
xyy

q

z

tape head

machine M

Figure 1.1: A Turing machine. The internal state is q, and the machine is currently
reading the square marked x.

1 Turing Machines

Informally speaking, a Turing machine is a computer which possesses a finite number
of internal states, and a one dimensional ‘tape’ as memory. We adopt the convention
that the tape is unbounded in both directions. The tape is divided into individual
squares each of which contains some symbol from a fixed alphabet; at any instant only
one square is being read by the ‘tape head’. Depending on the symbol on this square
and the current internal state, the machine will write a symbol to the square under
the tape head, possibly change the internal state and possibly move the tape head one
square left or right. Formally,

Definition 1.1. A Turing machine M = (Σ, Q, δ) is a tuple where Q is a finite set
of states, Σ is a finite set of symbols called the tape alphabet, and

δ : Σ×Q→ Σ×Q× {left, right, stay}

is a function, called the transition function.

The machine M is assumed to contain some designated symbol ∈ Σ called the
blank symbol, which is the only symbol allowed to occur infinitely often on the tape.
One also assumes that there is a starting state qstart ∈ Q, along with a halting state
qhalt ∈ Q.

Definition 1.2. Let M = (Σ, Q, δ) be a Turing machine, and let w ∈ Σ∗. We say M
halts on input w if, when simulated on a tape which initially contains only the word w,
the machine eventually reaches the state qhalt. If M halts on w, we write M(w) to mean
the non-blank contents of the tape upon halting; otherwise we leave M(w) undefined.
In this way, M can be considered as a partial function M : Σ∗ → Σ∗. One says that a
partial function F : Σ∗ → Σ∗ is computable if there exists a Turing machine whose
associated partial function is F .

One of the surprising features of the Turing machine model is that adding additional
features does not increase its computing power. It may speed up execution, but does
not change the set of functions which are computable. For example, consider a variant
of the Turing machine model wherein a machine may have more than one tape, with

1

the tape heads moving independently. Formally, this means that the transition function
becomes

δ : Σn ×Q→ Σn ×Q× {left, right, stay}n

for some n ≥ 1.

Lemma 1.3. Any multi-tape Turing machine can be simulated by a single-tape Turing
machine.

Proof. Let M = (Σ, Q, δ) be an n-tape Turing machine. The idea we will use is to
design a single-tape machine which print all tapes on top of one another, in the sense
that the kth square of the single-tape machine will contain each of the kth squares of
the n-tape machine. The main complication is that we also need to simulate of each of
the head positions. The action of the single-tape machine then consists of a loop with
two parts: we traverse the tape from left to right to find each symbol which is under
a tape head, and then traverse the tape from right to left, updating the symbols, and
shifting each of the simulated tape heads the appropriate direction.

The single-tape machine has tape alphabet

(Σ× { , h})n,

with the blank symbol ((,), . . . , (,)). The set of states is

((Σ ∪ {?})n ×Q)︸ ︷︷ ︸
Used in scan phase

∪ ((Σ ∪ {?})n ×Q× {left, right, stay, update}n)︸ ︷︷ ︸
Used in update phase

where ? is assumed to not be a symbol in Σ. Given this, the behaviour of the single-tape
machine is as follows. We begin in state (?, ?, . . . , ?, qstart).

• Scan phase. The machine traverses the tape once from left to right. Any time a
symbol such as ((σ1,), . . . , (σi, h), . . . , (σn,)) is observed, the ith ‘?’ in the state
is changed to the symbol σi. In this way, the machine keeps track of each of the
symbols under the simulated tape heads. Once the machine has reached a state
of the form q = (σ1, . . . , σn, q) where each σi ∈ Σ, the machine enters the update
phase.

• Update phase. The update phase begins by transitioning to the state

δ(q) =: (σ′1, ..., σ
′
n, q
′, d1, ..., dn).

Our task is now to traverse the tape from right to left, updating the symbols
and head positions. To do this, every time we encounter a symbol such as
((σ1,), . . . , (σi, h), . . . , (σn,)), the machine does the following:

– If di = ‘stay’, we simply update the pair (σi, h) to (σ′i, h), and then continue
moving left.

2

– If di = ‘left’ (resp. ‘right’), we update the pair (σi, h) to (σ′i,), change di to
‘update’, and then move the tape head left (resp. right)1.

– Finally, if at any point one of the di is ‘update’, we print an h at the corre-
sponding position, and change di to ‘stay’.

During this process, whenever a given symbol σi is updated on the tape to σ′i, we
change the corresponding symbol in the state back to ‘?’. Once all of the symbols
have been updated, we change our state to (?, ?, . . . , ?, q′) and return to the scan
phase.

2 Universal Turing Machines

A Turing machine U is universal if it can simulate any other Turing machine M
when supplied with a tape containing a description of M . By changing the contents
of the description tape, a universal Turing machine can therefore be used to compute
any computable function. The remainder of the talk will be devoted to outlining one
possible construction. The input to U will simply contain a list of tuples which defines
the transition function of M , along with a section of the tape on which the state of M
and tape contents are written. The operation of U then involves repeatedly locating
the appropriate tuple and updating the state and tape accordingly.

One obstacle is that one must encode the simulated states using a series of symbols
(for example, using binary) on the tape.

Definition 2.1. Let M = (ΣM , QM , δM) and U = (ΣU , QU , δU) be Turing machines.
A translation of M for U is an injective function T : ΣM ∪ QM → Σ∗U such that for
all x, y ∈ ΣM ∪QM we have |T (x)| = |T (y)|.

In other words, a translation is a way of encoding each symbol and each state of M
as some fixed length word in the language Σ∗U . Note that a translation T can be lifted
to a function T : Σ∗M ∪QM → Σ∗U ; given w = w1w2 . . . wk ∈ Σ∗M , we define

T (w) = $T (w1) $T (w2) $. . . $T (wk) $

where $ ∈ ΣU is some designated punctuation symbol which is not used by T .

Definition 2.2. A Turing machine U = (ΣU , QU , δU) is universal if, given any Turing
machine M = (ΣM , QM , δM), there exists a translation T : ΣM ∪QM → Σ∗U and a word
cM ∈ Σ∗U such that for any word w ∈ Σ∗M we have U(cM T (w)) = T ◦M(w). We call
cM the code for M .

1If we have to update multiple heads at once because they are at the same position, this poses no
problem. The only case we need to consider is when one head needs to move left, and the other right.
In this case, we simply update the head which moves right first and ignore the head which moves left.
Once the head which moves right has been updated, we continue scanning the tape from right to left,
encounter the head which had to move left again, and update it then.

3

Theorem 2.3. There exists a universal Turing machine U .

Proof. We will describe a three-tape Turing machine U , whose tapes will be called
the description tape, the state tape, and the working tape respectively. The tape
alphabet of U is

ΣU = { , 0, 1,#, $},

and the set of states of U is

QU = { halt, compSymbol, compState, nextTuple, updateSymbol,

updateState, updateDir, resetDescr }.

We will defer describing the transition function δU for the moment.
Given a Turing machine M , define the translation T : ΣM ∪QM → Σ∗U by sending

each element of ΣM ∪QM to some unique binary string, each of the same length k. The
code cM for M is defined as follows: for each (σ, q) ∈ ΣM×QM , let (σ′, q′, d) = δM(σ, q),
and define Sσ,q ∈ Σ∗U as the word

T (σ) $T (q) $T (σ′)rev $T (q′)rev $ d#.

where arev means the reversal of a, and where the direction d is encoded as a sequence
of k+ 1 zeroes to mean ‘left’, k+ 1 ones to mean ‘right’, and the empty string to mean
‘stay’. The code cM is then the concatenation of all such words Sσ,q.

Suppose that we wish to simulate M on input w ∈ Σ∗M . Let q be the starting state
of M . The machine U should begin with the word cM on its description tape, T (q) on
the state tape, and T (w) on the working tape. Each tape head should begin on the
leftmost non-blank symbol, and the starting state of U is ‘compSymbol’. Given this,
the operation of U is as follows:

• The state ‘compSymbol’ compares the word encoding the current symbol on the
working tape with the first tuple on the description tape, by reading both from
left to right. This is performed by checking each bit in turn, until we either find
a bit in which they differ (in which case we enter the state ‘nextTuple’), or we
reach a $ on the description tape (in which case we go to ‘compState’).

• The state ‘compState’ is similar; we compare the word on the state tape with
the tuple on the description tape. If they differ we go to ‘nextTuple’, otherwise
‘updateSymbol’.

• The state ‘nextTuple’ moves the tape head on the description tape right until the
symbol # is encountered, as well as moving the other two tape heads left until
a blank is encountered. This has the effect of resetting the machine to prepare
for checking the next tuple on the description tape. Following this, all three tape
heads move right and we return to ‘updateSymbol’.

4

• The state ‘updateSymbol’ then copies the third word of the tuple onto the working
tape. Note that when the state ‘updateSymbol’ is reached, the tape head on the
description tape is on the immediate left of the symbol to copy, while the tape head
on the working tape is on the immediate right of the current simulated symbol.
It is for this reason that the word encoding the symbol on the description tape
is reversed; in order to copy from the description tape to the working tape, the
description tape head is moving right while the working tape head is moving left.
The state ‘updateState’ is similar. We than transition to ‘updateDir’. At this
point the working tape head is over the $ immediately to the left of the current
simulated symbol.

• The state ‘updateDir’ reads the word on the description tape which corresponds
to the direction to move. For each symbol 0 we move the working tape head left,
and for each symbol 1 we move the working tape head right. Once the description
tape head reads the symbol #, we enter the state ‘resetDescr’.

• The state ‘resetDescr’ simply moves the tape head on the description tape left
until a blank symbol is encountered. At this point, we simply move all tape heads
right, and return to the state ‘compSymbol’.

3 References

1. M. Minsky, Computation: finite and infinite machines, Prentice-Hall Inc., Engle-
wood Cliffs N.J., 1967.

2. M. Sipser, Introduction to the theory of computation, Thomson Course Technol-
ogy, Boston, 2006.

3. A. Turing, On Computable Numbers, with an Application to the Entscheidungsprob-
lem, Proceedings of the London Mathematical Society, s2-42, 1937, 230–265.

5

	Turing Machines
	Universal Turing Machines
	References

