
1 Simply typed λ-calculus (ala Church)

Definition 1.1. A simple type is a propositional formula built from atoms and the
connective →. The set of all simple types is denoted Φ→.

Definition 1.2. We write xτ to mean that x is a variable of type τ . An environment
Γ is a finite set of variables {xτ11 , . . . , xτnn }.

Definition 1.3. We say M is a term of type τ in Γ, written Γ `M τ , when M can be
derived using the following rules.

(Var) Γ, xτ ` xτ

(Abs)
Γ, xσ `M τ

Γ ` (λxσ.M τ )σ→τ

(App)
Γ `Mσ→τ Γ ` Nσ

Γ ` (MN)τ

Note in particular that it is only sensible to talk about applications when the types
are compatible. There exist λ-terms which cannot be assigned types according to the
above rules. One example is (λx.xx).

Example 1.4. Some well-typed terms are:

• ` λxσ.x of type σ → σ.

• ` λxσyτ .x of type σ → τ → σ. Note → is right-associative; i.e. σ → τ → σ =
σ → (τ → σ).

• ` λxσ→τ→ρyσ→τzσ.xz(yz) of type (σ → τ → ρ)→ (σ → τ)→ σ → ρ.

Some useful properties of the simply typed λ-calculus include:

Theorem 1.5. (Subject reduction) If Γ ` Mσ and M →β N then Γ ` Nσ. Hence
well-typed expressions remain well-typed after reductions.

Theorem 1.6. If Γ `Mσ and Γ `M τ then σ = τ .

Aside: There exists a variant of the simply typed λ-calculus in which bound variables
are not given types, in which case this theorem does not hold; for instance, λx.x has
both the type σ → σ and the type τ → τ .

1



2 Normalisation properties

Definition 2.1. A term M is said to be in normal form if M contains no β-redex;
that is, no subterm of the form (λx.P )Q.

Definition 2.2. Let M be a term. We say that M is weakly normalisable if there
exists some M ′ in normal form such that M �β M ′. We say that M is strongly
normalisable if there does not exist an infinite β-reduction path starting from M .

There exist terms in the untyped λ-calculus which are neither strongly nor weakly
normalisable; for instance (λx.xx)(λx.xx), as well as terms which are weakly but not
strongly normalisable such as (λxy.y)((λx.xx)(λx.xx)). However, we will see that in
the simply typed λ-calculus, every term is strongly normalisable.

Definition 2.3. Suppose that M is strongly normalisable. Then ν(M) denotes the
maximum possible length of a normalisation sequence beginning with N .

The fact that ν is always finite if M is strongly normalisable deserves justification;
perhaps M could contain infinitely many reduction paths each of finite length, but
unbounded overall. To see that this cannot happen, we note that any given λ-term is
finite and hence contains only finitely many β-redexes. Hence at any given point in a β-
reduction path, we only have finitely many choices as to which β-redex to reduce next.
Hence we can apply König’s Lemma; a finitely branching tree with no infinite branch is
finite. Specifically, our nodes correspond to λ-terms, and our edges correspond to the
choices we can make at a given node.

Definition 2.4. Let τ be a type. The degree of τ is

deg(τ) =

{
0 if τ is atomic

1 + max{deg(σ), deg(ρ)} if τ = σ → ρ

Essentially, one should think of the degree of a type as its “complexity”, a measure
of the maximum amount of recursion it contains.

This notion of degree of type allows us to quite readily prove the weak normali-
sation theorem for simply typed lambda calculus; that is, the statement that every
term has a normal form. As a proof sketch, the idea is to come up with a β-reduction
strategy that is guaranteed to terminate in a normal form. Given a term M containing
one or more β-redexes, the strategy will be to reduce the rightmost redex within M
with type of maximum degree n. This may produce new redexes, or copy existing ones,
but any such redexes are guaranteed to have type of degree less than n. Hence each
reduction decreases the number of redexes of maximal degree; repeating this process is
therefore guaranteed to terminate in a normal form.

While the simply typed λ-calculus is strongly normalisable, this important property
does not come for free. In particular, untyped λ-calculus is well known to be Turing
complete, which is not true of simply typed systems. One hint that this is the case is

2



that the strong normalisation theorem essentially tells us that any function which is
able to be encoded by the simply typed system must be calculable by a program which
halts.

In fact the expressive power of the simply typed system is even weaker than we
would hope. The exact class of functions it can define are the extended polyno-
mials; the smallest class of functions closed under compositions, and containing the
constants 0 and 1, projections, addition, multiplication, and the conditional function
(cond(a, b, c) = b if a = 0, and = c otherwise). In particular, we do not have primitive
recursion or minimisation in general.

One possible modification of the simply typed calculus which increases the expres-
sive power while still maintaining strong normalisation is System F , which introduces
polymorphism.

3 Proof of the strong normalisation theorem

Definition 3.1. We first define REDτ , the set of reducible terms type τ , by induction
on type.

• If τ is atomic, then a term of type τ is reducible if it is strongly normalisable.

• Otherwise τ = σ → ρ. A term M of type τ is reducible if, for every reducible
term N of type σ, MN is reducible of type ρ.

Definition 3.2. We say a term M of type τ is prereducible if M ′ ∈ REDτ for every
term M ′ with M →β M

′.

Lemma 3.3. Let M be a term of type τ .

1. If M ∈ REDτ then M is strongly normalisable.

2. If M ∈ REDτ and M �β M
′ then M ′ ∈ REDτ .

3. If M is prereducible and is not an abstraction then M ∈ REDτ .

Proof. Induction on degree of type. Suppose that τ is atomic. (1) is immediate by
definition. (2) is the statement that if M is strongly normalisable then so is every
term to which M reduces. (3) follows from the fact that if M is prereducible, then any
β-reduction path starting from M contains a strongly normalisable term, and hence M
is strongly normalisable. Now let τ = σ → ρ, and suppose that the lemma holds for
each type of degree less than deg(τ).

(1) Suppose that M ∈ REDτ , and let x be a variable of type σ. Since x is
prereducible and not an abstraction, by the induction hypothesis x ∈ REDσ. Since
M ∈ REDτ , it follows that Mx ∈ REDρ and thus Mx is strongly normalisable by the
induction hypothesis. So M must be strongly normalisable as well, for if there existed
an infinite reduction path within M , there would also exist one in Mx as well as we

3



could simply expand within M in exactly the same way, ignoring the presence of x
entirely.

(2) Suppose that M ∈ REDτ and M �β M
′, and let N ∈ REDσ. Since M ∈ REDτ

we therefore have MN ∈ REDσ. In addition, MN �β M
′N , as the same sequence

of β-reductions within M works. As deg(ρ) < deg(τ), by the induction hypothesis we
have M ′N ∈ REDρ. Since this holds for any N ∈ REDσ, we conclude that M ′ ∈ REDρ.

(3) Suppose M of type τ is prereducible and not an abstraction. We wish to show
that MN ∈ REDρ for each N ∈ REDσ; by our induction hypothesis it suffices to show
that MN is prereducible. By the induction hypothesis N is strongly normalisable, and
so ν(N) <∞. We will reason by a secondary induction on ν(N).

For the base case, suppose that ν(N) = 0 and that MN →β P . Since M is not
an abstraction and N contains no β-redex, we must have P = M ′N for some term M ′

with M →β M
′. Since M is prereducible, M ′ ∈ REDτ and hence P = M ′N ∈ REDρ,

so MN is prereducible.
For the inductive step, suppose that ν(N) = n, and that MN0 is prereducible for

any N0 with ν(N0) < n. If MN →β P , we either have P = M ′N for some M →β M
′,

or P = MN ′ for some N →β N
′. If P = M ′N , the proof that P ∈ REDρ is the same as

in the base case. If instead P = MN ′, then since N has type σ and deg(σ) < deg(τ), by
the first induction hypothesis N ′ ∈ REDσ. Since ν(N ′) < ν(N) = n, by our secondary
induction hypothesis we have P = MN ′ ∈ REDρ. Hence MN is prereducible.

We have shown that MN is prereducible for each N ∈ REDσ. Since deg(ρ) <
deg(τ), it follows that MN ∈ REDρ, and hence M ∈ REDτ .

Lemma 3.4. If M is a term such that M [xσ := N ] ∈ REDρ for each N ∈ REDσ, then
λxσ.M ∈ REDσ→ρ.

Proof. Let N ∈ REDσ. Since (λxσ.M)N is not an abstraction, by Lemma 3.3 it suffices
to show that (λxσ.M)N is prereducible.

Note that M and N are both reducible; M being reducible follows from the fact
that M [x := x] is reducible by hypothesis. Hence they are both strongly normalisable
by Lemma 3.3. We will reason by induction on ν(M) + ν(N).

For the base case, suppose that ν(M) +ν(N) = 0 and that (λxσ.M)N →β P . Since
M and N are in normal form, we must have P = M [x := N ] which is reducible by
hypothesis. So (λxσ.M)N is prereducible, hence reducible by Lemma 3.3.

For the inductive step, suppose that ν(M) + ν(N) = n, and that (λxσ.M0)N0

is reducible for any M0 ∈ REDρ, N0 ∈ REDσ satisfying M0[x := N0] ∈ REDρ and
ν(M) + ν(N) < n. If (λxσ.M)N →β P , then either

(i) P = M [x := N ] which is reducible by hypothesis.
(ii) P = (λxσ.M ′)N , where M →β M

′. Then ν(M ′) < ν(M), and since M [x := N ]
is reducible so is M ′[x := N ] by Lemma 3.3. It follows from the induction hypothesis
that P is reducible.

(iii) P = (λxσ.M)N ′, where N →β N
′. Then ν(N ′) < ν(N), and M [x := N ′] is

reducible again by Lemma 3.3, so by the induction hypothesis P is reducible.

4



In each case P is reducible. So (λxσ.M)N is prereducible, hence reducible. Since
N ∈ REDσ was arbitrary, it follows that λxσ.M ∈ REDσ→ρ.

Lemma 3.5. Let M be a term (not necessarily reducible). Suppose that the free

variables of M are ~x = (x1, ..., xk) of types τ1, ..., τk. If ~N = (N1, ..., Nk) are reducible

terms of types τ1, ..., τk, then M [~x := ~N ] is reducible.

Proof. Induction on the structure of M .
If M is a variable, trivial.
If M = P Q, then by then induction hypothesis P [~x := ~N ] and Q[~x := ~N ] are

reducible. Hence P [~x := ~N ]Q[~x := ~N ] is reducible by definition. This is exactly

(P Q)[~x := ~N ].
Lastly, suppose M = (λy.P ) is of type σ → ρ. By the induction hypothesis P [~x :=

~N ][y := N ′] is reducible for all N ′ ∈ REDσ. Hence by Lemma 3.4, (λy.P [~x := ~N ]) is
reducible.

From Lemma 3.5, by setting Ni = xi we immediately obtain that all terms are
reducible. Hence by applying Lemma 3.3:

Theorem 3.6. All terms are strongly normalisable.

4 References

1. Sørensen, Urzycz; Lectures on the Curry-Howard Isomorphism, Ch.3.

2. Girard; Proofs and Types, Ch.4,6

3. W. Gunther; Strong Normalisation of Propositional Types, retrieved from

http://www.math.cmu.edu/∼wgunther/doc.html

5

http://www.math.cmu.edu/~wgunther/doc.html

	Simply typed lambda-calculus (ala Church)
	Normalisation properties
	Proof of the strong normalisation theorem
	References

