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Definition 1 (Topological manifold). An n-dimensional topological manifold with boundary, M , is a Hausdorff
topological space such that:

• ∀x ∈M◦, there is an open set U such that x ∈ U ∼= Bε(0) ⊂ Rn.

• If x ∈ ∂M , then there is an open set U such that x ∈ U ∼= Bε(0) ∩ {x ∈ Rn|xn ≥ 0}

Definition 2. Cobordism [1] Given any two compact (n − 1) dimensional manifolds Σ1 and Σ2, a cobordism
between them is a compact n dimensional manifold M such that ∂M = Σ1 t Σ2

Remark 3 (Etymology). A single manifold Σ which formed the border of some manifold M was called bordant.
When two manifolds together form the boundary of some M , they are called cobordant.

Some examples of cobordisms in one and two dimensions are given in figures and . Note that all one
dimensional cobordisms are homeomorphic to the disjoint union of some number of intervals, between the
disjoint unions of some number of points. Similarly, all cobordant one dimensional manifolds are homeomorphic
to the disjoint union of some number of circles.

Remark 4. Note that cobordisms are not embedded in any space. Therefore the two images in figure represent
the same cobordism.

Definition 5 (Alternating). Let V be a vector space. Then a linear map β : V ⊗ V → k is alternating if
β(a, a) = 0 for all a ∈ V

Lemma 6. Let β : V ⊗ V → R be an alternating linear map. Then β(a, b) = −β(b, a)

Proof.

0 = β(a+ b, a+ b)

= β(a, a) + β(a, b) + β(b, a) + β(bb)

= β(a, b) + β(b, a)

=⇒ −β(b, a) = β(a, b)

In particular, call (u, v) positive if ν(u⊗ v) > 0, and negative if ν(u⊗ v) < 0.
Given an oriented manifold M with boundary, we can induce an orientation on ∂M .

Figure 1: An example of a 1d cobordism from {1, 2, 3, 4, 5, 6} to {1, 2, 3, 4}
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Figure 2: An example of a 2d cobordism from S1 t S1 t S1 to S1

Figure 3: These two images represent the same cobordism, since cobordisms are not embedded in any space

Let x ∈ M . Consider the dot product ν : TxM ⊗ TxM → R, which is an alternating linear map. In the
diagram, intuitively u comes before v and so ν(u, v) is positive, but ν(v, u) is negative. Now to induce an
orientation on the boundary, Σ = ∂M , let x ∈ ∂M . Note that there is a map TxΣ → TxM induced by the
embedding of Σ onto ∂M . There is a particular choice of vector vout which can be made. For any t ∈ TxM ,
define a map νσ : TxΣ→ R : t 7→ ν(vout. This induces an orientation on the boundary.

Definition 7 (Oriented cobordism). Given any two compact, oriented, (n− 1) dimensional manifolds Σ1 and
Σ2, an oriented cobordism M : Σ1 → Σ2 is a compact, oriented, n dimensional manifold along with smooth
orientation preserving embeddings f1 : −Σ1 → ∂M and f2 : Σ2 → ∂M , (where −Σ is Σ with the orientation
reversed) such that f1 t f2 : −Σ1 t Σ2 → ∂M is a diffeomorphism.

Example 8 (1D oriented cobordisms). Let p be a point with orientation +, and consider the interval [0, 1] with
orientation as in figure . This induces a negative orientation at 0 and a positive orientation at 1. This allows
[0, 1] to be an oriented cobordism from p to p, with the maps f1 : −p → 0 ⊂ ∂[0, 1] and f2 : p → 1 ⊂ ∂[0, 1],
which are clearly orientation preserving.

Now let q be a point with orientation −. Then there are orientation preserving maps f1 : −(ptq)→ {0, 1} ⊂
∂[0, 1] and f2 : ∅ → ∂[0, 1]. These two different options are shown in figure .

Example 9 (2D oriented cobordisms). Consider the manifold depicted in figure , a 2d manifold with three
boundary circles. Let Σ1 = S1 t S2 and Σ2 = S1. Then we can have two maps, one −Σ1 → ∂M on the left of

Figure 4: On the left is an example of a cobordism from p to p, while on the right is an example of a cobordism
from p t q to ∅
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Figure 5: In this example we have a cobordism from two circles to one, with each boundary point having an
induced orientation. Each circle on the left is oriented opposite to the boundary, so they are part of Σ1, and
the circle on the right is oriented the same way as the boundary, so it is Σ2

Figure 6: Only the top left circle is oriented opposite to the boundary, so Σ1 = S1. The right and bottom left
circles are oriented the same way as the boundary, so they must form Σ2 for this to be a cobordism. Thus, this
is a cobordism from one circle to two, and if following the convention of drawing cobordisms from left to right
it would more properly be draw as the image on the right

the image, and the other Σ2 → ∂M on the right, which satisfy the conditions for M to be an oriented cobordism
from Σ1 to Σ2

Now consider what happens in the orientation of one of the circles on the left is swapped, as in figure . This
circle cannot be part of Σ1 since we wish to preserve orientations rather than flip them. Therefore, let Σ1 = S1

and Σ2 = S1 t S1. Conventionally, this cobordism would be drawn so that Σ1, or the “in” boundary, is on the
left, and Σ2, or the “out” boundary, is on the right.

It seems that these two depictions in figure should represent the same cobordism. In fact, most of the time,
cobordism classes will be used rather than cobordisms, and for this we require some notion of equivalence.

Definition 10 (Equivalence of cobordisms). Let Σ1 and Σ2 be n− 1 dimensional manifolds such that M and
M ′ are oriented cobordisms between them. Then M and M ′ are equivalent if there exists some diffeomorphism
φ such that the following diagram commutes:

M ′

−Σ1 Σ2

M

φ

Example 11. The cylinder Σ× [0, 1] is equivalent to the cylinder Σ× [0, 2]

Proof. Given the following diagram, all that is required is to check that it commutes.

S1 × [0, 2]

−(S1 × {0}) S1 × {2}

S1 × [0, 1]

φ(x)=2x

Thus, from now on we can talk about cobordism classes, rather than cobordisms themselves Eventually, we
will form a category whose objects are n− 1 dimensional manifolds, with cobordisms as morphisms. Thus, we
require some notion of gluing two cobordisms together.
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Definition 12. Let f1 : Σ ↪→ M1 and f2 : Σ ↪→ M2 be injective maps between topological spaces. Now
M1tΣM2 is defined to be the disjoint union of M1 and M2 quotiented out by the following equivalence relation.
Let m1 ∈ M1 = m2 ∈ M2 iff there is an x ∈ Σ such that f1(x) = m1 and f2(x) = m2. We also require that
x ≡ x.

Thus,

M1 M1 tΣ M2 M2

A subset u ∈M1 tΣ M2 is defined to be open if both its inverse images are open.

Lemma 13. The above equivalence relation is indeed an equivalence relation

Proof. Firstly, due to the extra condition x ≡ x, this relation is reflexive. Then, if m1 ≡ m2, then we can swap
around M1 and M2 to arrive at m2 ≡ m1 so the relation is symmetric.

The only difficult part is transitivity. For this, there are multiple cases to consider. Let m1 ≡ m2 and
m2 ≡ m3.

• If m1,m2 ∈M1 then m1 = m2 and thus m1 ≡ m3. Similarly for the case that m2 and m3 lie on the same
manifold.

• If all three lie on the same manifold, say M1, then m1 = m2 = m3.

• If m1,m3 ∈M1 and m2 ∈M2, then there is an x ∈ Σ such that f1(x) = m1 and f2(x) = m2, and a y ∈ Σ
such that f1(y) = m3 and f2(y) = m2. Thus we have that f2(x) = f2(y). Since f2 is injective, x = y and
so f1(x) = f1(y) =⇒ m1 = m3 and so m1 ≡ m3.

Lemma 14. For every commutative diagram

X

M1 M2

Σ

g1
g2

There exists a unique continuous map g such that

X

M1 M M2

Σ

g1 ∃!g
g2

Note that this is actually a pushout.
In order to glue topological manifolds together in this manner, it must be shown that M = M1 tΣ M2 is a

topological manifold. To do this, an atlas must be constructed on M .

Lemma 15. M1 tΣ M2 is a topological manifold

Proof. In order to show that this is a manifold, we require charts. All points which are not on Σ already have
charts, so it remains to find charts for those points on Σ. Let x be a point on Σ, and U ⊂ M1 tΣ M2 an open
subset containing x. Note that U1 := U ∩M1 and U2 := U ∩M2 are open, and that U = U1 tΣ∩U U2. Let U
be such that U1 and U2 are charts with functions f1 : U1 → Rn− and f2 : U2 → Rn+. Now there is a diagram:

Σ ∩ U

U1 U U2

Rn− Rn Rn+

f1 f1
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By lemma 14 there exists some f : U → Rn.

Note that f1 is an isomorphism U1
∼= Bε(0) ∩Rn−. Same for f2. These induce f an isomorphism U ∼= Bε(0)

Example 16 (Gluing two cylinders). Let Σ0, Σ1 and Σ3 be manifolds equivalent to the circle. Then let M1

and M2 be cobordisms from Σ0 to Σ1 and Σ1 to Σ2, respectively. These two manifolds M1 and M2 are both
equivalent to cylinders, with φ1 : M1 → Σ1 × [0, 1] and φ2 : M2 → Σ1 × [1, 2].

Let S := Σ1 × [0, 2], with ψ being the diffeomorphism from Σ1 t Σ2 to S

φ := φ1 tΣ1 φ2 : M1 tΣ1 M2 → S

is a diffeomorphism.
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