Korea lectures 2017 - II

The focus of this lecture is the DG -category of matrix factorisations of a potential $W \in k\left[x_{1}, \ldots, x_{n}\right]$, k any commutative ring. We begin by giving the formal definition of potential. We set $R=k\left[x_{1}, \ldots, x_{n}\right]$ thwughout. Recall the overall plan:
today tomorrow
Potential $W \longmapsto$ DG-category $m f(W) \longmapsto A \infty$-category

Def ${ }^{n}$ An element $W \in k\left[x_{1}, \ldots, x_{n}\right]$ is a potential if (see $[C M]$)
(i) The sequence $\partial_{x}, W, \ldots, \partial_{x_{n}} W$ is quasi-regular, and
(ii) With $I=\left(\partial_{x}, W, \ldots, \partial_{x_{n}} W\right), R / I$ is af. g.free k-module.
(iii) The Koszul complex of $\partial x_{1} W, \ldots, \partial x_{n} W$ is exact except in legree zero.

Throughout W is a potential, $a_{i}=\partial_{x_{i}} W$ and $J a c_{w}:=R / I \quad 1 \leqslant i \leqslant n$.

The hypotheses (i), (ii) are, by Lecture 1, what we need to ensure that

- There is an isomorphism of $k[|\underline{t}|]=k\left[1 t_{1}, \ldots, t_{n} I\right]$-modules

$$
b^{*}: J a c w \nsim k k[|\underline{t}|] \Longrightarrow \hat{R}=\lim _{\longleftrightarrow} R / I^{i}
$$

$\tau_{\text {recall ti acts an }} a_{i}$ here

- There is a k-linear flat connection

$$
\nabla: \hat{R} \longrightarrow \hat{R} \otimes_{k[t]} \bigcap_{k[t] / k}^{7}, \quad \nabla=\sum_{i} \frac{\partial}{\partial t_{i}} d t_{i}
$$

which gives den natives in the normal direction to the critical loos.

Convention From now on we do not distinguish $a_{i} \in R$ and the formal variable t_{i}.

Example (i) $k=\mathbb{C}$ and the critical points of W are isolated.
(ii) Consider $k=\mathbb{C}[u], W(x, y, u)=x^{2}+y^{3}-3 u^{2} y+2 u^{3} \in k[x, y]$ is the semi-univenal deformation of the cusp, restricted to the discriminant. Obsewe $\partial_{x} W=2 x, \partial y W=3 y^{2}-3 u^{2}$ so

$$
k[x, y] /(\partial x W, \partial y w)=\mathbb{C}[u, x, y] /\left(x, y^{2}-u^{2}\right) \cong \mathbb{C}[u] \oplus \mathbb{C}[u] y
$$

so W is a potential over k.

Def n $A\left(\mathbb{Z}_{2}\right.$-graded $) D G$-category over k is a category ζ enriched over the monoidal category of \mathbb{Z}_{2}-graded complexes of k-modules, $1 . e$. we have cochain maps
composition: $\zeta(b, c) \otimes k \zeta(a, b) \longrightarrow G(a, c)$
unit $: \quad k \longrightarrow \varphi(a, a)$.

If \mathscr{C} is a $D G$-category, the cohomology category of ζ, denoted $H^{\circ}(G)$, is a k-linearcategong with $o b\left(H^{\circ} C\right)=o b(C)$ and

$$
\left(H^{\circ} \zeta\right)(a, b):=H^{0} \zeta(a, b)
$$

here Ray be any commutative ving and $W \in R$ any element

Def n The $D G$-category $\zeta=m f(R, W)$ has as objects finite rank matrix factorisations $\left(X=X^{0} \oplus X^{\prime}\right.$ free, $d_{x}: X \rightarrow X$ odd,$\left.d_{x}^{2}=W-I_{x}\right)$ and

$$
\tau(x, y):=\left(\operatorname{HomR}(x, y), \quad d_{\text {Mom }}(\alpha)=d y \alpha-(-1)^{|\alpha|} \alpha d x\right)
$$

Def $\operatorname{hmf}(R, W):=H^{0} m f(R, W)$ is the homotopy category of matrix factorisations.

The following technical lemma will be important for the third lecture:
Lemma (Completion comparison) There is a DG-functor

$$
F: m f(R, W) \longrightarrow m f(\hat{R}, W)
$$

which has the property that for all X, Y the map

$$
F_{x y}: \operatorname{Hom}_{R}(x, y) \longrightarrow \operatorname{Hom}_{\hat{R}}(\hat{x}, \hat{y})
$$

is a k-linear homotopy equivalence (we say F is h-fully faith furl).

Proof By (iii) the hypotheses of $[D M, \S 7]$ ave satisfied (one does not need noetherianness, sees. [CM2, Rem. C2], 1.e. There is a deformation retract of the Koszul cp of \underline{t} over R to R / I (although it is not described by a connection). Thus the claim follows from [DM, Rem 7.7] (since we do not assume R is noetherian we lo not know $R \rightarrow \hat{R}$ is flat, but actually to min the argument there we only need to know the image of t in \hat{R} is quasi-regular, which it is in fact it is regular).

Remark It is much easier to see $F_{x y}$ is always a quasi-isomouphism, but unless k is a field this is too weak for our purposes.

The plan is now to give some examples of objects in $m f(w)$ and a calculation of $H^{*} G(x, y)$.
Def n Given sequences f_{1}, \ldots, f_{e} and g_{1}, \ldots, g_{e} in R with $\sum_{i=1}^{e} f_{i} g_{i}=W$ the associated Koszul factorisation is

$$
\{\underline{f}, \underline{g}\}:=\left(\bigwedge\left(k \xi_{1} \oplus \cdots \oplus k \xi_{e}\right) \otimes_{k} R, \sum_{i=1}^{e} f_{i} \xi_{i}^{*}+\sum_{\text {(contraction) }}^{e} g_{i=1} g_{i} \xi_{i}\right)
$$

where $\left|\xi_{i}\right|=1$. Obsewe that (all commutation are graded, $[a, b]=a b-(-1)^{|a||b|}$ ba)

$$
\left(\sum_{i} f_{i} \xi_{i}^{*}+\sum_{i} g_{i} \xi_{i}\right)^{2}=\sum_{i} f_{i} g_{i}\left[\xi_{i}^{*}, \xi_{i}\right]=\sum_{i} f_{i} g_{i}=W
$$

Example Suppose k is a field and $P=\left(p_{1}, \ldots, p_{n}\right) \in Z(W)$, so we may write for some g_{i}, $W=\sum_{i=1}^{n}\left(x_{i}-P_{i}\right) g_{i}$. The associated Koszul MF is clenoled

$$
k(P)^{\text {stab }}:=\{\underline{x}-P, \underline{g}\}
$$

Lemma There is an isomonphism of matrix factorisations of $-W$

$$
\begin{gather*}
\{\underline{g},-\underline{f}\} \xrightarrow{\cong}\{\underline{f}, \underline{g}\}^{v} \tag{I}\\
\left.\xi_{i}, \cdots \xi_{i p} \longmapsto(-1)^{(p} p^{p}\right)\left(\xi_{i}, \cdots \xi_{i p}\right)^{*} \quad(i,<\cdots<i p)
\end{gather*}
$$

and an isomorphism of matrix factorisations of W

$$
\begin{equation*}
\{\underline{g},-\underline{f}\} \xrightarrow{\cong}\{\underline{f},-\underline{g}\}[e] . \tag{I}
\end{equation*}
$$

In particular we have R-linear is omouphisms of complexes

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(k(P)^{\text {stab }}, X\right) & =\operatorname{Hom}(\{\underline{x}-P, \underline{g}\}, X) \\
& \cong\{\underline{x}-P, \underline{g}\}^{v} \otimes R X
\end{aligned}
$$

(I)

$$
\begin{equation*}
\cong\{\underline{g},-(\underline{x}-p)\} \otimes R X \tag{III}
\end{equation*}
$$

$$
\text { (II) }(\{\underset{\hat{x}}{\cong}(\underline{x}-\underline{g}\} \otimes R X)[n]
$$

The homological perturbation lemma, applied to the strong deformation retract on Koszul complexes from lastlectuve, provides an efficient method for computing the co homology of the complex Home $\left(k(P)^{s t a b}, X\right)$. We will cliscuss this in some cletail, as the same basic tools go into constructing the A_{∞}-structure on $\zeta=m f(W)$.

Lemma (Dyckerhoff) Let k be a field and $P \in Z(w)$. Then as k-modules there is an isomouphism for any (even infinitely generated) matrix factorisation X of W,

$$
H^{*} \operatorname{Hom}_{R}\left(k(P)^{s t a b}, X\right) \cong H^{*}\left(X \otimes_{R} k(p)\right)[n]
$$

where $k(P)=R /\left(x_{1}-p_{1}, \ldots, x_{n}-P_{n}\right)$.

Proof See [D]. We give here a different proof using perturbation. Wog take $P=\underline{0}$. By Lecture 1 there is a strong deformation retract (SDR) over k

$$
H G(\Lambda\left(\oplus_{i} k \xi_{i}\right) \oplus_{k} R, \underbrace{\sum_{i} x_{i} \xi_{i}^{*}}_{d_{k}}) \stackrel{\pi}{\rightleftarrows}(k, 0) \text {. }
$$

$$
[\nabla, d k]^{-1} \nabla, \quad \nabla=\sum_{i} \frac{\partial}{\partial x_{i}} \xi_{i}
$$

(note there is no need for completions here!)

Censoring with X gives another SDR over k

$$
\left.H=H \otimes 1_{x} G\left(\Lambda\left(\oplus_{i} \xi_{i}\right) \otimes_{k} X, \sum_{i} x_{i}\right\}_{i}^{*}\right) \stackrel{\pi}{\rightleftarrows}\left(X \otimes_{R} k, 0\right) .
$$

The "perturbation" $\delta=\sum_{i}\left(-g_{i}\right) \xi_{i}+d x$ satisfies

$$
(H \delta)^{m}=0 \quad \text { for } m \gg 0 \quad \text { (1.e. } \delta \text { is "small") }
$$

and so by the homological perturbation lemma there is an SDR $\sum_{m}(-1)^{m} \pi \delta(H \delta)^{m} \sigma$ $H_{\infty} G\left(\Lambda\left(\oplus_{i} k \xi_{i}\right) \oplus k X, \sum_{i} x_{i} \xi_{i}^{*}+\sum_{i}\left(-g_{i}\right) \xi_{i}+d x\right) \underset{\sigma_{\infty}}{\stackrel{\pi}{\rightleftarrows}}\left(X \otimes_{R} k, d_{x} \otimes \mid\right)$ But by (III) the LHS have is $H^{*} \operatorname{Hom}_{R}\left(k(\rho)^{\text {stab }}, X\right)[n]$. D

Corollary (Schoutens, later Orlov, Dyckerhoff, Keller-M-VandenBergh) If k is a field and $W \in k[|x|]$ has an isolated singularity, then $k^{\text {stab }}=k(0)^{\text {stab }}$ is a split generator of the triangulated category

$$
J=\operatorname{hmf}(k[|\underline{x}|], W) .
$$

That is, evens object in J can be built form k using shifts, cones, sums and direct summand.

Proof Consider $J \subseteq H M F(W)$, the infinite rank MF of W. This is a triangulated category with arbitrary coproducts and it is clear $J \subseteq H M F(W)$, the compact objects. We claim $k^{\text {stab }}$ compactly generates $\operatorname{HMF}(W)$, from which it follows by general theory (see Neeman's book) that $\left\langle k^{\text {stab }}\right\rangle=H M F(W)^{c}$ and hence $\left\langle k^{\text {stab }}\right\rangle=J$, where $\langle-\rangle$ denotes the smallest thick triangulated subcategory containing a given set.

Suppose $J\left(k^{\text {stab }}, X[i]\right)=0$ for $i \in \mathbb{Z}_{2}$ and $X \in H M F(W)$. Then, by the Pcoposition

$$
0=H^{*} \operatorname{Hom}_{k[[x]]}\left(k^{\text {stab }}, X\right) \cong H^{*}(X \otimes k) \cdot[n] .
$$

But X is homotopy equivalent over $k[|\underline{x}|]$ to a matrix factorisation $X_{\text {min }}$ whose differential (as a matrix) contains no units (intuitively this is Gaussian elimination, but since X is infinite this needs to be made precise using a Zorn's lemma argument). It follows that

$$
H^{*}(X \otimes k) \cong H^{*}\left(X_{\min } \otimes k\right) \cong X_{\min } \otimes k
$$

so we conclude $X \cong 0$ in J. By standard results this shows $k^{\text {stab }}$ compactly generates. \square

The road to A_{∞}

It follows that there is a quasi-isomonphism of $D G$-categories

$$
\begin{gathered}
m f(k[|\underline{x}|], W) \xrightarrow{\cong} \operatorname{Perf}(\underbrace{\left.\operatorname{End}_{R}\left(k^{\text {stab }}\right)\right)}_{D G A} \\
X \longmapsto \operatorname{Hom}\left(k^{\text {stab }}, X\right)
\end{gathered}
$$

Upshot The $D G$-algebra $E n d_{R}\left(k^{\text {stab }}\right)$ contains all the in formation of $m f(w)$.
But This DGA is ∞-dimensional over k. We want a finite, lossless model.

The standard approach is to take the A_{∞}-minimal model

$$
\left.\operatorname{End}_{R}\left(k^{\text {stab }}\right) \underset{\begin{array}{c}
\text { (using the Koszut } \\
\text { contraction above) }
\end{array}}{\text { min.mudel }} A=\left(H^{*} \text { End }\left(k^{\text {stab }}\right),\left\{m_{k}\right\}_{k \geqslant 2}\right) \text { A -algebra }\right) \text {. }
$$

This is finite $/ k$ and also lossless, as $\operatorname{Perf.} t \cong \operatorname{Perf}\left(\right.$ End $\left.\left(k^{\text {stab }}\right)\right)$.

Remark $H^{*} H_{o m R}\left(k^{\text {stab }}, k^{\text {stab }}\right)=H^{*}\left(k^{\text {stab }} \oplus_{R} k\right)[n] \cong \Lambda\left(k \xi_{1} \oplus \cdots \oplus k \xi_{n}\right)[n]$.

This approach to constructing A_{∞}-minimal models of Ends ($k^{s t a b}$) fins appeasing work of Seidel $\left[\mathrm{Se}_{\mathrm{e}}\right]$ on minor symmetry, and a continuation of this work by Efimov [E]. It was also consicleved in [D]. We will describe how to (in theory) compute these m_{k} 's next lecture (explicit calculations for generic W can be hard).

However we aim to do substantially move. Computing the A_{∞}-minimal model of End $l_{R}\left(k^{s t a b}\right)$ is relatively easy because $k^{\text {stab }}$ is a "perturbation" of a Kos rue complex. To compute the A_{∞}-minimal model of End $(X), X$ a generic matrix factorisation, requires new methods, which we will discuss.

Remark One might expect computing the minimal model of End ($\left.k^{\text {stab }}\right)$ could be leveraged into computing the minimal model of End (X), as $k^{\text {stab }}$ is a generator. But this seems to require fins explicitly presenting X as a (summand of a) twisted complex over $k^{\text {stab }}$, ie. explicitly building X from $k^{\text {stab }}$. My impression is that this is not a practical approach to cloing such calculations.
$(\Delta \operatorname{ded}) \quad \operatorname{Perf}(A) \longleftarrow \operatorname{Perf}\left(\operatorname{End}\left(k^{\text {stab }}\right)\right) \longleftarrow \operatorname{hmf}(W)$

$$
\left(H^{*} \operatorname{Hom}_{R}\left(k^{s t a b}, X\right),\left\{m_{k}\right\}\right) \longleftarrow H^{*} \operatorname{Hom}_{R}\left(k^{s t a b}, X\right) \longleftrightarrow \stackrel{\star}{X}
$$

$\sigma_{\text {End h eve is a vector space }}$

$$
\left(H^{k} \operatorname{Hom}_{R}\left(k^{\text {stab }}, x\right),\left\{m_{k}\right\}\right) \longleftarrow \operatorname{Hom}_{R}\left(k^{\text {stab }}, X\right) \longleftarrow X
$$

End here is a DG-algebra
$\left(A_{\infty}\right) \quad \operatorname{T\omega }(A)<$ as a twisted $c p x$.
$\mathcal{O}_{\text {End }}$ here is an A>-algebra, the minimal model of End (X)

References
[CM] N.Carqueville, D.Murfet "Adjunctions and defects in Landau-Ginzbury models", Adv. Math (2016).
[DM] T. Dyckerhoff, D. Murfet, "Pushing forward matrix factorisations", Duke Math. J., 2013.
[CM2] N. Carqueville, D. Murfet "Computing Khovanov-Rozansky link homology and defect fusion" Alg. Geom. Top, 2014.
[D] T. Dyckerhoff, "compact generators in categories of matrix factorisations", Duke Math. 2011.
[s] H. Schoutens, "Projective dimension and the singular locus", Comm. Alg 2003.
[se] P. Seidel, "Homological mirror symmetry forthegenus 2 care", J.Alg.Geom 2011.
[E] A.Efimov, "Homological minor symmetry for curves of higher genus", Adv. Math 2012.

