From critical points to extended topological field theories
Daniel Murfet

$$
7 / 412020
$$

the risingsea.org

Outline
I. From dynamical systems to monoidal bicategovies
II. Extended topological quantum field theories

Dynamical systems

A general non-linear dynamical system is given by a system of $D E s$

$$
\left.\begin{array}{l}
\dot{x}_{1}=F_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\dot{x}_{2}=F_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\dot{x}_{n}=F_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right\} \quad \begin{aligned}
& \dot{\dot{x}}=F(\underline{x}) \\
& \vec{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}
\end{aligned}
$$

An important class of dynamical systems are those which are consewative, in the sense that there is a scalar potential $f: U \longrightarrow \mathbb{R}$ with $U \leq \mathbb{R}^{n}$,

$$
\begin{aligned}
& F==\nabla f \\
&\{\text { fixed points of system }\}=\{\text { critical points of } f\} \\
& \nabla f(\underline{x})=0
\end{aligned}
$$

Example Consider the system

$$
\begin{array}{ll}
\dot{x}_{1}=x_{1} & \dot{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \underline{x} \\
\dot{x}_{2}=-x_{2}
\end{array}
$$

Solution trajectories look like $\underline{x}(t)=\left(A e^{t}, B e^{-t}\right)$ for any $A, B \in \mathbb{R}$.

Phase portrait

The scalar potential governing this system is

$$
\begin{aligned}
& f=\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2} \\
& \nabla f=\left(x_{1}, x_{2}\right) \\
& H_{f}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Dynamical systems
To understand the dynamics near an isolated critical point of f we need to analyse the Hessian of f, ie.

$$
H_{f}:=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i \leq i, j \leq n}
$$

its eigenvectors and eigenvalues. Actually the right way to think of this data is as a symmetric bilinear form on the tangent space $T_{\underline{\underline{x}}}{ }^{*} U$ at a critical point $\underline{x}^{*} \in U$, ie.

$$
\left(T_{\underline{x}^{*}} U,\langle,\rangle\right) \text { where }\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\underline{x}=\underline{x}^{*}}
$$

with $\underline{u}=\underline{x}-\underline{x}^{*}$,
$\underline{\dot{u}}=\left.H_{f}\right|_{\underline{x}^{*}} \underline{u}+$ quadratic terms in \underline{u} involving higher clenivatives of f

Morse Lemma If $\left.H_{f}\right|_{\underline{x}}$ is invertible (1.e .the comesponding bilinear form is nondegenerate) for an isolated critical pt. \underline{x}^{*} then there is a coordinate neighborhood around \underline{x}^{*} where

$$
f=x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{n}^{2}
$$

so that in those wordinates

$$
\left.\left.H\right|_{f}\right|_{\underline{x}^{*}}=\left(\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & \ddots & \\
& & -1 & \\
& & & \ddots \\
\hline & & -1 \\
& & -1
\end{array}\right)
$$

Def ${ }^{n}$ A critical point \underline{x}^{*} is nondegenerate if $\left.H_{f}\right|_{x^{*}}$ is invertible.
\therefore locally $\quad \underline{\dot{u}}=\left.H_{f}\right|_{\underline{x}^{*}} \underline{u} \quad \underline{u}=\underline{x}-\underline{x}^{*}$

Quadratic spaces

Def The category Q of quadratic spaces over \mathbb{R} has

- objects are $f . d$. vector spaces equipped with a nondegenerate symmetric bilinear form.
- monphisms $Q(V, W)=\{T: V \rightarrow W$ linear $\mid\langle T u, T v\rangle=\langle u, v\rangle \forall u, v\}$.

Example - $X_{p, q}:=\left(\mathbb{R}^{\oplus p} \oplus \mathbb{R}^{\oplus q},\left(\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right)\right)$ is a representative set of objects (Sylvester's law of inertia)

- $X_{1,0}=(\mathbb{R},(1)) \xrightarrow{\binom{1}{0}}\left(\mathbb{R} \oplus \mathbb{R},\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right)=X_{1,1}$ is a morphism.
- $\left(T_{\underline{x}^{*}} U,\langle 1\rangle\right)\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\underline{x}=\underline{x}^{*}}$ at a nondeg. critical pt. \underline{x}^{*}.

Lemma Q is a symmetric monoidal category under direct sum of v. spaces.

Clifford algebras

Associated to each quadratic space V is an algebra $C(V)$, the Clifford algebra which is univenal among \mathbb{R}-algebras C (associative and unital) equipped with a linear map $l: V \longrightarrow C$ satisfying

$$
\begin{aligned}
& l(v) u(w)+u(w) u(v)=2\langle v, w\rangle \cdot 1_{c} . \\
& \left(\text { so e.g. } l(v)^{2}=\langle v, v\rangle \cdot 1_{c}\right)
\end{aligned}
$$

This thing exists, is naturally \mathbb{Z}_{2}-graded, $V \hookrightarrow C(V)^{1}$ is injective and $C(v)$ is $2^{\operatorname{dim}(v)}$ dimensional.
Examples $C\left(X_{0,0}\right) \cong \mathbb{R}, \quad C\left(X_{0,1}\right) \cong \mathbb{C}, \quad C\left(X_{0,2}\right) \cong \mathbb{H}$

Lemma $C(-)$ is a strong monoidal functor $\left.Q \longrightarrow A\right|_{\mathbb{R}} ^{\mathbb{Z}_{2}}$, Ie. there are natural isomonphisms $C(0) \cong \mathbb{R}$ and

$$
C(\underbrace{V \otimes W}_{\text {really direct sum! }}) \cong C(V) \otimes_{\mathbb{R}} C(W)
$$

critical point x^{*} of $f \leadsto$ quadratic spare $\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$
\cdots Clifford algebra $C\left(T_{\underline{x}^{*}} U, H_{f} l_{\underline{x^{*}}}\right)$
\leadsto Abelian category $\mathrm{Mod}^{\mathbb{T}_{2}} C\left(T_{x^{*}}+U, H_{f} I_{x^{*}}\right)$. finite-dimensional \mathbb{Z}_{2}-graded modules

Def ${ }^{n}$ Nondegenerate isolated critical points form a bicategong Crit $\mathbb{R}_{\mathbb{R}}^{\text {dg }}$

- objects quadratic spaces V
- $\underline{\text { 1-mophisms }} V \longrightarrow W$ are \mathbb{Z}_{2}-graded finite-climensional $c(w)-c(v)$-bimodules.
- 2-morphisms are bimodule homomorphisms.

Proposition Crit $\mathbb{R}^{n d g}$ is a symmetric monoidal bicategory in which every object is fully clualisable. (duals for objects and 1-mouphisms)

Example $\cdot \operatorname{Gr}^{-} t_{\mathbb{R}}^{n d g}(0, V)=\operatorname{Mod}^{\boldsymbol{D}_{2}} C(V) . \quad\left(0=X_{0,0}=\mathbb{I}\right)$

- $X_{0,1}^{\otimes 8} \cong \mathbb{1}$ (Bott periodicity)

Def n A bicategory β consists of

- a class of objects a, b, c, \ldots
- for each pair a, b of objects a category $\beta(a, b)$, objects of which are called 1-monphisms and le noted $X: a \longrightarrow b$, and mophisms of which ave called 2-monphisms.
- a composition functor for objects a, b, c

$$
\begin{aligned}
& \beta(b, c) \times \beta(a, b) \longrightarrow \beta(a, c) . \\
& (y: b \rightarrow c, X: a \rightarrow b) \longmapsto(Y 0 X: a \longrightarrow c)
\end{aligned}
$$

- unit 1-morphisms $1_{a}: a \rightarrow a$ for each object a
- 2-isomorphisms "unitors", "associators"
satisfying some coherence conditions (same as for monoidal categories)

Defn Let β, ζ be bicategories. A 2-functor $F: \beta \rightarrow \zeta$ is

- a function on objects $a \longmapsto F(a)$
- functor $\beta(a, b) \longrightarrow C(F a, F b)$
- natural isomorphisms

$$
\begin{aligned}
& F(y) \circ F(x) \cong F(y \circ x) \\
& 1_{F a} \cong F\left(1_{a}\right)
\end{aligned}
$$

making some coherence diagrams commute.
Example If β is a bicategon, $\beta(a,-): \beta \longrightarrow$ Cat is a 2 -functor, where Cat denotes small categories, functors and natural transformations.

Defn Let β, ζ be bicategonies, $F, G: \beta \rightarrow \zeta$ 2-functors. A pseudonatural transformation \quad :F $\longrightarrow C$ is

- a family of 1-mophisms $\left\{\rho_{a}: F a \longrightarrow G a\right\}_{a \in o b}(\beta)$
- foreach $X: a \longrightarrow b$ in β a 2 -isomouphism

$$
\begin{aligned}
& F_{a} \xrightarrow{F X} F b \\
& \left.\left.\varphi_{a}\right|_{G_{a}} \stackrel{\varphi_{x}}{a x}\right|_{a b} \varphi_{b} \quad G X \cdot \varphi_{a} \stackrel{\varphi_{x}}{=} \varphi_{b} \circ F X
\end{aligned}
$$

subject to wherence conditions.
Defn (notation as above) Given pseudonatural transformations $\varphi, \psi: F \longrightarrow G$ a modification $g: \mathcal{I} \rightarrow \psi$ is a fumily of 2-morphisms $\left\{q_{a}: \varphi_{a} \longrightarrow \psi_{a}\right\}_{a}$ satisfying a condition (omitted).

Lemma Let β, ζ be bicategovies, with β small. Then there is a bicategon

$$
\text { Bicat }(\beta, C)\left\{\begin{array}{l}
\frac{\text { objects } 2-\text { functors }}{1-\text {-morphisms psecudonatural transformations }} \\
\underline{2-\text {-mophisms modifications }}
\end{array}\right.
$$

Monoidal bicategory (rough vesion) is a bicategory β with

- tensor for objects $(a, b) \longmapsto a \square b$
- tensorfor 1 - and 2 -monphisms, via a functor

$$
\beta\left(a_{1}, a_{2}\right) \times \beta\left(b_{1}, b_{2}\right) \longrightarrow \beta\left(a_{1} \square b_{1}, a_{2} \square b_{2}\right)
$$

- associators, unitors, coherence.

Def A monoidal bicategony is a bicategory β equipped with

- a 2-functor $\square: \beta \times \beta \longrightarrow \beta$
- an adjoint equivalence α in $\operatorname{Bicat}((\beta \times \beta) \times \beta, \beta)$ between the two legs of the following diagram (the associator)

$$
(\beta \times \beta) \times \beta \xrightarrow{\text { rebracket }} \beta \times(\beta \times \beta)
$$

1.e. α is a pseadonatural transformation.

- an invertible modification π, the pentagunator

+ units, unitors and lots of coherence!

Def n A symmetric monoidal bicategong is a monoidal bicategory β with

- an adjoint equivalence β in $\operatorname{Bicat}(\beta \times \beta, \beta)$ between the legs of

- an invertible modification called syllepsis

- invertible modifications relating β and the associator + wherence

Examples (1) (Gat, x) categories, functors, natural transformations, Cartesian product
(2) $\left(\underline{A l g}_{k}, \otimes_{k}\right)$ algebras, bimodules, bimodule maps, tensor
(3) $\left(\right.$ Crit $\left._{\mathbb{R}}^{\text {nd }}, \oplus\right)$ quadratic spaces, Clifford bimodules and maps, direct sum.

References (not a historical survey!)

- Chris Schommer-Pries' PhD thesis
- Nick Gurski "Loop spaces, and coherence for monoidal and braided monoidal bicategovies".
- P. Pstragowski "On dualizable objects in monoidal bicategonies, framed surfaces and the Cobordism Hypothesis" PhD thesis.

Duals in symmetric monoidal bicategories
Let β be a monoidal bicategony. A night dual to anobject a is a^{*} and 1-morphisms $\mathrm{ev}_{a}: a \square a^{*} \longrightarrow \mathbb{I}, \operatorname{coev}_{a}: \mathbb{I} \longrightarrow a^{*} \square a$ and cusp isomorphisms in $\beta(a, a)$

$$
\begin{aligned}
& \Downarrow \\
& \text { Ia } \\
& a^{*} \xlongequal{\rightrightarrows} \mathbb{1} \square a^{*} \quad\left(a^{*} \square a\right) \square a^{*} \cong a^{*} \square\left(a \square a^{*}\right) \xrightarrow[1_{a^{+}}]{\text {1ヵeva }} a^{*} \square \mathbb{1} \longrightarrow a^{*}
\end{aligned}
$$

Lemma In a symmetric monoidal category every right dual is also a left dual.

Duals in symmetric monoidal bicategories
Def n Let β be a symmetric monoidal bicategon. An object a is fully dualisable if it has a dual object such that both $e v_{a}$ and $\omega_{a} v_{a}$ have both left and right adjoints.

- Every object in C rit ${\underset{\mathbb{R}}{ }}_{\text {nd }}^{\text {is fully clualisable }}(V, B)^{*}:=(V,-B)$

Theorem (Pstragowski) [2D cobordism hypothesis] There is an equivalence

$$
\operatorname{Bicat}_{\text {sym.mon }}\left(\text { Bard }_{2}^{f r}, \beta\right) \cong K\left(\beta_{\hat{\imath}}^{f d}\right)
$$

fully dualisable objects
framed bordism bicategory
core, ie keep equivalences and 2-isomouphisms

Phase portrait

Phase portrait
$f=\frac{1}{3} x_{1}^{3}-\frac{1}{2} x_{2}^{2}$

$\dot{x}_{1}=x_{1}^{2}$
$\dot{x}_{2}=-x_{2}$

Around an isolated (degenerate) critical point \underline{x}^{*}

$$
\underbrace{\dot{\underline{u}}=\left.H_{f}\right|_{\underline{x}^{*}} \frac{u}{}}_{\text {linear system }}+\begin{gathered}
\text { quadratic terms in } \underline{u} \\
\text { involving higher derivatives } \\
\text { of the potential } f .
\end{gathered}
$$

where $\underline{u}=\underline{x}-\underline{x}^{*}$, the dynamics do depend on the higher clevivatives of f.

Phase portrait

$$
f=\frac{1}{3} x_{1}^{3}-\frac{1}{2} x_{2}^{2}
$$

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}^{2} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

$\underline{\dot{u}}=\left.H_{f}\right|_{\underline{x^{*}}} \underline{u}+$ quadratic terms in \underline{u} involving higher derivatives of the potential f.

Question What algebra to associate to $\left(f, \underline{x}^{*}\right)$?

- reduce to $C\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$ in the nondeg. case
- form a symmetric monoidal bicalegory

Phase portrait

$$
f=\frac{1}{3} x_{1}^{3}-\frac{1}{2} x_{2}^{2}
$$

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}^{2} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

Question What algebra to associate to $\left(f, \underline{x}^{*}\right)$?

- reduce to $C\left(T_{\underline{x}^{*}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$ in the nondeg. case
- form a symmetric monoidal bicalegory

Phase portrait

$$
f=\frac{1}{3} x_{1}^{3}-\frac{1}{2} x_{2}^{2}
$$

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}^{2} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

Question What algebra to associate to $\left(f, \underline{x}^{*}\right)$?

- reduce to $C\left(T_{\underline{x}^{+}} U,\left.H_{f}\right|_{\underline{x}^{*}}\right)$ in the nondeg. case
- form a symmetric monoidal bicalegory

Matrix factorisations
Let X be a \mathbb{Z}_{2}-graded fid. module over the Clifford algebra

$$
C\left(X_{p, q}\right): \text { generated by } \gamma_{1}, \ldots, \gamma_{p+q} \text { subject to }
$$

$$
\begin{aligned}
& \gamma_{1}^{2}=\cdots=\gamma_{p}^{2}=1 \\
& \gamma_{p+1}^{2}=\cdots=\gamma_{p+q}^{2}=-1 \\
& \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=0 \quad i \neq j
\end{aligned}
$$

Matrix factorisations
Let X be a \mathbb{Z}_{2}-graded fid. module over the Clifford algebra
$C\left(X_{p, q}\right)$: generated by $\gamma_{1}, \ldots, \gamma_{p+q}$ subject to

$$
\begin{aligned}
& \gamma_{1}^{2}=\cdots=\gamma_{p}^{2}=1 \\
& \gamma_{p+1}^{2}=\cdots=\gamma_{p+q}^{2}=-1 \\
& \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=0 \quad i \neq j
\end{aligned}
$$

Set $A=\mathbb{R}\left[x_{1}, \ldots, x_{p+q}\right]$, and

$$
X \otimes_{\mathbb{R}} A \curvearrowright \partial=\sum_{i=1}^{n} x_{i} \gamma_{i}
$$

${ }^{D_{Q_{2}} \text {-graded free } A \text {-module }}$

$$
\begin{aligned}
\partial^{2} & =\sum_{i, j} x_{i} x_{j} \gamma_{i} \gamma_{j} \\
& =\sum_{i} x_{i}^{2} \gamma_{i}^{2} \\
& =\underbrace{x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p}^{2} A}_{\text {acting } \cup n}
\end{aligned}
$$

Potentials Let k be a commutative \mathbb{Q}-algebra, then $f \in R=k\left[x_{1}, \ldots, x_{n}\right]$ is called a potential if
(i) $\partial x_{1}, f, \ldots, \partial x_{n} f$ is quasi-regular
(ii) $R /\left(\partial x_{1} f, \ldots, \partial_{x_{n}} f\right)$ is a $f . g$. free k-module
(iii) the Koszul complex of $\partial x_{1} f, \ldots, \partial_{x_{n}} f$ is exact outsicle deg. O.

Example $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f\right)<\infty$. (isolated critical points)
Def n The DC-category $A=m f(R, f)$ has

- objects f. rank matrix factorisations of f, ..e. $X \geq d_{x}^{2}=f \cdot 1 x$.
- monohisms $A(x, y)=\left(\operatorname{Hom}(x, y), \alpha \mapsto d y \alpha-(-1)^{|\alpha|} \alpha d x\right)$.

This is a \mathbb{Z}_{2}-graded $D G$-category over R.

Remarks - $\operatorname{hmf}(R, f):=H^{0} m f(R, f)$ is triangulated (Calabi-Yau).

- Given a quadratic space V with associated quadratic $f \in \operatorname{Sym}\left(V^{*}\right)$

$$
\operatorname{Mod}_{f \cdot d .}^{\mathbb{Z}_{2}} C(V) \cong \operatorname{hmf}\left(\operatorname{sym}\left(V^{*}\right), f\right)^{\omega}
$$

(Buchweitz-Eisenbud-Herzog)

Remarks - $\operatorname{hmf}(R, f):=H^{0} m f(R, f)$ is triangulated (Calabi-Yau).

- Given a quadratic space V with associated quadratic $f \in \operatorname{Sym}\left(V^{*}\right)$

$$
\operatorname{Mod}_{f \cdot d .}^{\mathbb{Z}_{2}} C(V) \cong \operatorname{hmf}\left(\operatorname{sym}\left(V^{*}\right), f\right)^{\omega}
$$

(Buchweitz-Eisenbud-Herzog)
From a potential f to an A_{∞}-algebra A_{f}
Assume k is a field and $\operatorname{sing}(f)=\{0\}$. Then there is a standard generator

$$
\text { thick }(G)=\operatorname{hmf}(R, f)^{\omega}
$$

A_{∞}-algebra A_{f}, is a Clifford algebra for quadratic f.
A_{∞}-products package higher derivatives of f.

Pseudo-defn $C_{n i t i R}$ is the bicategony of A_{∞}-algebras $A_{\left(f, \underline{x}^{*}\right)}$ associated to isolated critical points, A_{∞}-bimodules and A_{∞}-bimodule maps.

Theorem (Carqueville - Montoya '18) Crit \mathbb{R}_{R} is a symmetric monoidal bicategory in which every object is fully dualisable, and therefore determines an extended 2D framed TFT

Moreover Crit ${ }_{\mathbb{R}}^{\text {nd }} \subset$ Crit $_{\mathbb{R}}$.
$\tau_{\text {essentially }}$ due to Buchweitz-Eisenbud-Herzog.

Sketch of $\mathscr{L} \mathcal{F}_{k}$ (e.g. Urit \mathbb{R}^{\prime}) (bicategory of Landau-Ginzburg models)
k any commutative ing

Reference N.Carqueville, DM "Adjoints and defects in Landau-Ginzburgmodels"

Brief sketch of Bord $_{2}^{\text {fr }}$ (following Schommer-Pries, Pstragowski)
Def ${ }^{n}$ Let X^{k} be a manifold, possibly with corners. If $k<2$ a 2-halo over X is a sequence of inclusions of pro-manifolds

$$
x \subseteq \hat{X}_{1} \subseteq \hat{X}_{2}
$$

such that $X \subseteq \hat{X}_{1}, X \subseteq \hat{X}_{2}$ have the structure of cooviented halation of $\operatorname{dim} 1,2$ respectively.

"germ of 2-manifold"

Theorem (Schommer-Pries) There is a symmetric monoidal bicategory Bord ${ }_{2}^{\text {fr }}$
objects framed 2 -haloed 0 -manifolds

1-morphisms framed 2-haloed 1-bordisms

2-mophisms framed 2 -haloed 2 -bordisms $/ \cong$

$$
\begin{aligned}
& \partial_{\alpha}=\partial_{0} v \partial_{m} \quad \partial_{0} \cap \partial_{m}=\partial \partial_{0} \\
& \partial_{m} \cong \omega \Downarrow v \\
& \partial_{0} \cong A \times I \Perp B \times I
\end{aligned}
$$

Structure of $2 \xi_{k}$ under conto l \Longrightarrow one can actually compute this TQFT

$$
\operatorname{Bicat}_{\text {sym. mon }}\left(\operatorname{Bord}_{2}^{f_{r}} \mathcal{L} \xi_{k}\right) \cong K\left(\mathcal{L} \mathscr{L}_{k}^{f d}\right)
$$

Application The "TQFT with corners" constructed by Khovanov and Rozansky can be derived / corrected using the whordism hypothesis as extended $T Q F T_{S}$

$$
p t^{+} \longmapsto x^{N+1} \in \mathscr{L} \xi_{\mathbb{R}}
$$

Proving this uses explicit formulas for av, wev in $\mathcal{L} \mathscr{E}_{k}$.

