
1. Definitions

First, we give a brief overview of second order propositional logic. This extends the usual language
of propositional logic to also include quantifiers over propositions. Under the BHK interpretation, a
construction of ∀pϕ(p) is a function which, given a proposition p, returns a proof of ϕ(p).

In System F, we expand our set of types to include all second order propositional logic formulas
which can be built from the connectives → and ∀.

Definition: We say M is a term of type τ in Γ, when M can be derived using the following
rules.

(Var) Γ, x : τ ` x : τ

(Abs)
Γ, x : σ `M : τ

Γ ` (λx : σ M) : σ → τ

(App)
Γ `M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

(U. Abs)
Γ `M : σ

Γ ` Λα.M : ∀ασ
(α /∈ FV(τ) for each xτ ∈ FV(M))

(U. App)
Γ `M : ∀ασ
Γ `Mτ : σ[α := τ ]

(σ any type)

The first three rules are the same as for simply typed λ-calculus; the last two (universal abstraction
and application) deal with quantification over types. Here, α is any atomic type, called a type variable.

The purpose of the restriction in universal abstraction is to ensure that types of terms remain well
defined. For instance, consider the term Λα.xα. Recall that the environment Γ must assign types to
all free variables in expressions on the right of the `; but in the above expression the free variable x
does not have a well defined type, as α is a type variable which ranges over all types! Note that it is
acceptable to form terms such as Λαλxα.xα, as x is not free in this expression.

We should define precisely what we mean by a free variable:
Definition: The set of free variables FV(M) of a term M is the set of all object and type

variables free in M .
Substitution into object variables is exactly the same as in the simply typed λ-calculus, with the

additional rules

(Mτ)[x := P ] = M [x := P ]τ

(Λα.M)[x := P ] = Λα.M [x := P ] (α /∈ FV(P ))

We now also have substitution of type variables, which use the following rules:

xρ[α := σ] = xρ[α:=σ]

(MN)[α := σ] = M [α := σ]N [α := σ]

(λxρ.M)[α := σ] = λxρ[α:=σ].M [α := σ]

(Mτ)[α := σ] = M [α := σ]τ [α := σ]

(Λβ.M)[α := σ] = Λβ.M [α := σ] (β /∈ FV(σ) ∪ {p})

Likewise, we have two notions of β-reduction:

(λxτ .M)N →β M [x := N ] (Λα.M)τ →β M [α := τ ]

As before, the subject reduction theorem holds, and hence well-typed expressions remain well-typed
after β-reduction:

Theorem: If Γ `Mτ and M �β N then Γ ` Nτ .
The proof is essentially the same as the simply typed case, just with more possibilities to check in

the induction.

1



2. Basic Theorems

As in simply typed λ-calculus, we have the strong normalisation and Church-Rosser properties:
Theorem: If M1 ∈ Λwt then there exists M2 ∈ NF with M1 �β M2.
Theorem: If M1 �β M2 and M1 �β M3 then there exists M4 ∈ Λwt with M2 �β M4 and

M3 �β M4.
This tells us that normal forms uniquely exist, and hence the equivalence of any two terms in

System F is a decidable problem. However, the obvious decision procedure (reduce both terms to their
normal forms and compare) has non-elementary time complexity; it is not bounded by any tower of
exponentials.

The proof for the strong normalisation theorem is based on the corresponding proof for simply
typed λ-calculus, but the naive translation is problematic. Given a term M∀αα, we would like to
define M to be reducible if and only if Mτ is reducible for all τ . But this definition is circular, as one
possible τ is indeed ∀αα! The idea is instead to use a method known as reducibility candidates, but
this is beyond the scope of this talk.

Since System F is strongly normalising, it cannot be Turing complete; indeed it can only express
programs which halt. Luckily, this turns out to not be such a problem, as:

Theorem: The class of integer functions expressible in System F are exactly the functions provably
total in second-order arithmetic.

Here, by provably total we mean that second order arithmetic proves the formula which expresses
“for all n, the program e with input n terminates and returns an integer”, where e is an algorithm
that represents the function f .

The remainder of the talk will be devoted to showing exactly how System F can express functions,
integers and other data types.

3. Expressibility of System F

Part of the power of System F comes from the fact that we can represent inductive data types
in the language. Suppose we wish to model some data type ρ with constructors f1, ..., fn; that is, n
functions which take in some number of inputs, and return an element of the data type. In other
words, each fi is a function of type σi = τ1i → ...→ τkii → ρ. Define ρ to be the data type:

ρ = ∀α.σ1[ρ := α] → ...→ σn[ρ := α] → α

We now give some examples:

Example 1: (Church numerals)
The two basic constructors for natural numbers are a constant Z (zero), and a function S from

ω → ω (successor). Natural numbers therefore correspond to the type

ω = ∀α.α→ (α→ α) → α

The two constructors may be represented by the λ-terms:

Z = Λαλxαλyα→α.x S = λtωΛαλxαλyα→α.y(tαxy)

This is entirely analogous to Church numerals for simply typed or untyped λ-calculus. The integer
n is represented by n = Λαλxαλyα→α.y(y(...(yx)...)). Additionally, we have the following:

Proposition: The only closed normal terms of type ω are the Church numerals.
Recall a term is closed if it contains no free variables.
Proof: Any closed normal term of type ω must be in head normal form; that is, of the form

X = Λαλxαλyα→α.M , where M is normal and of type α. Since α is a type variable, M cannot be an
abstraction. We will prove by induction that M = y(...(yx)...) for some number of y.

2



Suppose for a contradiction that M = RS or M = Rτ where R 6= y. Then since M is normal, R
cannot be an abstraction; nor can it be a variable since M is well typed. Hence R must be of the form
R′S′ or R′α′. Since X was closed, and the type of R′ is more complex than both that of x and y, it
follows that X must be an abstraction. But this is a contradiction, as then R would be a redex.

We conclude that either M is x, or M = yM ′ for some M ′; the result now follows by induction
(applying the same argument to M ′ of type α).

Example 2: (Lists)
Given a type τ , we wish to form the type Lτ , whose objects are finite lists of elements from τ . The

two constructors are N of type Lτ (the constant list) and C of type τ → Lτ → Lτ (the function which
appends a single element to a given list).

Analogously to the above, we have:

Lτ = ∀α.α→ (τ → α→ α) → α

N = Λαλxαλyτ→α→α.x

C = λsτλtLτΛαλxαλyτ→α→α.ys(tαxy)

The list (s1, ..., sn) is represented by

Cs1(Cs2(...(CsnN)...)) = Λαλxαλyτ→α→α.ys1(ys2(...(ysnx)...))

It is possible to encode various familiar functions for lists using this definition. For instance, the
length function is given by:

len = λlLτΛαλxαλyα→α.lαx(λtτ .y)

We can concatenate two lists by just composing the corresponding λ-terms in the usual way:

concat = λlLτλmLτΛαλxαλyτ→α→α.(lα(mαxy)y)

It is also possible to define functions such as deletion of the first element, or reversal of a list. Such
constructions are not simple; this is not a shortcoming of System F so much as it is a shortcoming
of λ-calculus in general. The difficulties are not unlike those seen when constructing a predecessor
function for Church numerals in the untyped λ-calculus.

Example 3: (Binary trees)
Trees can be built inductively from two smaller trees. The constructors are therefore N : T and

C : T → T → T , given by:

Tτ = ∀α.α→ (α→ α→ α) → α

N = Λαλxαλyα→α→α.x

C = λsTλtTΛαλxαλyα→α→α.y(sαxy)(tαxy)

These trees do not actually store any data; the only real information content is just the shape of
the tree. However it is fairly straightforward to modify this definition to be able to store data of type
τ at each node however; simply change the constructor C : T → T → T to be C : τ → T → T → T .

4. References

1. Sørensen, Urzycz; Lectures on the Curry-Howard Isomorphism, Ch.11
2. Girard; Proofs and Types, Ch.11, 15

3


