Matrix factorisations and Quantum Error Correcting Codes

An important conceptual insight from modern logic is that there is a dynamical process "lying behind" function composition. This process is called computation. Taking our cue from the logicians we should, as mathematicians, attempt to find some subatomic stucture inside the "atomic" operation $(g, f) \longmapsto g \circ f$. Today I'll explain one approach to doing just that in the context of hypersurface singularities.

Matrix factorisations

Let k be a commutative ring. A polynomial $W \in k[\underline{x}]=k\left[x_{1}, \ldots, x_{n}\right]$ is a potential if
(i) $\partial_{x}, W, \ldots, \partial_{x_{n}} W$ is a quasi-regular sequence
(ii) $k[\underline{x}] /\left(\partial_{x}, W, \ldots, \partial_{n} w\right)$ is a fig. free k-module
(iii) $H^{i}\left(K\left(\partial x_{1} w, \ldots, \partial_{x_{n}} w\right)\right)=0 \quad$ i娄 $0 \quad$ (note (iii) \Rightarrow (i))

Example $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{dim}\left(\mathbb{C}[\underline{x}] /\left(\partial_{x}, W, \ldots, \partial_{x_{n}} W\right)\right)<\infty$, e.g. any isolated hypersurface singularity.

Remark If $(k[\underline{x}], W),(k[\underline{y}], V)$ are potentials so are $(k[x],-W),(k[x, \underline{y}], W+V)$.

Def n (Eisenbud) A matrix factorisation (MF) of $W \in k[\underline{x}]$ is a \mathbb{Z}_{2}-graded free $k[\underline{x}]$-module (possibly infinite rank) $X=X^{0} \oplus X^{\prime}$ and a $k[\underline{x}]$-linear odd map $d_{X}: X \rightarrow X$ such that $d_{X}^{2}=W \cdot 1_{X}$

$$
d x=\left(\begin{array}{cc}
x^{0} & x^{\prime} \\
0 & A \\
B & 0
\end{array}\right) \quad A B=B A=W \cdot I
$$

A morphism $f:(x, d x) \rightarrow(y, d y)$ is a $k[\underline{x}]$-linear even map s.t. $d y f=f d x$.

There are some triangulated categories associated to a potential

Def n The bicategory $\mathcal{L} G_{k}$ has potentials as objects and studied by Lazawiu-McNamee, Khovanov-Rozansky

$$
\mathscr{L} \mathscr{G}_{k}((k[\underline{x}], W),(k[\underline{y}], V)):=\operatorname{hmf}(k[\underline{x}, \underline{y}], V-W)^{\oplus}
$$

Theorem The bicategory $\mathscr{L} b_{k}$

- has adjoint for 1 -morphisms (Carqueville-Murfet '16)
- is symmetric monoiclal with cluals (Carqueville-Montoya '18)
- is a pivotal superbicategory (Godfrey-Murfet '18,'22)

This means $\mathcal{L} \xi_{k}$ determines a 2D TQFT of a kind which can evaluated bordisms like:

2. Composition

What has this got to do with "subatomic" structure in composition? Like any bicategoy $\mathscr{L} G_{k}$ has composition $(Y, X) \longmapsto Y \circ X$ for 1 -monphisms. Given potentials $W(\underline{x}), V(\underline{y}), U(\underline{z})$

$$
\begin{aligned}
& \operatorname{hmf}(k[\underline{y}, \underline{z}], U-V)^{n} \times \operatorname{hmf}(k[\underline{x}, \underline{y}], V-W) \longrightarrow \operatorname{hmf}(k[\underline{x}, \underline{z}], U-W) \\
& \downarrow \text { ? - - ? } \\
& \operatorname{hmf}(k[\underline{y}, \underline{z}], U-V)^{\oplus} \times \operatorname{hmf}(k[\underline{x}, y], V-W)^{\oplus} \quad \operatorname{hmf}(k[\underline{x}, \underline{z}], U-W)^{\oplus}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{HMF}(k[\underline{y}, \underline{z}], U-V) \times \operatorname{HMF}(k[\underline{x}, \underline{y}], V-w) \longrightarrow \operatorname{HMF}(k[\underline{x}, \underline{z}], U-W) \\
& (y, x) \quad\left(y \otimes_{k[\underline{y}]} x, d y \otimes 1+\mid \otimes d_{x}\right)
\end{aligned}
$$

We see that $(Y, X) \longmapsto Y \circ X$ is not so simple, if we want a finile-rank answer. It involves

1. Write down $Y \otimes X$
2. Invert the equivalence

$$
\begin{gathered}
\operatorname{hmf}(k[\underline{x}, \underline{z}], U-w)^{w} \xrightarrow{\sim} \xrightarrow{(z, e)} \operatorname{hmf}(k[\underline{x}, \underline{z}], U-w)^{\oplus} \\
y \oplus x
\end{gathered}
$$

3. Try to split in finite rank MF

What is this?
3. Cut

A supercategory is a category \mathcal{J} and functor $F: J \rightarrow \mathcal{J}$ with $F^{2}=$ id satisfying some axioms.
Any imf or HMF s a supercategory with $F(X)=X[1]$. For $n \geqslant 0$ let C_{n} denote the Clifford algebra generated by $\gamma_{1}, \ldots, \gamma_{n}, \gamma_{1}^{+}, \ldots, \gamma_{n}^{\dagger}$ of odd l degree s.t.

$$
\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=0, \quad \gamma_{i}^{t} j_{j}^{t}+\gamma_{j}^{t} \gamma_{i}^{t}=0, \quad \gamma_{i} \gamma_{j}^{t}+\gamma_{j}^{t} \gamma_{i}=\delta_{i j}
$$

Example (i) $S_{n}:=\Lambda\left(k \theta_{1} \oplus \cdots \oplus k \theta_{n}\right)$ is a left $C_{n}-\operatorname{module}, \gamma_{i}$ acts as $\left.\theta_{i}^{*}\right\lrcorner(-)$, $\gamma_{i}^{\dagger} \operatorname{acts}$ as $\theta_{i} \wedge(-)$. Also $C_{n} \cong \operatorname{Endk}\left(S_{n}\right)$.
(ii) $S_{m n}:=S_{m} \otimes_{k} S_{n}^{*}$ is a $C_{m}-C_{n}$-bimodule

Def n Let J be an idempotent complete supercategory. The (lifford thickening \mathcal{J}^{\bullet} of \mathcal{J} has as objects tuples (X, n, ρ) consisting of $X \in o b(J)$ and a left C_{n}-module structure $\rho: C_{n} \otimes_{k} X \longrightarrow X$. A mowhism $(X, n, \rho) \longrightarrow(Y, m, \tau)$ is a movphism of C_{m}-modules $S_{m, n} \otimes_{C_{n}} X \longrightarrow Y$.

Lemma $\mathcal{J} \xrightarrow{\cong} \mathcal{J}^{\bullet}, \quad X \longmapsto(X, 0, i d)$.

Proof C_{n} is Montatrivial, so it $(X, n, \rho) \in J^{*}$ there exists $\tilde{X} \in J$ with $X \cong S_{n} \otimes_{k} \widetilde{X}$ as C_{n}-modules. Then $(X, n, \rho) \cong(\widetilde{X}, 0$, id $)$ in J^{*} as

$$
(\tilde{x}, 0, i d) \longrightarrow(x, n, \rho)
$$

$$
\text { is } \quad S_{n} \otimes_{k} \tilde{x} \longrightarrow X \text {. }
$$

An object X of J^{*} specifies an object \tilde{X} of J indirectly via $\left\{\gamma_{i}, \gamma_{i}^{+}\right\}_{i=1}^{n}$. You may need to compute in order to actually extract \tilde{X}.

Def n The superbicategong ζ has the same objects as \mathscr{L} and

$$
\varphi((k[\underline{x}], w),(k[\underline{y}], V)):=\left(\operatorname{hm} f(k[\underline{x}, \underline{y}], V-w)^{w}\right)^{\bullet}
$$

finite rank MF + structure
with an explicit composition

$$
\zeta(v, U) \times C(w, v) \longrightarrow C(w, u) \quad I=\left(\partial_{y,}, V, \ldots, \partial_{y_{m}} V\right)
$$

$$
(y, x) \longmapsto\left(y \mid X:=Y \notin k[\underline{y}] X / I\left(Y \not{ }_{x}[\underline{y}] X\right)\right.
$$

we call this
the cut operation

$$
\begin{aligned}
& \gamma_{i}=\left[d_{y}+d_{x}, \partial_{\partial y_{i} v}\right]=: A t_{i} \\
& \gamma_{i} t=-\partial y_{i}\left(d_{x}\right)-\frac{1}{2} \sum_{q} \partial y_{q} \partial y_{i}(v) A t_{q}
\end{aligned}
$$

Theorem There are isomonphisms of Clifford modules (M'18)

$$
\text { and an equivalence } \mathcal{L} \cong \cong
$$

$$
\begin{aligned}
& Y \mid X \cong \Lambda\left(k \theta_{1} \oplus \cdots \oplus k \theta_{m}\right) \otimes_{k}\left(Y \otimes_{k[y]} X\right) \quad \operatorname{hmf}(V-W) \\
& { }^{\circ} \gamma_{i,} \gamma_{i}^{+}{ }^{\sigma} \theta_{i,}^{*}, \theta_{i} \\
& \operatorname{hmf}{ }^{\omega}(v-w) \xrightarrow{\cong} h m f^{\oplus}(V-w) \\
& \begin{array}{c}
\cong \downarrow \\
\varphi(w, v):=\operatorname{hmf}^{w}(v-w)^{\bullet} \leftrightarrow \cdots \mathcal{L} \text { ! }(w, v)
\end{array}
\end{aligned}
$$

4. Quantum wides

To ascertain how seriously we should take the analogy to pumping energy out of a physical system, we can consider the simplest possible example: composition of a chain of identity 1-cells on $\left(\mathbb{C}[x], x^{2}\right) \in \mathscr{L} \mathscr{S}_{\mathbb{C}}$

$$
\begin{aligned}
x_{n}^{2} \stackrel{\Delta_{n}}{\leftarrow} x_{n-1}^{2} & \stackrel{\Delta_{2}}{\longleftarrow} x_{1}^{2} \\
\Delta_{i} & \in \operatorname{hmf}\left(\mathbb{C}\left[x_{i}, x_{i-1}\right], x_{i}^{2}-x_{i-1}^{2}\right) \\
\Delta_{i} & =\Lambda\left(\mathbb{C} \psi_{i}\right) \otimes_{\mathbb{C}} \mathbb{C}[\underline{x}]=\mathbb{C}[\underline{x}] 1 \oplus \mathbb{C}[\underline{x}] \psi_{i} \\
d_{\Delta_{i}} & =\left(x_{i}-x_{i-1}\right) \psi_{i}^{*}+\left(x_{i}+x_{i-1}\right) \psi_{i} \\
1 & \psi_{i} \\
& =\left(\begin{array}{cc}
0 & x_{i}-x_{i-1} \\
x_{i}+x_{i-1} & 0
\end{array}\right)
\end{aligned}
$$

We have, since $\mathbb{C}[x] /\left(\partial_{x}\left(x^{2}\right)\right)=\mathbb{C}$

$$
\begin{aligned}
& \Delta_{n} \mid \Delta_{n-1}|\cdots| \Delta_{2}=\Delta_{n} \otimes_{\mathbb{C}\left[x_{n-1}\right]} \mathbb{C} \otimes_{\mathbb{C}}\left[x_{n-1}\right] \Delta_{n-1} \otimes \cdots \\
& \cdots \otimes_{\mathbb{C}\left[x_{2}\right]}^{\mathbb{C} \otimes_{\mathbb{C}}\left[x_{2}\right]} \Delta_{2} \\
& \cong \mathbb{C}\left[x_{n}, x_{1}\right] \otimes_{\mathbb{C}}\left(\Lambda k \psi_{n} \otimes_{\mathbb{C}} \Lambda k \psi_{n-1} \otimes \cdots \otimes \Lambda k \psi_{2}\right) \\
& \cong \mathbb{C}\left[x_{n}, x_{1}\right] \otimes \mathbb{C} \bigwedge\left(k \psi_{n} \oplus \cdots \otimes k \psi_{2}\right)
\end{aligned}
$$

For each cut we have Cliffordoperaton γ, γ^{\dagger}. For the $\Delta_{n} / \Delta_{n-1}$ cut

$$
\left.\begin{array}{l}
\gamma=-\frac{1}{2}\left(\psi_{n-1}^{*}+\psi_{n-1}+\psi_{n}-\psi_{n}^{*}\right) \\
\gamma^{t}=-\frac{1}{2}\left(\psi_{n-1}^{*}+\psi_{n-1}-\psi_{n}-\psi_{n}^{*}\right)
\end{array}\right\} \text { notice these are } \underline{x} \text {-free }
$$

According to our earlier prescription the process of computing $\Delta_{n} \circ \ldots \circ \Delta_{2}$ is

$$
\gamma_{1} \gamma^{\dagger} G \Delta_{n}\left|\Delta_{n-1}\right| \cdots \mid \Delta_{2}=z_{n}
$$

$$
\begin{equation*}
\operatorname{Im}\left(\gamma \gamma^{\dagger}\right)=\operatorname{Ker}(\gamma)=\operatorname{Im}\left(\gamma^{\dagger}\right)=2_{n-1} \tag{7.1}
\end{equation*}
$$

$\uparrow \mid$

$$
\Delta_{n} \circ \cdots \circ \Delta_{2} \quad(=\Delta \text { again })
$$

So what is $\operatorname{Ker}(\gamma)$?

$$
\begin{align*}
&-2 \gamma=\psi_{n-1}^{*}+\psi_{n-1}+\psi_{n}-\psi_{n}^{*} G N k \psi_{n} \otimes \Lambda k \psi_{n-1} \\
& \therefore-2 \gamma\left(1+\psi_{n} \psi_{n-1}\right)=\left(\psi_{n-1}+\psi_{n}\right)(1)+\left(\psi_{n-1}^{*}-\psi_{n}^{*}\right)\left(\psi_{n} \psi_{n-1}\right) \\
&=\psi_{n-1}+\psi_{n}+\left[-\psi_{n}-\psi_{n-1}\right]=0 \tag{*}\\
&-2 \gamma\left(\psi_{n}+\psi_{n-1}\right)=1+\psi_{n-1} \psi_{n}+\psi_{n} \psi_{n-1}-1=0
\end{align*}
$$

By dimension want dim $\operatorname{Ker}\left(\gamma G \wedge k \psi_{n} \oplus \wedge k \psi_{n-1}\right)=2$ so this is it. But what is going on here? And how do we continue this to compute $\Delta_{n} \cdots \cdots \Delta_{2}$? Physicists recognise ($*$) as Bell states or maximally entangled states. They write $\Lambda \mathbb{C} \psi=\mathbb{C} 1 \oplus \mathbb{C} \psi=\mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle=\mathbb{C}^{2}$ and

$$
\begin{array}{ll}
1+\psi_{n} \psi_{n-1} & \text { as }|00\rangle+|11\rangle \\
\psi_{n}+\psi_{n-1} & \text { as }|10\rangle+|01\rangle
\end{array}
$$

Computing $\Delta_{n} \cdot \Delta_{n-1}$ from $\Delta_{n} \mid \Delta_{n-1}$ consists in projecting onto these entangled states.

Tocut a long story short, the procedure (7.1) rediscovers the error correction process for a particular kind of quantum ensor correcting code on $\mathcal{H}=\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}(n-1$ copies $)$ called a stabiliser code. with $X|0\rangle=|1\rangle, X|1\rangle=|0\rangle$ and $X_{i}==\left|\otimes \cdots \otimes X_{X}^{i} \otimes \cdots \otimes\right|$ the code is

$$
S=\left\{X_{n} X_{n-1}, X_{n-1} X_{n-2}, \ldots, X_{3} X_{2}\right\} \subseteq \operatorname{Aut}_{\mathbb{C}}(\mathcal{H})
$$

and the codespace C is the joint +1 -eigenspace of all operator in S. This code is sometimes called a quantum wire (or Majorana chain) and it is closely related to the Ising model.

Lemma The idempotent e computing $\Delta_{n} \circ \cdots \Delta \Delta_{\text {, from }} \Delta_{n} / \ldots / \Delta$, is

$$
P=\prod_{i=2}^{n-1} \frac{1+x_{i+1} x_{i}}{2} \quad \gamma \gamma^{t}=\frac{1+x_{n} x_{n-1}}{2}
$$

the standard projector for the stabiliser code, hence

$$
\Delta_{n} \circ \cdots \circ \Delta_{1} \cong \mathbb{C}\left[x_{n}, x_{1}\right] \mathbb{C}^{C} \text { codespace }
$$

where a \mathbb{C}-basis for C is given by the entangled states

$$
|+\cdots+\rangle \pm 1-\cdots-\rangle \quad| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)
$$

Toreturn to our original theme: the cut operation $(Y, X) \mapsto Y \mid X$ followed by "eliminating" the Clifford action is our arswer to the "subatomic" stuacture lying inside the atomic operation $(Y, X) \longmapsto Y_{0} X$. In the simplest case this elimination process is identical with the process of enor-cowection in a particular uell-known stabiliser code, which can be viewed as "pumping out entropy".

We expect that following this recipe for equivaviant MFs will be a new source of error correcting codes.

Theorem Suppose $G G k[\underline{y}]=k\left[y_{1}, \ldots, y_{m}\right]$ is a finite group
acting so V is G-invariant and $g \cdot \partial y_{i} V \in \operatorname{spank}\left\{\partial y_{j} V\right\}_{j=1}^{m}$.
Let F_{θ} be the \mathbb{Z}_{2}-graded a-rep $\left(I=\left(\partial y_{1} V, \ldots, \partial_{y_{m}} V\right)\right)$

$$
F_{\theta} \otimes_{k} k[\underline{y}] / I \cong I / I^{2}[1]
$$

$\hat{\imath}$ conormal bundle crit
Then for G-equivariant Y, X

$$
\begin{array}{r}
(y \mid X)^{a} \cong\left[\Lambda F_{\theta}^{\otimes}\left(Y \otimes_{k[\underline{y}]} X\right)\right]^{a} \\
u \\
\left(y \otimes_{k[\underline{y}]} x\right)^{a}
\end{array}
$$

