}} C^{2} \xrightarrow{\partial_{1}} \cdots\right)=\underset{\text { total degree zero. }}{V} \quad 0 \quad 0 \quad \cdots\right. \tag{3.2}
\end{equation*}
$$

total degree zero.
(4) The spectral sequence has the left hand side as its E_{2} page. The confusing thing is that H^{c} there refer to the (horizontal) i-grading only, (resp H^{\prime}), compared to the H° above in (3) which is total degree.

In any cove, the calculation of (3.2) shows that

$$
\begin{aligned}
H^{i}\left(C, \partial_{1}\right) & =\bigoplus_{j} H^{i}\left(\cdots \rightarrow C^{i-1, j} \longrightarrow C^{\partial_{1}} \xrightarrow{\partial_{1}} C^{i, j+1} \longrightarrow \cdots\right) \\
& =\operatorname{Ker}\left(C^{i,-i} \xrightarrow{\partial_{1}} C^{i+1,-i}\right) \\
& \left.=V^{i,-i} \quad \text { (1.e. the bidegree }(i,-i) \text { piece of } V \subseteq C\right) .
\end{aligned}
$$

But then clearly the induced map by ∂_{2} is zee, so the E_{2} page is identically zee, except along the diagonal $i+j=0$ where it is $V_{i,-i}$.
E_{2}
$\begin{aligned}-V_{1,-1} & \therefore d_{2} \quad 0 \\ & \cdots V_{2,-2}\end{aligned}$
. $V_{3,-3}$
(4.1)

Differentials on p. 2 of a spectral sequence go accoss 2 and down 1, as shown, so the spectral sequence has $d_{2}=0$, 1.e. it clegenerates on p. 2 . We conclude that $H^{n}(c, \partial)=0$ unless $n=0$, and

$$
\begin{equation*}
W_{k}(g):=H^{0}(C, \partial) \cong V_{1,-1} \oplus V_{2,-2} \oplus \cdots=V \tag{4.2}
\end{equation*}
$$

The isomouphism $(*)$ however is nontrivial. What the spectral sequence tells $u s$ is that the canonical filtration of $H^{\circ}(C, \partial)$ given by the images F^{P} of the canonical maps

$$
\begin{align*}
& H^{0}\left(\bigoplus_{r \geqslant p} C^{-r, r}, \partial\right) \xrightarrow{\text { can }} H^{0}(C, \partial) \tag{4.3}\\
& \sum_{0 p}
\end{align*}
$$

Has the property that (a) it is a decreasing filtration $F^{P} \geq F^{p+1}$ and

$$
F^{p} / F^{p+1} \cong E_{\infty}^{p,-p} \cong E_{2}^{p,-p}=V_{p,-p}
$$

Introcluction to spectral sequences

Now we give a sketch of how one constructs the spectral sequences used in the above (recall: we used the SS of a filtered complex, and the SS of a bicomplex, which as it turns out is a special case of the fist SS). ourreference is
[therisingsea.org/notes/Spectral Sequences. pdf]

Let A be an abelian category and $\left\{F^{P} C\right\}_{p \in \mathbb{Z}}$ a decreasing (1.e. $F^{P} C \geq F^{P^{+1} C}$) chain of subcomplexes of a cochain complex C in A. The inclusions $L_{p}: F^{p} C \rightarrow C$ induce mouphisms

$$
H^{*}\left(c_{p}\right): H^{*}\left(F^{p} C\right) \longrightarrow H^{*}(C)
$$

and we define

$$
E^{n}:=H^{n} C, \quad F^{p} E^{n}:=\operatorname{Im}\left(H^{n}\left(C_{p}\right)\right) \subseteq E^{n}
$$

Then clearly this gives a filtration of E^{n} by subobjects $\left\{F^{P} E^{n}\right\}_{p \in \mathbb{Z}}$ and the question answered by the spectral sequence associated to the filtration $\left\{F^{P} C\right\}_{p}$ is the following:

Q Can we "compute" the filter quotients $F^{P} E n / F^{p+1} E^{n}$ from the filter quotients $F^{P} C / F^{p+1} C$?

With mild finiteness conditions on C, the answer is Yes, but the nature of the "computation" is quite elaborate.

Outline

- Define $A_{r}^{p q}, \ddot{A}_{r}^{p q}$
- Define $Z_{r}^{p q}, B_{r}^{p q}, E_{r}^{p q}$
- Define dr ${ }^{p q}$
- Define $Z_{r+1}\left(E_{r}^{p q}\right), B_{r+1}\left(E_{r}^{p q}\right)$
- Define $Z_{k}\left(E_{r}^{p q}\right), B_{k}\left(E_{r}^{p q}\right) \quad$ (inc $\left.k=\infty\right)$
- Define E_{∞} and show $E_{\infty}^{p q} \cong \operatorname{grp}\left(E^{p+q}\right)$
- Discuss E。
- Define biregulacity, fist quadrant filtration
- Degeneration on pager

