From critical points to extended topological field theories

Daniel Murfet
7/4/2020

therisingsea.org
Outline

I. From dynamical systems to monoidal bicategories

II. Extended topological quantum field theories
Dynamical systems

A general non-linear dynamical system is given by a system of DEs

\[
\begin{align*}
\dot{x}_1 &= F_1(x_1, \ldots, x_n) \\
\dot{x}_2 &= F_2(x_1, \ldots, x_n) \\
\dot{x}_n &= F_n(x_1, \ldots, x_n)
\end{align*}
\]

\[\dot{x} = F(x)\]

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^n\]

An important class of dynamical systems are those which are conservative, in the sense that there is a scalar potential \(f : U \rightarrow \mathbb{R} \) with \(U \subseteq \mathbb{R}^n \),

\[F = \nabla f\]

\[\{\text{fixed points of system}\} = \{\text{critical points of } f\}\]

\[\nabla f(\xi) = 0\]
Example: Consider the system

\[
\begin{align*}
\dot{x}_1 &= x_1, \\
\dot{x}_2 &= -x_2
\end{align*}
\]

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} =
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\]

Solution trajectories look like \(\mathbf{x}(t) = (Ae^t, Be^{-t}) \) for any \(A, B \in \mathbb{R} \).

The scalar potential governing this system is

\[
\begin{align*}
f &= \frac{1}{2}x_1^2 - \frac{1}{2}x_2^2 \\
\nabla f &= (x_1, x_2) \\
H_f &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
\]
Dynamical systems

To understand the dynamics near an isolated critical point of f, we need to analyse the Hessian of f, i.e.

$$H_f := \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)_{1 \leq i, j \leq n},$$

its eigenvectors and eigenvalues. Actually the right way to think of this data is as a symmetric bilinear form on the tangent space $T_{\mathbf{x}^*}U$ at a critical point $\mathbf{x}^* \in U$, i.e.

$$\left(T_{\mathbf{x}^*}U, \langle \cdot, \cdot \rangle \right) \text{ where } \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle = \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{x = \mathbf{x}^*},$$

with $\mathbf{u} = \mathbf{x} - \mathbf{x}^*$,

$$\mathbf{u} = H_f\big|_{\mathbf{x}^*} \mathbf{u} + \text{quadratic terms in } \mathbf{u} \text{ involving higher derivatives of } f$$

linear system
Morse Lemma If $H_f \big|_{x^*}$ is invertible (i.e., the corresponding bilinear form is nondegenerate) for an isolated critical pt. x^* then there is a coordinate neighborhood around x^* where

$$f = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_n^2$$

so that in those coordinates

$$H_f \big|_{x^*} = \begin{pmatrix} 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

Def. A critical point x^* is nondegenerate if $H_f \big|_{x^*}$ is invertible.

\therefore locally $u = H_f \big|_{x^*} u$ $u = x - x^*$
Quadratic spaces

Definition The category Q of quadratic spaces over \mathbb{IR} has

- objects are f.d. vector spaces equipped with a nondegenerate symmetric bilinear form.

- morphisms $Q(V, W) = \{ T : V \to W \text{ linear} \mid <Tu, Tv> = <u, v> \ \forall u, v \}$.

Example

- $X_{p, q} : (\mathbb{R}^p \oplus \mathbb{R}^q, \left(\begin{smallmatrix} I_p & 0 \\ 0 & -I_q \end{smallmatrix} \right))$ is a representative set of objects (Sylvester's law of inertia)

- $X_{1, 0} = (\mathbb{IR}, (1)) \xrightarrow{(b)} (\mathbb{IR} \oplus \mathbb{IR}, (1 \ 0 \ -I)) = X_{1, 1}$ is a morphism.

- $(T_{x^*} U, \langle \cdot, \cdot \rangle) \left\langle \frac{\partial^2 f}{\partial x_i \partial x_j}, \frac{\partial^2 f}{\partial x_i \partial x_j} \right\rangle = \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{x = x^*}$ at a nondeg. critical pt. x^*.

Lemma Q is a symmetric monoidal category under direct sum of v. spaces.
Clifford algebras

Associated to each quadratic space V is an algebra $C(V)$, the Clifford algebra which is universal among \mathbb{R}-algebras C (associative and unital) equipped with a linear map $\ell: V \to C$ satisfying

$$\ell(v)\ell(w) + \ell(w)\ell(v) = 2\langle v, w \rangle \cdot 1_C.$$

(so e.g. $\ell(v)^2 = \langle v, v \rangle \cdot 1_C$)

This thing exists, is naturally \mathbb{Z}_2-graded, $V \hookrightarrow C(V)$ is injective and $C(V)$ is $2^{\dim(V)}$ dimensional.

Examples $C(X_{0,0}) \cong \mathbb{R}$, $C(X_{0,1}) \cong \mathbb{C}$, $C(X_{0,2}) \cong \mathbb{H}$.
Lemma \(C(\cdot) \) is a strong monoidal functor \(Q \to Alg_{\mathbb{R}}^{\mathbb{Z}_2} \), i.e. there are natural isomorphisms \(C(0) \cong \mathbb{R} \) and

\[
C(V \otimes W) \cong C(V) \otimes_{\mathbb{R}} C(W).
\]

really direct sum!

critical point \(x^* \) of \(f \) \(\sim \) quadratic space \((T_{x^*}U, H_f|_{x^*}) \)

\(\sim \) Clifford algebra \(C(T_{x^*}U, H_f|_{x^*}) \)

\(\sim \) Abelian category \(\text{Mod}_{\mathbb{Z}_2}^{\mathbb{Z}_2} C(T_{x^*}U, H_f|_{x^*}) \)

finite-dimensional \(\mathbb{Z}_2 \)-graded modules
Def: Nondegenerate isolated critical points form a bicategory $\text{Crit}^{\text{ndg}}_R$

- **objects** quadratic spaces \mathcal{V}
- 1-**morphisms** $\mathcal{V} \to \mathcal{W}$ are \mathbb{Z}_2-graded finite-dimensional $C(\mathcal{W}) - C(\mathcal{V})$-bimodules.
- 2-**morphisms** are bimodule homomorphisms.

Proposition $\text{Crit}^{\text{ndg}}_R$ is a symmetric monoidal bicategory in which every object is fully dualisable. (duals for objects and 1-morphisms)

Example

- $\text{Crit}^{\text{ndg}}_R(0, \mathcal{V}) = \text{Mod}^{\mathbb{Z}_2} C(\mathcal{V})$. ($0 = X_{0,0} = I$)
- $X_{0,1}^\otimes \cong I$ (Bott periodicity)
Def. A bicategory \mathcal{B} consists of

- a class of objects a, b, c, \ldots

- for each pair a, b of objects a category $\mathcal{B}(a, b)$, objects of which are called 1-morphisms and denoted $X : a \rightarrow b$, and morphisms of which are called 2-morphisms.

- a composition functor for objects a, b, c

$$\beta(b, c) \times \beta(a, b) \longrightarrow \beta(a, c).$$

$$(y : b \rightarrow c, x : a \rightarrow b) \longmapsto (y \circ x : a \rightarrow c)$$

- unit 1-morphisms $1_a : a \rightarrow a$ for each object a

- 2-isomorphisms "unitors", "associators"

satisfying some coherence conditions (same as for monoidal categories)
Def. Let \(\mathcal{B}, \mathcal{C} \) be bicategories. A 2-functor \(F : \mathcal{B} \rightarrow \mathcal{C} \) is

- a function on objects \(a \mapsto F(a) \)
- functors \(\mathcal{B}(a, b) \rightarrow \mathcal{C}(F_a, F_b) \)
- natural isomorphisms

\[
F(Y) \circ F(X) \cong F(Y \circ X)
\]

\[
1_{F_a} \cong F(1_a)
\]

making some coherence diagrams commute.

Example. If \(\mathcal{B} \) is a bicategory, \(\mathcal{B}(a, -) : \mathcal{B} \rightarrow \mathsf{Cat} \) is a 2-functor, where \(\mathsf{Cat} \) denotes small categories, functors and natural transformations.
Def Let \(\mathcal{B}, \mathcal{C} \) be bicategories, \(F, G : \mathcal{B} \to \mathcal{C} \) 2-functors. A **pseudonatural transformation** \(\gamma : F \to G \) is

- a family of 1-morphisms \(\{ \gamma_a : Fa \to Ga \}_{a \in \text{ob}(\mathcal{B})} \)

- for each \(X : a \to b \) in \(\mathcal{B} \) a 2-isomorphism

\[
\begin{align*}
F_a & \xrightarrow{F_X} F_b \\
\gamma_a & \xRightarrow{\gamma_X} \gamma_b \\
G_a & \xrightarrow{G_X} G_b
\end{align*}
\]

subject to coherence conditions.

Def (notation as above) Given pseudonatural transformations \(\gamma, \psi : F \to G \), a **modification** \(\varrho : \gamma \to \psi \) is a family of 2-morphisms \(\{ \varrho_a : \gamma_a \to \psi_a \}_{a} \) satisfying a condition (omitted).
Lemma Let \mathcal{B}, \mathcal{C} be bicategories, with \mathcal{B} small. Then there is a bicategory $\text{Bicat}(\mathcal{B}, \mathcal{C})$.

- **objects** 2-functors

$$\text{Bicat}(\mathcal{B}, \mathcal{C})$$

- **1-morphisms** pseudonatural transformations

- **2-morphisms** modifications

Monoidal bicategory (rough version) is a bicategory \mathcal{B} with

- tensor for objects $(a, b) \mapsto a \Box b$

- tensor for 1- and 2-morphisms, via a functor

$$\mathcal{B}(a_1, a_2) \times \mathcal{B}(b_1, b_2) \longrightarrow \mathcal{B}(a_1 \Box b_1, a_2 \Box b_2)$$

- associators, unitors, coherence.
Def. A monoidal bicategory is a bicategory \(\mathcal{B} \) equipped with

- a 2-functor \(\Box : \mathcal{B} \times \mathcal{B} \to \mathcal{B} \)

- an adjoint equivalence \(\alpha \) in \(\text{Bicat}(\mathcal{B} \times \mathcal{B} \times \mathcal{B}, \mathcal{B}) \) between the two legs of the following diagram (the associator)

\[
\begin{array}{ccc}
(\mathcal{B} \times \mathcal{B}) \times \mathcal{B} & \xrightarrow{\text{rebracket}} & \mathcal{B} \times (\mathcal{B} \times \mathcal{B}) \\
\Box \times 1 & \downarrow & \alpha \\
\mathcal{B} \times \mathcal{B} & \xrightarrow{\Rightarrow} & \mathcal{B} \times \mathcal{B} \\
1 \times \Box & \downarrow \\
\mathcal{B} \times \mathcal{B} & \xrightarrow{\Rightarrow} & \mathcal{B} \times \mathcal{B}
\end{array}
\]

i.e. \(\alpha \) is a pseudonatural transformation.
an invertible modification π, the pentagonator

$$
\begin{align*}
(A \circ B) \circ (C \circ D) \\
\alpha \\
((A \circ B) \circ C) \circ D \\
\alpha \\
(A \circ (B \circ C)) \circ D \\
\alpha \\
A \circ ((B \circ C) \circ D) \\
\alpha
\end{align*}
$$

+ units, unitors and lots of coherence!
Def: A symmetric monoidal bicategory is a monoidal bicategory \mathcal{B} with

- an adjoint equivalence β in $\text{Bicat}(\mathcal{B} \times \mathcal{B}, \mathcal{B})$ between the legs of

\[
\begin{array}{ccc}
\mathcal{B} \times \mathcal{B} & \xrightarrow{\square} & \mathcal{B} \\
\downarrow \beta & & \downarrow \beta \\
\mathcal{B} \times \mathcal{B} & \xrightarrow{\text{swap}} & \mathcal{B} \times \mathcal{B}
\end{array}
\]

i.e., $a \Box b$ and $b \Box a$

- an invertible modification called syllepsis

\[
\begin{array}{ccc}
\mathcal{B} & \xrightarrow{1_{a \Box b}} & \mathcal{B} \\
\downarrow \beta & & \downarrow \beta \\
\mathcal{B} & \xrightarrow{b \Box a} & \mathcal{B}
\end{array}
\]

- invertible modifications relating β and the associator + coherence
Examples

1. \((\text{Cat}, \times)\) categories, functors, natural transformations, Cartesian product

2. \((\text{Alg}_k, \otimes_k)\) algebras, bimodules, bimodule maps, tensor

3. \((\text{Crit}^{ndg}_{\mathbb{R}}, \oplus)\) quadratic spaces, Clifford bimodules and maps, direct sum.

References (not a historical survey!)

- Chris Schommer-Pries' PhD thesis
- Nick Gurski “Loop spaces, and coherence for monoidal and braided monoidal bicategories”.
Duals in symmetric monoidal bicategories

Let \mathcal{B} be a monoidal bicategory. A right dual to an object a is a^* and 1-morphisms $\text{ev}_a : a \otimes a^* \to 1$, $\text{coev}_a : 1 \to a^* \otimes a$

and cosp isomorphisms in $\mathcal{B}(a,a)$

$$
\begin{align*}
& a \xrightarrow{1 \otimes \text{coev}_a} a \otimes 1 \xrightarrow{a \otimes (a^* \otimes a)} (a \otimes a^*) \otimes a \xrightarrow{\text{ev}_a \otimes 1} 1 \otimes a \xrightarrow{\text{Id}} a \\
\end{align*}
$$

$$
\begin{align*}
& a^* \xrightarrow{1 \otimes a^*} 1 \otimes a^* \xrightarrow{(a^* \otimes a) \otimes a^*} a^* \otimes (a \otimes a^*) \xrightarrow{1 \otimes \text{ev}_a} a^* \otimes 1 \xrightarrow{\text{Id}} a^* \\
\end{align*}
$$

Lemma In a symmetric monoidal category every right dual is also a left dual.
Duals in symmetric monoidal bicategories

Def. Let \mathcal{B} be a symmetric monoidal bicategory. An object a is **fully dualisable** if it has a dual object such that both eva_a and coeva_a have both left and right adjoints.

- Every object in Crit^{ndg} is fully dualisable $(V, B)^\ast := (V, -B)$.

Theorem (Pstragowski) [2D cobordism hypothesis] There is an equivalence

$$\text{Bicat}_{\text{sym, mon}}(\text{Bord}_2^f, \mathcal{B}) \cong K(\mathcal{B}^\text{fd})$$

- framed bordism bicategory
- fully dualisable objects
- core, i.e. keep equivalences and 2-isomorphisms
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

\[\text{Phase portrait} \]

\[\text{Crit}^{\text{ndg}}_{\mathbb{R}} \]

\[\bullet (T_{x^*} U, H_f \mid_{x^*}) \]
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Around an isolated (degenerate) critical point \(x^* \)

\[\dot{u} = H_f \big|_{x^*} u + \text{quadratic terms in } u \]

where \(u = x - x^* \), the dynamics do depend on the higher derivatives of the potential \(f \).
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Phase portrait

\[\mathbf{u} = \left. H_f \right|_{x^*} \mathbf{u} + \text{quadratic terms in } \mathbf{u} \]

involving higher derivatives of the potential \(f \).

Question: What algebra to associate to \((f, x^*) \)?

- **linear system**

 * reduce to \(C(T_{x^*} U, H_f \mid_{x^*}) \) in the nondeg. case

 * form a symmetric monoidal bicategory
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

\[f = \frac{1}{3} x_1^3 - \frac{1}{2} x_2^2 \]

Phase portrait

- nondegenerate critical point
- degenerate critical point

Question What algebra to associate to \((f, x^*)\)?

- reduce to \(C(T_x^* U, Hf |_{x^*})\) in the nondeg. case
- form a symmetric monoidal bicategory
Question: What algebra to associate to \((f, x^*)\) ?

- reduce to \(C(T_x^* U, Hf|_{x^*})\) in the nondeg. case
- form a symmetric monoidal bicategory
Matrix factorisations

Let X be a \mathbb{Z}_2-graded f.d. module over the Clifford algebra

\[C(X_{p,q}) : \text{ generated by } \sigma_1, \ldots, \sigma_{p+q} \text{ subject to } \]

\[
\sigma_i^2 = \ldots = \sigma_p^2 = 1 \\
\sigma_{p+1}^2 = \ldots = \sigma_{p+q}^2 = -1 \\
\sigma_i \sigma_j + \sigma_j \sigma_i = 0 \quad i \neq j
\]
Matrix factorisations

Let X be a \mathbb{Z}_2-graded f.d. module over the Clifford algebra

$\mathcal{C}(X_{p,q})$: generated by $\sigma_1, \ldots, \sigma_{p+q}$ subject to

- $\sigma_1^2 = \ldots = \sigma_p^2 = 1$
- $\sigma_{p+1}^2 = \ldots = \sigma_{p+q}^2 = -1$
- $\sigma_i \sigma_j + \sigma_j \sigma_i = 0 \quad i \neq j$

Set $A = \mathbb{R}[x_1, \ldots, x_{p+q}]$, and

$\mathcal{C}(X \otimes_A A) \supset \mathfrak{g} = \sum_{i=1}^{n} x_i \sigma_i$

\mathcal{O}_2-graded free A-module

acting on $X \otimes_A A$
Potentials

Let \(k \) be a commutative \(\mathbb{Q} \)-algebra, then \(f \in \mathbb{R} = k[x_1, \ldots, x_n] \) is called a potential if

(i) \(\partial x_i f, \ldots, \partial x_n f \) is quasi-regular

(ii) \(\mathbb{R} / (\partial x_i f, \ldots, \partial x_n f) \) is a f.g. free \(k \)-module

(iii) the Koszul complex of \(\partial x_i f, \ldots, \partial x_n f \) is exact outside \(\operatorname{deg} \mathbb{O} \).

Example \(f \in \mathbb{C}[x_1, \ldots, x_n] \) such that \(\operatorname{dim}_\mathbb{C} \mathbb{C}[x_1, \ldots, x_n] / (\partial x_i f, \ldots, \partial x_n f) < \infty \).

(isolated critical points)

Defn. The DA-category \(\mathcal{A} = \operatorname{mf}(\mathbb{R}, f) \) has

- objects f. rank matrix factorisations of \(f \), i.e. \(X \in \mathbb{R} \) \(d^2_x = f \cdot 1_x \).

- morphisms \(\mathcal{A}(X, Y) = (\operatorname{Hom}_\mathbb{R}(X, Y), \alpha \mapsto d_Y \alpha - (-1)^{1\alpha} \alpha d_X) \).

This is a \(\mathbb{Z}_2 \)-graded DA-category over \(\mathbb{R} \).
Remarks

• \(\text{hmf}(R, f) := H^0 \text{mf}(R, f) \) is triangulated (Calabi-Yau).

• Given a quadratic space \(V \) with associated quadratic \(f \in \text{Sym}(V^*) \):

\[
\text{Mod}_{\mathbb{Z}^2} \mathcal{C}(V) \cong \text{hmf}(\text{Sym}(V^*), f)^\infty
\]

(Buchweitz-Eisenbud-Herzog)
Remains • hmf(R, f) := \text{H}^0 \text{mf}(R, f) is triangulated (Calabi-Yau).

• Given a quadratic space \(V \) with associated quadratic \(f \in \text{Sym}(V^*) \)

\[
\text{Mod}_{f,a}^\mathbb{Z} \mathcal{C}(V) \cong \text{hmf}(\text{Sym}(V^*), f)^\omega
\]

(Buchweitz–Eisenbud-Herzog)

From a potential \(f \) to an \(A_\infty \)-algebra \(A_f \)

Assume \(k \) is a field and \(\text{Sing}(f) = \{ 0 \} \). Then there is a standard generator

\[
\text{thick}(G) = \text{hmf}(R, f)^\omega
\]

\[
\text{perf End}_R(G) \cong \text{hmf}(R, f)^\omega \quad (\text{Keller–Lefevre})
\]

\[
\text{perf}_\infty H^* \text{End}_R(G) \cong \text{hmf}(R, f)^\omega
\]

\(A_\infty \)-algebra \(A_f \), is a Clifford algebra for quadratic \(f \).

\(A_\infty \)-products package higher derivatives of \(f \).
Pseudo-def Crit_R is the bicategory of A_∞-algebras $A(f, z^*)$ associated to isolated critical points, A_∞-bimodules and A_∞-bimodule maps.

Theorem (Carqueville-Montoya '18) Crit_R is a symmetric monoidal bicategory in which every object is fully dualisable, and therefore determines an extended 2D framed TFT

$$\text{Bord}_2^\text{fr} \longrightarrow \text{Crit}_R.$$

Moreover $\text{Crit}^\text{ndg}_R \subset \text{Crit}_R$.

\uparrow essentially due to Buchweitz-Eisenbud-Herzog.
Sketch of \mathcal{LG}_k (e.g. Criteria) (bicategory of Landau–Ginzburg models)

k any commutative ring

\[(y, V(y)) \quad W \square V = W + V \]

\[1 = (\phi, 0) \]

\[W^* = -W \]

\[G \otimes_{R[y]} E \]

Reference: N. Carqueville, DM. "Adjoints and defects in Landau–Ginzburg models"
Def \[\text{Let } X^k \text{ be a manifold, possibly with corners. If } k \leq 2 \text{ a 2-halo over } X \text{ is a sequence of inclusions of pro-manifolds} \]
\[
X \leq \hat{X}_1 \leq \hat{X}_2
\]
such that \(X \leq \hat{X}_1, X \leq \hat{X}_2 \) have the structure of cooriented halations of \(\text{dim } 1, 2 \) respectively.

Diagram:
- \(X \)
- \(\hat{X}_1 \) labeled "germ of 1-manifold"
- \(\hat{X}_2 \) labeled "germ of 2-manifold"
Theorem (Schommer-Pries) There is a symmetric monoidal bicategory Bord_2^{fr}

Objects: framed 2-haloed 0-manifolds

1-morphisms: framed 2-haloed 1-bordisms

$\partial \omega \cong \partial_{in} \omega \sqcup \partial_{out} \omega$

2-morphisms: framed 2-haloed 2-bordisms / \simeq

$\partial \alpha = \partial_0 \cup \partial_\omega$ $\partial_0 \cup \partial_\omega = \partial_0$

$\partial \omega \cong \partial_0 \sqcup \partial_\omega$ $\partial_\omega \sqcup \partial_0 = 2\partial_0$

$\partial_0 \cup \partial_\omega = A \times I \sqcup B \times I$
Structure of L^G_k under control \implies one can actually compute this TQFT

$$\text{Bicat}_{sym\cdot mon}(\text{Bord}^k_{fr}, L^G_k) \cong K(L^G_k)$$

Application The “TQFT with corners” constructed by Khovanov and Rozansky can be derived/corrected using the cobordism hypothesis as extended TQFTs

$$\text{pt}^+ \mapsto x^{N+1} \in L^G_R.$$

Proving this uses explicit formulas for ev, coev in L^G_k.

Proving this uses explicit formulas for ev, coev in L^G_k.

\[1 \square 1 = 1 \]

\[y^{N+1} \square (x^{N+1})^* \]

\[y^{N+1} \square (x^{N+1})^* \]

\[y^{N+1} - x^{N+1} \]

\[\text{coev} \circ \text{ev} \]

\[y^{N+1} - x^{N+1} \]

\[p.89 \text{ Montoya's thesis} \]