From critical points to A_∞-categories

Daniel Murfet

therisingsea.org
Outline

I. From dynamical systems to A_∞-products

II. Constructing A_∞-categories via idempotents
Dynamical systems

A general non-linear dynamical system is given by a system of DEs

\[
\begin{align*}
 \dot{x}_1 &= F_1(x_1, \ldots, x_n) \\
 \dot{x}_2 &= F_2(x_1, \ldots, x_n) \\
 \vdots \quad & \quad \vdots \\
 \dot{x}_n &= F_n(x_1, \ldots, x_n)
\end{align*}
\]

\[
\dot{\mathbf{x}} = F(\mathbf{x})
\]

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^n\]

An important class of dynamical systems are those which are conservative, in the sense that there is a scalar potential \(f : U \rightarrow \mathbb{R} \) with \(U \subseteq \mathbb{R}^n \),

\[
F = \nabla f.
\]

\[
\{ \text{fixed points of system} \} = \{ \text{critical points of } f \} \quad \nabla f(\mathbf{x}) = 0
\]
Example Consider the system

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= -x_2
\end{align*}
\]

Solution trajectories look like \(x(t) = (Ae^t, Be^{-t}) \) for any \(A, B \in \mathbb{R} \).

The scalar potential governing this system is

\[
\begin{align*}
f &= \frac{1}{2}x_1^2 - \frac{1}{2}x_2^2 \\
\nabla f &= \begin{pmatrix} x_1 & 0 \\ 0 & -x_2 \end{pmatrix} \\
H_f &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
\]
Dynamical systems

To understand the dynamics near an isolated critical point of \(f \) we need to analyse the Hessian of \(f \), i.e.

\[
H_f := \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)_{1 \leq i, j \leq n},
\]

its eigenvectors and eigenvalues. Actually the right way to think of this data is as a symmetric bilinear form on the tangent space \(T_{x^*} U \) at a critical point \(x^* \in U \), i.e.

\[
(T_{x^*} U, \langle , \rangle) \quad \text{where} \quad \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle = \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{x = x^*}
\]

with \(u = x - x^* \),

\[
\dot{u} = H_f \big|_{x^*} u + \text{quadratic terms in } u \text{ involving higher derivatives of } f
\]

linear system
Morse Lemma If \(H_f \big|_{x^*} \) is invertible (i.e., the corresponding bilinear form is nondegenerate) for an isolated critical pt. \(x^* \) then there is a coordinate neighborhood around \(x^* \) where

\[
 f = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_n^2
\]

so that in those coordinates

\[
 H_f \big|_{x^*} =
\begin{pmatrix}
 1 & & & & \\
 & \ddots & & & \\
 & & 1 & & \\
 & & & -1 & \\
 & & & & -1
\end{pmatrix}
\]

Def. A critical point \(x^* \) is nondegenerate if \(H_f \big|_{x^*} \) is invertible.

\[
 \therefore \text{ locally } \quad u = H_f \big|_{x^*} u \quad \quad u = x - x^*
\]
Quadratic spaces

Definition The category Q of quadratic spaces over \mathbb{R} has

- objects are f.d. vector spaces equipped with a nondegenerate symmetric bilinear form.

- morphisms $Q(V,W) = \{ T: V \to W \text{ linear} \mid \langle Tu, Tv \rangle = \langle u, v \rangle \ \forall u, v \}$.

Example

- $X_{p,q} := (\mathbb{R}^p \oplus \mathbb{R}^q, \left(\begin{smallmatrix} I_p & 0 \\ 0 & -I_q \end{smallmatrix} \right))$ is a representative set of objects (Sylvester's law of inertia)

- $X_{1,0} = (\mathbb{R}, (1)) \xrightarrow{(1)} (\mathbb{R} \oplus \mathbb{R}, \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right)) = X_{1,1}$ is a morphism.

- $(T^* U, \langle , \rangle) \quad \left\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right\rangle = \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{x = x^*}$ at a nondeg. critical pt. x^*.

Lemma Q is a symmetric monoidal category under direct sum of v-spaces.
Clifford algebras

Associated to each quadratic space V is an algebra $C(V)$, the Clifford algebra which is universal among \mathbb{R}-algebras C (associative and unital) equipped with a linear map $l : V \to C$ satisfying

$$l(v)l(w) + l(w)l(v) = 2\langle v, w \rangle \cdot 1_C.$$ (so e.g. $l(v)^2 = \langle v, v \rangle \cdot 1_C$)

This thing exists, is naturally \mathbb{Z}_2-graded, $V \hookrightarrow C(V)^2$ is injective and $C(V)$ is $2^{\dim(V)}$ dimensional.

Examples $C(X_{0,0}) \cong \mathbb{R}$, $C(X_{0,1}) \cong \mathbb{C}$, $C(X_{0,2}) \cong \mathbb{H}$
Lemma $C(-)$ is a strong monoidal functor $Q \rightarrow \text{Alg}_{\mathbb{R}}^{\mathbb{Z}_2}$, i.e. there are natural isomorphisms $C(0) \cong \mathbb{R}$ and

$$C(V \otimes W) \cong C(V) \otimes_{\mathbb{R}} C(W).$$

really direct sum!

Critical point x^* of f \rightarrow quadratic space $(T_{x^*}U, Hf|_{x^*})$

\rightarrow Clifford algebra $C(T_{x^*}U, Hf|_{x^*})$

\rightarrow Abelian category $\text{Mod}^{\mathbb{Z}_2} C(T_{x^*}U, Hf|_{x^*})$

finite-dimensional \mathbb{Z}_2-graded modules
Def. Nondegenerate isolated critical points form a bicategory $\text{Crit}_{\mathcal{R}}^{\text{ndg}}$

- objects: quadratic spaces \mathcal{V}
- 1-morphisms $\mathcal{V} \to \mathcal{W}$ are \mathbb{Z}_2-graded finite-dimensional $\mathcal{C}(\mathcal{W}) - \mathcal{C}(\mathcal{V})$-bimodules.
- 2-morphisms are bimodule homomorphisms.

Proposition. $\text{Crit}_{\mathcal{R}}^{\text{ndg}}$ is a symmetric monoidal bicategory in which every object is fully dualisable. (duals for objects and 1-morphisms)

Example.
- $\text{Crit}_{\mathcal{R}}^{\text{ndg}}(O, \mathcal{V}) = \text{Mod}^{\mathbb{Z}_2} \mathcal{C}(\mathcal{V})$. ($O = X_{0,0} = \mathbb{I}$)
- $X_{0,1}^{\otimes 8} \simeq \mathbb{I}$ (Bott periodicity)
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Phase portrait

nondegenerate critical point

\[\text{Crit}_{\mathbb{R}}^{\text{ndg}} \]

\[\cdot \left(T_z^+ U, H_f \big|_{z^*} \right) \]
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Phase portrait

Around an isolated (degenerate) critical point \(\mathbf{x}^* \)

\[\dot{\mathbf{u}} = H_f \big|_{\mathbf{x}^*} \mathbf{u} + \text{quadratic terms in } \mathbf{u} \]

Linear system

where \(\mathbf{u} = \mathbf{x} - \mathbf{x}^* \), the dynamics do depend on the higher derivatives of \(f \).
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Phase portrait

nondegenerate critical point

\[\text{Crit}_{\mathbb{R}}^{\text{ndg}} \]

\[\bullet (T_{x^*} U, H_f |_{x^*}) \]

\[f = \frac{1}{3} x_1^3 - \frac{1}{2} x_2^2 \]

degenerate critical pt.

\[\dot{x}_1 = x_1^2 \]
\[\dot{x}_2 = -x_2 \]

\[\dot{u} = H_f |_{x^*} u + \text{quadratic terms in } u \text{ involving higher derivatives of the potential } f. \]

Question: What algebra to associate to \((f, x^*)\)?

- reduce to \(C(T_{x^*} U, H_f |_{x^*})\) in the nondeg. case
- form a symmetric monoidal bicategory
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_L^2 \]

Phase portrait

\[f = \frac{1}{3} x_1^3 - \frac{1}{2} x_2^2 \]

degenerate critical pt.

\[\dot{x}_1 = x_1^2 \]
\[\dot{x}_2 = -x_2 \]

Question: What algebra to associate to \((f, x^*)\)?

- reduce to \(C(T_{x^*} U, H_{f^*} |_{x^*})\) in the nondeg. case
- form a symmetric monoidal bicategory
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

\[f = \frac{1}{3} x_1^3 - \frac{1}{2} x_2^2 \]

\[\dot{x}_1 = x_1^2 \]
\[\dot{x}_2 = -x_2 \]

Question: What algebra to associate to \((f, x^*)\)?

- reduce to \(\mathcal{C}(T_{x^*} U, H_f |_{x^*})\) in the nondeg. case
- form a symmetric monoidal bicategory
Matrix factorisations

Let X be a \mathbb{Z}_2-graded f.d. module over the Clifford algebra

$$C(X_{p,q}) : \text{ generated by } \sigma_1, \ldots, \sigma_{p+q} \text{ subject to}$$

$$\sigma_1^2 = \ldots = \sigma_p^2 = 1$$
$$\sigma_{p+1}^2 = \ldots = \sigma_{p+q}^2 = -1$$
$$\sigma_i \sigma_j + \sigma_j \sigma_i = 0 \quad i \neq j$$
Matrix factorisations

Let X be a \mathbb{Z}_2-graded f.d. module over the Clifford algebra $C(\mathbb{R}[x_1, \ldots, x_{p+q}])$ generated by $\sigma_1, \ldots, \sigma_{p+q}$ subject to

\[
\begin{align*}
\sigma_1^2 = \cdots = \sigma_p^2 &= 1 \\
\sigma_{p+1}^2 = \cdots = \sigma_{p+q}^2 &= -1 \\
\sigma_i \sigma_j + \sigma_j \sigma_i &= 0 & \text{if } i \neq j
\end{align*}
\]

Dirac's idea

Set $A = \mathbb{R}[x_1, \ldots, x_{p+q}]$, and

\[X \otimes_A \mathbb{R} \ni \mathcal{E} = \sum_{i=1}^{n} x_i \sigma_i\]

\mathbb{Z}_2-graded free A-module

\[\mathcal{E}^2 = \sum_{i,j} x_i x_j \sigma_i \sigma_j\]

\[= \sum_i x_i^2 \sigma_i^2\]

\[= x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2\]

acting on $X \otimes_A \mathbb{R}$
Potentials Let \(R = k[x_1, \ldots, x_n] \) be a commutative \(\mathbb{Q} \)-algebra, then \(f \in R = k[x_1, \ldots, x_n] \)

is called a potential if

1. \(\partial x, f, \ldots, \partial x, f \) is quasi-regular

2. \(R / (\partial x, f, \ldots, \partial x, f) \) is a f.g. free \(k \)-module

3. the Koszul complex of \(\partial x, f, \ldots, \partial x, f \) is exact outside \(\text{deg. 0} \).

Example \(f \in C[x_1, \ldots, x_n] \) such that \(\dim \mathbb{C} C[x_1, \ldots, x_n] / (\partial x, f, \ldots, \partial x, f) < \infty \).

(isolated critical points)

Defn The DG\(\mathcal{A} \)-category \(\mathcal{A} = mf(R, f) \) has

- objects f.rank matrix factorisations of \(f \), i.e. \(X \in \{ d \}^3 = f \cdot 1_X \).

- morphisms \(\mathcal{A}(X, Y) = \{ \text{Hom}_R(X, Y), \alpha \mapsto dyx - (-1)^{\alpha} \alpha dx \} \).

This is a \(\mathbb{Z}_2 \)-graded DG\(\mathcal{A} \)-category over \(R \).
Remarks

• $\text{hmf}(R, f) := H^0 \text{mf}(R, f)$ is triangulated (Calabi-Yau).

• Given a quadratic space V with associated quadratic $f \in \text{Sym}(V^*)$

\[
\text{Mod}_{f, \text{d}} \mathbb{C}(V) \cong \text{hmf}(\text{Sym}(V^*), f)^{\infty}
\]

(Buchweitz-Eisenbud-Herzog)
Remarks

• $\text{hmf}(R, f) := H^0\text{mf}(R, f)$ is triangulated (Calabi-Yau).

• Given a quadratic space V with associated quadratic $f \in \text{Sym}(V^*)$

 $\text{Mod}_{f,a}^\mathbb{Z}_2 C(V) \cong \text{hmf}(\text{Sym}(V^*), f)^\omega$

 (Buchweitz-Eisenbud-Herzog)

From a potential f to an A_∞-algebra A_f

Assume k is a field and $\text{Sing}(f) = \{0\}$. Then there is a standard generator

$$\text{thick}(A) = \text{hmf}(R, f)^\omega$$

$$\text{perf End}_R(A) \cong \text{hmf}(R, f)^\omega$$

$$(Keller-Lefevre)$$

$$\text{perf}_\infty H^*\text{End}_R(A) \cong \text{hmf}(R, f)^\omega$$

A_∞-algebra A_f, is a Clifford algebra for quadratic f.

A_∞-products package higher derivatives of f.

A_∞-transfer (minimal model theorem)
Let Crit_R be the bicategory of A_∞-algebras $A(f,\pm)$ associated to isolated critical points and their A_∞-bimodules (\cong the bicategory $\mathcal{L}G_{1R}$).

Theorem (Carqueville–Montoya ’18) Crit_R is a symmetric monoidal bicategory in which every object is fully dualisable, and therefore determines an extended 2D framed TFT

$$\text{Bord}_{2,1,0}^{\text{fr}} \to \text{Crit}_R.$$

Moreover $\text{Crit}_R^{\text{ndg}} \subset \text{Crit}_R$.

essentially due to Buchweitz–Eisenbud–Herzog.
\[f = \frac{1}{2} x_1^2 - \frac{1}{2} x_2^2 \]

Phase portrait

\[f = \frac{1}{3} x_1^3 - \frac{1}{2} x_2^2 \]

degenerate critical point

\[\dot{x}_1 = x_1^2 \]
\[\dot{x}_2 = -x_2 \]

\[\text{Question: What algebra to associate to } (f, x^*)? \]

- reduce to \(C(T_{x^*} U, H_f|_{x^*}) \) in the nondeg. case
- form a symmetric monoidal bicategory
II. Constructing \mathcal{A}_∞-categories

Throughout k is a commutative \mathbb{Q}-algebra and $W \in R = k[x_1, \ldots, x_n]$ a potential

Question What is the geometric content of the \mathcal{A}_∞-products on $\text{hmf}(R, W)$? (not just the generator)

References

Preliminaries

Defn. A small \mathbb{Z}_2-graded ∞-category \mathcal{B} over k has a set $\text{ob}(\mathcal{B})$ of objects, and \mathbb{Z}_2-graded k-modules $\mathcal{B}(a, b)$ for all $a, b \in \text{ob}(\mathcal{B})$ equipped with suspended forward compositions which are odd linear maps

$$r_{a_0, \ldots, a_n} : \mathcal{B}(a_0, a_1)[1] \otimes \cdots \otimes \mathcal{B}(a_{n-1}, a_n)[1] \to \mathcal{B}(a_0, a_n)[1]$$

satisfying the ∞-constraints (without explicit signs)

$$\sum_{i \geq 0, j \geq 1, 1 \leq i + j \leq n} r_{a_0, \ldots, a_i, a_{i+j}, \ldots, a_n} \circ (\text{id}_{a_0 a_i} \otimes \cdots \otimes r_{a_i, \ldots, a_{i+j}} \otimes \cdots \otimes \text{id}_{a_{n-1} a_n}) = 0$$

Example. Any \mathbb{Z}_2-graded DG-category, $r_n = 0$ for $n \geq 3$.
Finite A_∞-model

Let $\mathcal{F}: k \to R$ be a morphism of commutative rings, \mathcal{A} a $D\mathcal{A}$-category over R.

Restriction of scalars gives a functor

$$
\begin{array}{ccc}
A_\infty\text{-}\text{cat}(R) & \xrightarrow{\mathcal{F}_*} & A \\
\downarrow & & \downarrow \\
A_\infty\text{-}\text{cat}(k) & \xrightarrow{\mathcal{F}_*(\mathcal{A})} & \mathcal{B}
\end{array}
$$

Def. A finite A_∞-model of \mathcal{A} over k is an A_∞-category \mathcal{B} over k with all Hom-spaces f.g. projective over k, A_∞-functors F, G and A_∞-homotopies $F \circ G \simeq 1$, $G \circ F \simeq 1$.

\[\text{may have } r_i \neq 0 \]
Minimal A_∞-model

Let $\phi: k \to R$ be a morphism of commutative rings, A a DG-category over R. Restriction of scalars gives a functor

$$
\begin{array}{ccc}
A_\infty\text{-cat}(R) & \xrightarrow{\phi_*} & A \\
\downarrow & & \downarrow \\
A_\infty\text{-cat}(k) & \xrightarrow{\phi_*} & \phi_*(A) \\
\end{array}
$$

$$
\xrightarrow{\mathcal{F}}
$$

$$(H^*(A), \{r_n\}_{n \geq 2})
$$

Def A minimal A_∞-model of A over k is an A_∞-structure $\{r_n\}_{n \geq 1}$ on $H^*(A)$ with $r_1 = 0$, r_2 induced by composition, and A_∞-functors F, G and A_∞-homotopies $F \circ G \cong 1$, $G \circ F \cong 1$.

Let $f: k \to R$ be a morphism of commutative rings, \mathcal{A} a $\mathcal{D}\mathcal{A}$-category over R

Restriction of scalars gives a functor

$$
\begin{array}{ccc}
A_\infty\text{-}cat(R) & \xrightarrow{f_\ast} & A_\infty\text{-}cat(k) \\
\downarrow & & \downarrow f_\ast \\
A_\infty\text{-}cat(f) & \xrightarrow{f_\ast(A)} & B \xleftarrow{C} E
\end{array}
$$

may have $r_i \neq 0$.

Def. An idempotent finite A_∞-model of \mathcal{A} over k is an A_∞-category B with all Hom-spaces f.g. projective over k, A_∞-functors F, G, E as above and A_∞-homotopies $F \circ G \simeq E, C \circ F \simeq 1$. ($E = 1$ gives finite models)
Why finite models?

- **Idempotent finite model**
 \[
 (\beta, E_1, E_2, \ldots, r_1, r_2, r_3, \ldots)
 \]
 \[A_{\alpha}\text{-cat}(k)^\infty\]
 \[
 (A, 1, r_1, r_2)
 \]

- **Finite model**
 \[
 (\beta, r_1, r_2, r_3, \ldots)
 \]
 \[
 (A, r_1, r_2)
 \]

- **Minimal model**
 \[
 (H^*(A), r_2, r_3, \ldots)
 \]
 \[
 (A, r_1, r_2)
 \]

- String field theory \((A_\infty)\) vs. topological field theory \((\Delta\text{ed})\).
 \[
 (H^*(A), r_2, r_3, \ldots)
 \]
 \[
 (H^*(A), r_2)
 \]

- The information in higher products is important (e.g. for studying moduli).

The question is: which kind of finite model best packages this information?

Physics refs. Lazaro \(\text{(JHEP 2001)}, \text{Lazaro-\text{-}Roiban} \text{(JHEP 2002)}\), Lazaro \(\text{(2006)}\), Carqueville-\text{-}Dowdy-\text{-}Recknagel \(\text{(JHEP 2012)}\), Carqueville-\text{-}Kay \(\text{(CMP 2012)}\), Baumgartl-\text{-}Brunner-\text{-}Gaberdiel \(\text{(JHEP 2007)}\), Baumgartl-\text{-}Wood \(\text{(JHEP 2009)}\), Knapp-\text{-}Omer \(\text{(JHEP 2006)}\).
idempotent finite model

\((\beta, E_1, E_2, \ldots, r_1, r_2, r_3, \ldots) \)

\((A, 1, r_1, r_2) \)

minimal model

\((H^*(A), r_2, r_3, \ldots) \)

\((A, r_1, r_2) \)
idempotent finite model

\((\beta, E_1, E_2, \ldots, r_1, r_2, \ldots)\)

12

\((A, 1, r_1, r_2)\)

\(k\) a field

minimal model

\((H^\ast(A), r_2, r_3, \ldots)\)

12

\((A, r_1, r_2)\)

Choose \(k\)-linear homotopy equivalences

\[
\begin{array}{ccc}
A(a, b) & \xrightarrow{f} & H^\ast A(a, b) \\
\downarrow g & & \downarrow f \\
1 - [dA, H] & & 1
\end{array}
\]

and transfer \(A\infty\)-structure to \(H^\ast(A)\)

• useful for special objects (e.g. \(k^{\text{stab}}\))
 (Seidel, Dyckerhoff, Efimov, Sheridan)

• depends on \(k\) being a field.
Idempotent finite model

\((β, E_1, E_2, ..., r_1, r_2, r_3, ...)\)

\[(A, 1, r_1, r_2)\]

- Exists for all of \(A = mf(W)\)
- Constructive when Gröbner methods are available (e.g. \(k\) a field or poly. ring).
- Downside: not minimal. However, we know TFT formulae (HRR, Kapustin-Li) can be derived directly from \(β, E_1\).
- For special objects can split \(E\).
- **Key point**: first enlarge \(A!\)

Minimal model

\((H^*(A), r_2, r_3, ...)\)

\[(A, r_1, r_2)\]

Choose \(k\)-linear homotopy equivalences

\[A(a, b) \xrightarrow{f} H^*A(a, b)\]

and transfer \(A_\infty\)-structure to \(H^*(A)\)

- useful for special objects (e.g. \(k^{stab}\)) (Seidel, Dyckerhoff, Efimov, Sheridan, Tu)
- depends on \(k\) being a field.
An idempotent finite A_∞-model of mf

\[A = mf(R, W) \quad R = k[x_1, \ldots, x_n] \quad t_i = \partial x_i, W, \ldots, t_n = \partial x_n W \]

\[A_\Theta = \wedge F_\Theta \otimes_R mf(R, W) \otimes_R \hat{R} \quad F_\Theta = k\mathcal{O}_1 \oplus \ldots \oplus k\mathcal{O}_n \]

\[B = R/I \otimes_R mf(R, W) \]

\[A \to A \otimes_R \hat{R} \quad \xrightarrow{\text{homotopy equiv.}} \quad A_\Theta \quad \xleftarrow{\text{homotopy equiv.}} \quad B \]

\[\begin{aligned}
A_\Theta & \quad \xrightarrow{\alpha} B \\
\text{e} & \quad \xmapsto{e} \quad E \quad \xleftarrow{\text{\text{Fe}C}} \\
\text{e}(\Theta) & = 0
\end{aligned} \]

\[\text{Theorem} \quad (B, E) \text{ is an idempotent finite } A_\infty \text{-model of } A \otimes_R \hat{R}. \]
Connections and Residues

Let k be a commutative Q-algebra, R a k-algebra, and t_1, \ldots, t_n a quasi-regular sequence in R such that R/I is f.g. projective over k, $I = (t_1, \ldots, t_n)$.

Lemma (Formal tubular neighbourhood) Any k-linear section δ of $R \to R/I$ induces an isomorphism of $k[[t_1, \ldots, t_n]]$-modules

$$\delta^* : R/I \otimes_k k[[t_1, \ldots, t_n]] \to \hat{R}$$

defined by

$$(\delta^*)^{-1}(r) = \sum_{M \in \mathbb{N}^n} r_M \otimes t^M$$

where the $r_M \in R/I$ are unique such that in \hat{R} we have

$$r = \sum_{M \in \mathbb{N}^n} \delta(r_M) t^M.$$
Connections and Residues

Let k be a commutative \mathbb{Q}-algebra, R a k-algebra, and t_1, \ldots, t_n a quasi-regular sequence in R such that R/I is f.g. projective over k, $I = (t_1, \ldots, t_n)$.

Upshot: If k is a field, $R = k[x_1, \ldots, x_n]$, δ^* may be computed by Gröbner methods.

In general,

$$\delta^* : R/I \otimes_k k[t_1, \ldots, t_n] \xrightarrow{\cong} \hat{R} \quad (k[[t]]\text{-linear})$$

$$\sum_{M \in \mathbb{N}^n} \theta(r_M) t^M = r$$

There is a k-linear connection $\nabla : \hat{R} \longrightarrow \hat{R} \otimes_{k[[t]]} \Omega^1_{k[[t]]/k}$, and

Theorem (Lipman, M) $\text{Res}_{R/k}\left[\frac{r \, dr_1 \cdots dr_n}{t_1, \ldots, t_n} \right] = \text{tr}_{R/I}\left(r[\nabla, r_1] \cdots [\nabla, r_n] \right)$
Connections and Residues

\[\delta^* : R/I \otimes_k \mathbb{k}[t_1, \ldots, t_n] \xrightarrow{\cong} \hat{R} \]

\[\nabla : \hat{R} \longrightarrow \hat{R} \otimes_{\mathbb{k}[[t]]} \bigoplus_{\mathbb{k}[[t]]} k \]

\[\text{Res}_{R/k} \left[\frac{rd_{t_1} \cdots dr_{t_n}}{t_1, \ldots, t_n} \right] = tr_{R/I} \left(r[\nabla, r_1] \cdots [\nabla, r_n] \right) \]
\[
\begin{align*}
A &= m_f(R, W) \cong k[x_1, \ldots, x_n] \quad d_{A}, m_2 \\
A_\otimes &= \Lambda F_\otimes \otimes_k m_f(R, W) \otimes_k \hat{R} \quad d_{A \otimes}, m_2 \\
B &= R/I \otimes_k m_f(R, W) \quad d_{B}, m_1, m_2, \ldots \\
\Lambda A \rightarrow A \otimes_k \hat{R} \xleftarrow{F} \rightarrow A_\otimes \xleftarrow{G} B
\end{align*}
\]

\[
At_A := \begin{bmatrix} \nabla, d_A \end{bmatrix}
\]

(Atiyah class of \(A \))

\[
6_\infty = \sum_{m \geq 0} (-1)^m (\zeta A \Lambda A)^m \zeta : B \rightarrow A_\otimes
\]

\[
\phi_\infty = \sum_{m \geq 0} (-1)^m (\zeta A \Lambda A)^m \zeta \nabla : A_\otimes \rightarrow A_\otimes
\]

\[
\delta = \sum_{m \geq 0} \lambda_i \Theta^* : A_\otimes \rightarrow A_\otimes
\]

\[
At_A, \delta \text{ rewritten using } \mathcal{Z}^* \]

\[
(A_\otimes(x, y), d_{\Lambda A}) \xleftarrow{h.a.} (B(x, y), d_{\Lambda B})
\]

\[
\text{transfer } A_\infty \text{-structure}
\]

\[
A_\otimes(x, y) \cong \Lambda F_\otimes \otimes_k B(x, y) \otimes_k k[x_1, \ldots, x_n] \supset B(x, y)
\]

\[
\nabla = \sum_i \Theta \frac{\partial}{\partial \Theta_i}, \quad \zeta \omega \otimes \varphi \varphi = \frac{1}{|\omega| + 1} \omega \otimes \varphi \varphi
\]

\[
\delta_3 : \beta[1] \otimes 3 \rightarrow \beta[1]
\]
\[\delta^*: \hat{\mathbb{R}}/\mathbb{I} \otimes_k k[[t_1, \ldots, t_n]] \to \hat{\mathbb{R}} \]
\[\nabla: \hat{\mathbb{R}} \to \hat{\mathbb{R}} \otimes_{k[[t]]} \Omega^1_{k[[t]]}/k \]

\[\text{Res}_{\hat{\mathbb{R}}/k} \left[\frac{r \, dr_1 \cdots dr_n}{t_1, \ldots, t_n} \right] = \text{tr}_{\hat{\mathbb{R}}/\mathbb{I}} \left(r [\nabla, r] \cdots [\nabla, r_n] \right) \]

\[\mathcal{A}_\theta = \wedge F_0 \otimes \Omega_{\hat{\mathbb{R}}} \]
\[\equiv \wedge F_0 \otimes \mathcal{B} \otimes k[[t]] \]

\[r_m^B = r_m^B \left([\nabla, dA], \lambda_1, \ldots, \lambda_n, \zeta \right) \]
Prove $\mathcal{J} \cong \mathcal{J}'$ by finding generators G, G' and \mathcal{A}_∞-iso $\text{End}(C) \cong \text{End}(C')$.

References

• N. Sheridan, “Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space” Inventiones 2015.

Some optional slides
Proof sketch

Choose homotopies λ_i such that $[d\mathcal{A}, \lambda_i] = t_i$.

There is a strict homotopy retraction of complexes over k

$$(\mathcal{A}_0(X,Y), d\mathcal{A}) = \left(\Lambda F_0 \otimes_k \text{Hom}_R(X,Y) \otimes_R \hat{R}, d\mathcal{A} \right)$$

$$e^\delta \uparrow \downarrow e^{-\delta}$$

$$\delta = \sum_i \lambda_i \Theta_i$$

$$(\Lambda F_0 \otimes_k \text{Hom}_R(X,Y) \otimes_R \hat{R}, d\mathcal{A} + \sum_i t_i \Theta_i^*)$$

by homological perturbation using connection

$$\nabla$$

using canonical projection

$$(\mathcal{B}(X,Y), \overline{d\mathcal{A}}) = \left(R/I \otimes_R \text{Hom}_R(X,Y), \overline{d\mathcal{A}} \right)$$
Proof sketch

The A^∞-transfer (minimal model) theorem (Kadeishvili, Merkulov, Kontsevich-Soibelman and for our purposes Markl) constructs A^∞-products on β and A^∞-homotopy equivalences F, G

\[
\begin{align*}
A_\theta & \xrightarrow{F} \beta \\
\Phi^{-1} & \xrightarrow{\text{h.e.}} \Phi & \pi e^{-\delta} \\
(e^\delta \beta_\infty) & \downarrow \Phi & (\beta (x, y), \overline{c_\mathcal{A}}) \\
(\overline{A_\theta (x, y), c_\mathcal{A}}) & \Phi^{-1} \Phi & 1 - \left[d_\mathcal{A}, H \right]
\end{align*}
\]

\[
F_1 = \Phi, \quad G_1 = \Phi^{-1}, \quad G \circ F \cong 1
\]

r_1^β, r_2^β induced from $r_1^\mathcal{A}, r_2^\mathcal{A}$.
\[A = mf(R; W) \Rightarrow k[x_1, \ldots, x_n] \]
\[A_\theta = F_\theta \otimes_k mf(R, W) \otimes_R \hat{\mathbb{R}} \]
\[\beta = R/I \otimes_k mf(R, W) \]
\[A \rightarrow A_\otimes \hat{\mathbb{R}} \rightarrow A_\theta \xrightarrow{f} \beta \]

\[A_\theta(x, y) = \bigwedge F_\theta \otimes_k \text{Hom}_R(X, Y) \otimes_R \hat{\mathbb{R}} \]

\[\approx \bigwedge F_\theta \otimes_k \text{Hom}_k(\tilde{X}, \tilde{Y}) \otimes_k \hat{\mathbb{R}} \]

(choose bases for \(X, Y\)

i.e. \(X \cong \tilde{X} \otimes_k R\))

\[\approx \bigwedge F_\theta \otimes_k \beta(X, Y) \otimes_k \mathbb{k}[t_1, \ldots, t_n] \]

\[\cup \]

\[\nabla = \sum_i \Theta_i \frac{\partial}{\partial t_i} \]

\[\zeta(w \otimes \alpha \otimes f) = \frac{1}{|w| + |f|} w \otimes \alpha \otimes f. \]
Feynman diagrams

Suppose $X = \Lambda F_3 \otimes k R$, $Y = \Lambda F_2 \otimes k R$ are Koszul-type MFs.

$\Lambda(F_0 \oplus F_3^* \oplus F_2) \otimes k R/I \otimes k [t \pm 1] \supset \Lambda(F_3^* \oplus F_2) \otimes k R/I$

$A_0 (X, Y)$, interior of trees

$B(X, Y)$, exterior

- Apart from Ω, all operators involved in computing A_∞-products can be written as polynomials in creation and annihilation operators.

- Feynman diagrams organise reduction of such trees to normal form.

Example: One contribution for $W = \frac{1}{T} x^j Y$ to

$\lambda_3 : \beta (x, x) [1] \otimes \beta (x, y) [1] \otimes \beta (y, y) [1] \rightarrow \beta (x, y) [1]$

$\lambda_3 (x^2 y \otimes x y z \otimes x^2 y z^*)$