
Topological Quantum Error Correcting Codes Part II

Isaac Smith

July 25, 2019

1 Recall from last time

Theorem 1.5. (Quantum error-correcting conditions) Let C be a quantum code and let PC be the

proejctor onto C. Suppose E is a quantum operation with elements {Ei}. There exists an error-correction

procedure R that satisfies

R(E(|ψ〉)) ∝ |ψ〉

if and only if

PCE
†
jEiPC = αijPC

where α = (αij) is a Hermitian matrix over C.

2 Stabilizer Formalism and Stabilizer Codes

Definition 2.0.1. The general Pauli group on n qubits, Gn, is the group with elements that are n-fold

tensor products of the following

{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}

Definition 2.0.2. Let S ⊂ Gn be a subgroup. Define VS to be the subspace of the n-qubit state space such

that for all v ∈ VS and g ∈ S, gv = v. We say that S is the stabilizer for VS .

Typically, we take as part of the definition of a stabilizer group that −I /∈ S and that all elements of S

commute, otheriwse VS is trivial.P We tend to write the stabilizer group S in terms of its generators, that

is, S = 〈g1, ..., gl〉 and we often insist that these generators be independent.

Proposition 2.1. Let S = 〈g1, ..., gn−k〉 be generated by n− k independent and commuting elements of Gn

such that −I /∈ S. Then VS is a 2k-dimensional subspace.

1

Proof. Let S = 〈g1, ..., gn−k〉 be generated by n − k independent and commuting elements of Gn such that

−I /∈ S and let x = (x1, ..., xn−k) ∈ Zn−k2 . Define the projectors

P xS =

∏n−k
j=1 (I + (−1)xjgj)

2n−k

For each j, the projector (I + gj)/2 projects onto the +1-eigenstate of gj , so we can write the projector onto

VS as P
(0,0,...,0)
S . Now consider the following lemma.

Lemma. (Proposition 10.4 in Ref [1]) Let S be as above. Fix i in the range 1 to n − k. Then there

exists g ∈ Gn such that ggig
† = −gi and ggjg

† = gj for all j 6= i.

Proof. Sketch: The gi are all independent which means that for each i, there exists a subset of position in

the tensor product of gi that contains non-identity elements of the Pauli group, such that no other generator

contains the same elements in the same positions. Defining g ∈ Gn to be the element that is the tensor

product of I in all positions except for the marked positions of gi, in which positions g contains a tensor

product of elements of the Pauli group that anticommutes with the tensor product of elements in the same

positions of gi.

For the full proof, written in terms of check matrices, refer to Ref [1].

In light of the above lemma, let us define, for any x′ ∈ Zn−k2 ,

hx′ = h
x′1
1 ...h

x′n−k

n−k

where hi is such that

higih
†
i = −gi and

higjh
†
i = gj for all j 6= i

and the notation h
x′i
i merely denotes that if x′i = 0, then h

x′i
i is the trivial element so doesn’t feature in the

product hx′ . Then we see that

hx′P
(0,0,...,0)
S h†x′ = P x

′

S

It follows that for each x′, P x
′

S has the same dimension as VS . For distinct x, the P xS are orthogonal since

the intersection of +1- and −1eigenstates of any of the projectors is trivial. We also note that∑
x

P xS = I

and since I is a projector onto a 2n-dimensional space, and the sum is over 2n−k dimensional orthogonal

projectors all of the same dimensions, it follows that each projector, and in particular VS , has dimension

2k.

2

Remark. Notice the similarities between the projectors P xS defined above and the projectors Pk defined in

the proof of Theorem 1.5 from last week. This suggests that the operation elements for the error-correcting

procedure will be related to g†xP
x
S .

Proposition 2.2. Suppose S = 〈g1, ..., gl〉 stabilizes VS and the gi all commute and −I /∈ S. Then,

for any unitary operation U , the space UVS is stabilized by USU† and moreover, USU† is generated by

Ug1U
†, ..., UglU

†.

Proof. Let |ψ〉 ∈ VS . Let g ∈ S be arbitrary and let U be a unitary operation. Then we get that

U |ψ〉 = Ug|ψ〉

= UgU†U |ψ〉

Hence, UgU† stabilizes U |ψ〉 for all g ∈ S, so UVS is stabilized by USU†. Since any element of S can be

written as the product gi1gi2 ...gim it follows that any element of USU† can be written

Ugi1gi2 ...gimU
† = Ugi1U

†Ugi2U
†...UgimU

†

so Ug1U
†, ..., UglU

† generate USU†.

Remark. The above proposition work for any unitary U , but only ’plays nicely’ when U is in the normaliser

of Gn, that is UGnU
† = Gn. For other unitaries, the resulting stabilizer group is often messy to work with.

As it turns out, all encoding, decoding, error detection and recovery in quantum stabilizer codes can be

enacted with unitaries from the normaliser of Gn.

We arrive at the definition of a stabilizer code.

Definition 2.0.3. An [n, k] stabilizer code C(S) is a vector space VS stabilized by a subgroup S ⊂ Gn

such that −I /∈ S and S has n− k independent and commuting elements.

We know by a previous proposition that this means that VS is 2k-dimensional, and we can choose any

orthonormal basis of VS to act as our computational basis (this can be done in a systematic way).

Theorem 2.3. (Error-correction conditions for stabilizer codes) Let S be the stabilizer for a stabilizer

code C(S). Suppose {Ej} is a set of operators in Gn such that E†jEk /∈ N(S) − S for all j, k, where N(S)

denotes the normalizer of S. Then {Ej} is a correctable set of errors for the code C(S).

Proof. Let P be the projector onto C(S) and let {Ei} be a set of operators in Gn such that E†jEk /∈ N(S)−S
for all j, k. This means that either E†jEk ∈ S or E†jEk ∈ Gn −N(S). First suppose that E†jEk ∈ S. Then

PE†jEkP = gP for some g ∈ S. But P is invariant under multiplication of elements of the stabilizer of the

space that P projects onto. Thus PE†jEkP = P , so by Theorem 1.5, the set {Ei} is correctable.

Let us note that the normaliser of S equals the centraliser of S in this case, since we are implicitly assuming

−I /∈ S. The centraliser of S is always contained in the normaliser of S, denoted N(S), so we need only

3

shown the other inclusion, which we do by contradiction. Suppose E ∈ N(S) is not in the centraliser for S.

In particular that means

EIE† = g 6= I

However, EIE† = EE† = ±I for all E ∈ Gn, which forms a contradiction.

Now suppose that, for all j, k with j 6= k, E†jEk ∈ Gn − N(S). Thus there exists a g ∈ S such that

E†jEk anticommutes with g (since the normaliser and centraliser of S are the same). Let g1, ..., gn−k be the

generators for S, so that we can define P as

P =

∏n−k
i=1 (I + gi)

2n−k

Suppose without loss of generality that E†jEk anticommutes with g1. Then we have

PE†jEkP = P
(

(I − g1)E†jEk

∏n−k
i=2 (I + gi)

2n−k

)
=

∏n−k
i=2 (I + gi)

2n−k
(I + g1)

(
(I − g1)E†jEk

∏n−k
i=2 (I + gi)

2n−k

)
= 0

since (I + g1)(I − g1) = 0, that is, the intersection of the +1- and −1-eigenspaces of g1 is trivial. Thus,

PE†jEkP = 0

This completes the proof that the set {Ei} is correctable when E†jEi /∈ N(S)− S.

The above theorem is a useful result but does not explain how to go about error-detection and correction.

Suppose C(S) is an [n, k] stabilizer code with S = 〈g1, ..., gn−k〉 and {Ej} is a set of correctable errors for

the code. Error-detection is performed by measuring the generators g1, ..., gn−k in turn to obtain the error

syndrome, that is, the measurement results β1, ..., βn−k. If an error Ej occurs, then EjglE
†
j = βlgl. If

Ej is the unique error that produces this measurement outcome βl then applying E†j corrects the error.

Furthermore, if Ej and Ej′ are distinct errors that produce the same error syndrome βl then E†jEj′ ∈ S so

applying either E†j or E†j′ corrects the error in this case. This notion of correcting any error corresponding

to the given syndrome is a big feature of the toric code and other topological codes. The previous theorem

provides us with an opportunity to write down some analogous definitions to certain features of classical

codes in the quantum setting.

Definition 2.0.4. The weight of an error E ∈ Gn is the number of terms in the tensor product that

aren’t equal to the identity. The distance of a stabilizer code C(S) is the minimum weight of an element

of N(S) − S. If C(S) has distance d, we say that it is an [n, k, d] stabilizer code. If d ≥ 2t + 1 then C(S)

can correct arbitrary errors on t qubits.

4

Example 2.0.1. (Three qubit bit- and phase-flip codes) We can write the three qubit bit-flip code

as a stabilizer code with S = 〈Z1Z2, Z2Z3〉 where it is implictly assumed that an identity acts on the other

qubit. It is easy to see that VS is the subspace spanned by |000〉 and |111〉 just as we had before. This time

instead of measuring the four projectors, we measure the two syndrome measurements. No error corresponds

to measuring Z1Z2 and Z2Z3 both in their +1-eigenstates, while an X1 error corresponds to −1,+1, an X2

error corresponds to −1,−1 and an X3 error corresponds to +1,−1.

Similarly, the three qubit phase-flip code is stabilized by 〈X1X2, X2X3〉 and error detection proceeds by mea-

suring these generators analogously to the bit-flip case: +1,+1 corresponds to no error, −1,+1 corresponds

to a Z1 error, and so on.

These simple examples do not portray the power of the stabilizer formalism, but it will become much more

apparent when we turn our attention to the Toric code and other topological codes. But first, let us quickly

return to the Shor code in the stabilizer formalism.

Example 2.0.2. (Shor Code) The generators of the stabilizer of the Shor code are

g1 = ZZIIIIIII

g2 = IZZIIIIII

g3 = IIIZZIIII

g4 = IIIIZZIII

g5 = IIIIIIZZI

g6 = IIIIIIIZZ

g7 = XXXXXXIII

g8 = IIIXXXXXX

It can be shown that these generators stabilize |0〉L and |1〉L defined earlier, as well as that every product

of two single qubit errors is either in S or anticommutes with at least one element of S (and hence not in

N(S)) which proves that the Shor code can correct for an arbitrary single qubit error.

2.1 The Toric Code

Recall from Definition 1.1.1 from last week that a quantum error correcting code is a subspace of the state

space of the quantum system being considered. So what quantum system is being considered here? Let us

introduce the Toric code by first constructing the state space of the system, then analysing the subspace of

the system that corresponds to the code. The Toric code is a stabilizer code, so we will detail the set of

stabilizers that define the codespace as per the general theory in the previous section.

Consider a square lattice on the torus. Note that we saw a couple of weeks ago a natural way of finding this

square lattice, by considering the following triangulation

5

= =

>>

>>

and then ”forgetting” all the diagonal lines of the lattice (see Figure 1.)

Once we have the square lattice, attach a qubit to every edge. Let V denote the set of vertices, E the set of

edges and P the set of plaquettes (not to be confused with errors E or projectors P - this should be clear

from context). So the state space for the lattice is 2|E|-dimensional. Now let us write down the stabilizers

for the Toric code. There are two types of operators

Av =
⊗
j3v

σXj

Bp =
⊗
j∈∂P

σZj

where the products are over the edges that contain the vertex v for the first operator, and over the edges

that bound a plaquette p in the second operator. The tensor product with the identity on all other qubits of

the lattice is implied. These operators are defined for all vertices and plaquettes and are all clearly elements

of Gn, and none are equal to −I. Furthermore, all these operators commute since they either share 0 or

2 edges, so even though X and Z Pauli operators anticommute, there is never an odd number of edges for

which X and Z are both applied. Thus S = 〈Av, Bp|∀v ∈ V, p ∈ P 〉 is a valid stabilizer group. Now these

stabilizers are not all independent; they satisfy the following relations∏
v

Av = 1 and
∏
p

Bp = 1

This means that there are |V | + |P | − 2 independent stabilizers. Now we know from Theorem 2.1 that the

dimension of VS is given by n−m where n is the number of physical qubits used in the code, and m is the

6

= =

>>

>>

Figure 1: Primal graph (solid lines) and dual graph (dashed lines).

number of independent stabilizers. So, without even considering a specific lattice, we can write down the

dimension of the codespace:

dim(VS) = 2|E|−(|V |+|P |−2)

= 22−χ

= 22g+b

where χ is the Euler characteristic, g is the genus and b is the number of boundary components (b = 0 in

this case). The relation of dimension of the codespace to the Euler characteristic has been written this way

to indicate that this generalises to other surface than the torus, and also to indicate it’s invariance, that is,

any graph arising from any cellular decomposition of the surface will produce a codespace of this dimension.

So, for the torus, we obviously have dim(VS) = 4.

Let H denote the Hilbert space that is the state space of the lattice. Then we can write VS ⊆ H as

VS = {|ψ〉 ∈ H|Av|ψ〉 = |ψ〉, Bp|ψ〉 = |ψ〉, for all v, p}

The aim now is to relate the codespace to the (co)homology of the torus, as this will inform the error-

7

correction procedure. We will do this using the terminology of homology on the primal graph and homology

on the dual graph. Let us set up the notation as follows. Let C0, C1 and C2 denote the free Z2-vector space

over vertices (0-cells), edges (1-cells) and plaquettes (2-cells) in the primal graph respectively. Similarly,

denote be C ′0, C
′
1 and C ′2 the corresponding vector spaces for vertices, edges and plaquettes in the dual

graph. We have the following chain complexes

...→ 0→ C2
∂2−→ C1

∂1−→ C0 → 0

...→ 0→ C ′2
∂′2−→ C ′1

∂′1−→ C ′0 → 0

and let us denote the homology groups for the primal graph and dual graph by H∗(T ;Z2) and H ′∗(T ;Z2)

respectively.

Let us choose a basis for H by assigning a label tj = 0, 1 to every edge j of the primal graph (which also

assigns the same label to the corresponding edge in the dual graph). Denote this basis by B. An element

|ψ〉 ∈ B then corresponds to some element in C1 (and C ′1). Moreover, enforcing the constraint that an

element |ψ〉 ∈ B satisfy Bp|ψ〉 = |ψ〉 for all p corresponds to the corresponding element to |ψ〉 in C ′1 lying in

the kernel of ∂′1. We can equivalently think about this as requiring the sum of edges around any plaquette

equalling 0 mod 2.

Then, we can take basis vectors for VS related to the homology classes in the dual graph setting as follows

|ψ00〉 :=
∑
α

aα|α〉

|ψ01〉 :=
∑
β

bβ |β〉

|ψ10〉 :=
∑
γ

cγ |γ〉

|ψ11〉 :=
∑
ε

dε|ε〉

where the α are the elements of C ′1 that correspond to the homology class (0, 0), the β correspond to the

class (0, 1) and so on. The constraints arising from the Av ensure that all the aα are equal, bβ are equal, cγ

are equal and dε are equal. Let us see this more closely in an example.

Example 2.1.1. (3 × 3 Toric code) Consider the following 3 × 3 lattice with boundary edges identified

as per the usual identification of a square to give the torus.

8

p7

p4

p1

p8

p5

p2

p9

p6

p3

e79

e46

e13

e17

e47

e14

e17

e78

e45

e12

e28

e58

e25

e28

e89

e56

e23

e39

e69

e36

e39

e79

e46

e13

v1379 v1278 v2389 v1379

v1379 v1278 v2389 v1379

v1346 v1245 v2356
v1346

v4679 v4578 v5689
v4679

First, let us write out somewhat explicitly the set of basis vectors of VS as per the theory above. Let A

denote the group generated by 〈Av〉. Then

|00〉 =
1√
|A|

∑
g∈A

g|0....0〉

|01〉 =
1√
|A|

∑
g∈A

g|e46, e45, e56 = 1, 0 else〉

|10〉 =
1√
|A|

∑
g∈A

g|e17, e14, e47 = 1, 0 else〉

|11〉 =
1√
|A|

∑
g∈A

g|e46, e45, e56, e17, e14, e47 = 1, 0 else〉

Now let us look at the effects of single errors. Suppose the code is initially in a state |ψ〉 prior to an X

error occurring on the edge e25 (with identity operations occurring on all other edges implied), which we

denote by X25, producing the state |ψ′〉 = X25|ψ〉. There are four stabilizers that interact with the edge e25,

namely B2, B5, A1245, A2356. The interactions of these stabilizers with |ψ′〉 allows us to diagnose the error

(the measurement result of the stabilizers is called the error syndrome). The vertex stabilizers commute

9

with X errors:

Av|ψ′〉 = AvX25|ψ〉

= X25Av|ψ〉

= |ψ′〉

so |ψ′〉 is in the +1-eigenspace of all the Av. However, the X error anticommutes with B2 and B5:

B2|ψ′〉 = B2X25|ψ〉

= −X25B2|ψ〉

= −|ψ′〉

and similarly for B5. Thus, |ψ′〉 is in the −1-eigenspace of the B2 and B5 stabilizers (and only these two).

Thus, measuring all the stabilizers determines the location and type of error. Note that −1 measurement

results always occur in pairs.

−1

−1

X

Obviously, applying an X to e25 will correct the error, but we don’t actually know the error occurred at

e25. We only can detect the ”endpoints” of the cochain. Consider the situation where errors X56, X36, X23

all occur. Well then B5 and B6 would give −1 measurements due to X56. But B6 also would give a −1

measurement from the X36. These −1 measurements cancel, or equivalently, we can understand this by

noting that two (or four) X errors on edges surrounding a plaquette conserve the 0 mod 2 sum requirement

of edges provided that the edges satisfied it originally. The same cancellation occurs with B3, and so again

10

we only get see the endpoints of the cochain, however this time the chain consists of three edges and is

represented in blue above. The point here though, is that it doesn’t matter how we correct for the error

with syndrome given by B2, B5 giving −1, so long as the correction is (co)homologically equivalent to the

actual error. This is understood by noting that if the X56, X36, X23 errors occurred and we apply X to e25

to correct them, then

X25 ⊗X56 ⊗X36 ⊗X23 = A2356

and thus stabilizes the original state.

The point about any correction that is homologically equivalent to the error is crucial. In the above picture,

if X errors occured on e58 and e28, then we see the same error syndrome, but if we correct by applying X to

e25, then we have produced a non-trivial cycle on the torus, and thus have produced a logical error on our

inital state. This argument proves that the above 3 Toric code can correct with certainty at most errors on

1 qubit.

Let us briefly also consider the effect of a Z error. Suppose a Z error has occurred on e25. This error

commutes with B2, B5 but anticommutes with A1245 and A2356. Thus error correction can occur via an

chain in the lattice that is homologically equivalent to the error, i.e. applying Z to any chain of edges that,

along with Z25, corresponds to a product of Bp’s. Again, we have to be careful not to apply a chain of Z

operators that form a non-trivial cycle around the torus.

The points raised in the above example regarding non-trivial cycles of Z and X operators on the lattice

are important for actually performing computation with the code. There are two non-trivial cycles of X

operators and two non-trivial cycles of Z operators and these correspond to the logical X and Z operations

that we can perform on the two logical qubits encoded in the Toric code.

Desirable Properties of the Toric Code:

Some properties of the Toric code that are useful include

• Each stabilizer operator involves at most 4 local qubits

• Each qubit is involved in at most 4 local stabilizer operators

• Provided an arbitrary large lattice can be constructed, any number of errors can be corrected

• The codespace can be written as the ground state of a (fairly) realistic Hamiltonian

Let us expand on the last point. Consider the Hamiltonian

H = −
∑
v

Av −
∑
p

Bp

This is a nice Hamiltonian for a number of reasons: it is easily diagonalisable since all the Av and Bp

commute, all it’s excited states are separated by an energy gap since the difference between eigenvalues for

11

the stabilizers is 2, and the Hamiltonian involved local interactions so it may be feasible to physically realise.

Futhermore, it is stable to (small enough) local perturbations (for more see Ref [2]).

References

[1] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.

[2] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1,

pp. 2–30, 2003.

12

