Korea lectures 2017 - I

The aim of these lectures is to present the Feynman mules governing the A_{∞}-minimal model of the DG-category of matrix factorisations of a potential $W \in k\left[x\left(1, \ldots, x_{n}\right]\right.$. Let us begin with a rough sketch of this destination, before we get into technical matters necessary to construct the minimal model.

Example For $W=x^{3} \in k[x]$, k a char. 0 field, a relevant Feynman diagram is

As usual, the Feynman diagram clepicts a certain pattern of contractions between creation and annihilation operator acting on the \mathbb{Z}_{2}-graded vector space \mathcal{H}. For this W there ave exactly three kinds of interaction vertices, la belled A, B, C. This diagram computes the only nontrivial contribution to the Aov-stuctuve,

$$
m_{3}: \Lambda(k \varepsilon)^{\otimes 3} \longrightarrow \Lambda(k \varepsilon), \quad m_{3}\left(\varepsilon^{\otimes 3}\right)=1
$$

(m_{3} zero on other input, egg. $\varepsilon \otimes \varepsilon \otimes 1$)
Thus the tuple $\beta=\left(\lambda(k \varepsilon), m_{2}, m_{3}\right)$ is an A_{∞}-algebra (m_{2} being the usual product in the exterior algebra) and β is the minimal model of the endomouphism $D G A$ of the standard generator of the $D G$-category $m f(W)$. In particular, $\operatorname{Perfos} \beta \cong \operatorname{hmf}\left(k[x], x^{3}\right)^{\omega}$.

Outline of Lectures
(1) Connections and contracting homotopies.
(2) The DG-category $m f(W)$ and generators.
(3) The A -minimal model.

$A_{\infty}: H^{*} m f(W)$

Lecture I

The technical cove of the A_{∞}-calculations will be certain connections produced form quasi-regular sequences, which we now review. Let R be a commutative k-algebra, for some base ing k.

Def ${ }^{n}$ A sequence $a_{1}, \ldots, a_{n} \in R$ is quasi-regular if, writing $I=\left(a_{1}, \ldots, a_{n}\right)$, the following monphism of R / I-algebras

$$
\begin{gathered}
\phi: R / I\left[t_{1, \ldots} \ldots t_{n}\right] \longrightarrow g r_{I} R=R / I \oplus I / I^{2} \oplus I^{2} / I^{3} \oplus \cdots \\
\phi\left(t_{i}\right)=\bar{a}_{i} \in I / I^{2}
\end{gathered}
$$

is anisomoyphism. In particular $I / I^{2} \cong \bigoplus_{i=1}^{n} R / I \cdot \overline{a_{i}}$.

Remark Set $Y=\operatorname{Spec}(R / I) \longrightarrow \operatorname{Spec}(R)=X$, then $C_{y} X:=\operatorname{Spec}\left(\operatorname{gr} r_{ \pm} R\right)$ is a scheme over Y called the normal cone. When I is generated by aquasi-regularsequence, the normal sheaf (to Y in X) is a bundle

$$
\left(I / I^{2}\right)^{*}:=\operatorname{HomR}^{\prime}\left(I / I^{2}, R / I\right)
$$

is free of rank n on the basis $\left\{a_{i}^{*}\right\}_{i}$, and the (total space of the) normal bundle is the relative Spec

$$
\begin{aligned}
& \operatorname{Spec}_{0 y}\left(\operatorname{Sym}\left(N_{y / X}^{*}\right)\right)=\operatorname{Spec}\left(\operatorname{Sym} / I\left(I / I^{2}\right)\right) \\
& \cong \operatorname{spec}\left(R / I\left[t_{1}, \ldots, t_{n}\right]\right) \quad t_{i}=\bar{a}_{i} \\
& \text { reg. } \\
& \cong \operatorname{Spec}\left(g r_{I} R\right) \\
&=C_{y} X,
\end{aligned}
$$

1.e. the normal cone is the normal bundle.

The method of deformation to the normal cone (used in e.g. intenection theory) relates the closed immersion $Y \subset X$ by a flat deformation to the inclusion $Y \subset C_{y} X$. By the above, in the quasi-vegular cane, this latter immersion is just the zero section of the normal bundle. This is the algebraist's analogue of the tubular neighborhood theorem for smooth manifolds: if $Y C X$ is a submanifold a partial tubular neighborhood is a neighborhood U of the zew section of $N_{y} X \rightarrow Y$ and an embedding $f: U \rightarrow X$ s.t. $f l y=i$ and $f(U)$ is open in X :
 (smooth manifolds)

Returning to the algebraic case, we do not expect Y to have isomorphic Zaviski open neighborhoods in Ty X and X, but we would ask for the formal neighborhoods to be isomonphic, as in the diagram
(schemes)

Now the completion of $C y X$ along Y just means passing from $R / I\left[t, \ldots, t_{n}\right]$ to $R / I\left[\left\lfloor t_{1}, \ldots, t_{n} \rrbracket\right.\right.$, and completing X along Y means taking the I-adic completion \hat{R}. So we ave asking for a ring isomorphism (in fact a $k[|t|]$-algebra isomouphism)

$$
R / I\left[\left|t_{1}, \ldots, t_{n}\right|\right] \cong \hat{R}
$$

Example Let k be a field, $R=k[x]$ and $I=\left(x^{d}\right)$ for $d>1$. By dimension cunt

$$
\left(k[x] /\left(x^{d}\right)\right)[t] \xrightarrow{\cong} \bigoplus_{i \geqslant 0}\left(x^{d i}\right) /\left(x^{d i+d}\right)
$$

so $a=x^{d}$ is certainly quasi-regular. The I-adic topology is the same as the (x)-adic topology, so

$$
R / I[|t|]=k[x] /\left(x^{d}\right)_{k}^{\otimes k[|t|]}, \quad \hat{R}=k[|x|] .
$$

These are certainly not isomouphic (one is recluced, the other is not).

The attempt * at an algebraists "formal" tubular neighborhood is too naive, but there is a useful substitute:

Lemina (Lipman) Suppose $a_{1}, \ldots, a_{n} \in R$ quari-regular, that R / I is a finitely presented k-module and that the quotient $\pi: R \rightarrow R / I$ has a k-linear section $\sigma: R / I \longrightarrow R$. Then there is an induced isomouphism of $k\left\{1 t_{1}, \ldots, t_{n} 1\right]$-modules

$$
b^{*}: R / I \otimes k k[|\underline{t}|] \longrightarrow \hat{R} \cdot \longleftarrow \text { "formal tubular } \quad \begin{gathered}
\text { neighborhood" }
\end{gathered}
$$

Proof Fist of all, there is a commutative diagram

so we do not distinguish $R / I, \hat{R} / I \hat{R}$. Since \hat{R} is a $R[| \pm|]$-algebra (ti acting as a_{i}) any section δ induces a $k[\mid \pm 1]$-linear map δ^{*} defined by

$$
\sigma^{*}(\bar{r} \otimes f(\underline{t}))=\sigma(\bar{r}) \cdot f(\underline{t})
$$

To show that σ^{*} is an isomoyphism we mut fist show that every $r \in \widehat{R}$ has a unique expression of the form

$$
\begin{equation*}
r=\sum_{M \in \mathbb{N}^{n}} b\left(r_{M}\right) t^{M} \tag{t}
\end{equation*}
$$

for elements $r_{M} \in R / I$.

NOTE: There is no noetherian hypothesis here]

Existence for $r \in R$ since $\pi(r-3(r))=0$ we have

$$
r-z(r) \in I \hat{R} \Rightarrow r-b(r)=\sum_{i=1}^{n} a_{i} f_{i} \quad \text { some } a_{i} \in \hat{R}
$$

But $a_{i}-b\left(a_{i}\right) \in I \hat{R} \Longrightarrow a_{i}-b\left(a_{i}\right)=\sum_{j=1}^{n} a_{i j} f_{j}$

$$
\begin{aligned}
\therefore \quad r & =b(r)+\sum_{i=1}^{n}\left\{b\left(a_{i}\right)+\sum_{j} a_{i j} f_{j}\right\} f_{i} \\
& =b(r)+\sum_{i=1}^{n} b\left(a_{i}\right) f_{i}+\sum_{i, j} a_{i j} f_{i} f_{j}
\end{aligned}
$$

continuing in this way produces a series converging to r.
Uniqueness follows from quasi-regularity. Suppose to the contrawy that

$$
\sum_{M} b\left(r_{M}\right) t^{M}=0 \text { in } \hat{R}
$$

with not all r_{M} zee in R / I. Let $m:=\min \left\{|M| \mid r_{M} \neq 0\right.$ in $\left.R / I\right\}$. Since the Cauchy sequence $\left\{\sum_{|M| \leq d} \sigma\left(r_{M}\right) t^{M}\right\}_{d \in \mathbb{N}}$ converges to O, we can find D rit. for all $d \geqslant D$,

$$
\begin{aligned}
& \sum_{|M| \leq d} b\left(r_{M}\right) t^{M} \in\left(t_{1}, \ldots, t_{n}\right)^{m+1} \text { in } R . \\
& \sum_{|M|=m} b\left(r_{M}\right) t^{M}+\sum_{m<|M| \leq d} b\left(r_{M}\right) t^{M}
\end{aligned}
$$

This implies $\sum_{|M|=m} b\left(r_{M}\right) t^{M} \in I^{m+1}$, so $\sum_{|M|=m} r_{M} t^{M}=0$ in $^{m} I^{m} / I^{m+1}$ and by def ${ }^{N}$ of quasi-regularity this forces $r_{M} \in I$ so $r_{M}=0$ in R / I for all M with $|M|=m$. But this is a contradiction, so we arrive at the desired uniqueness of the representation (t).

This shows there is an isomouphism of k-modules

$$
\begin{aligned}
& \hat{R} \cong \prod_{M \in \mathbb{N}^{n}} R / I \\
& r \longmapsto\left(r_{M}\right)_{M}
\end{aligned}
$$

But then since R / I is f.p. over k, σ^{k} is the isomophism

$$
R / I \otimes_{k} k[\mid t] \cong R / I \otimes_{k} \prod_{M} k \cong \prod_{M}(R / I \otimes k k) \cong \prod_{M} R / I \cong \hat{R} .
$$

Corollary If R / I is a fig. projective k-module there is a k-linear connection

$$
\begin{aligned}
& \nabla: \hat{R} \longrightarrow \hat{R} \otimes_{k[t]} \Omega_{k[t] / k}^{1} \\
& \nabla(r f(\underline{t}))=\nabla(r) f(\pm)+r \otimes d f
\end{aligned}
$$

Relative to a fixed connection cue introduce $\frac{\partial}{\partial t_{i}} \in \operatorname{Endk}(\hat{R})$ via $\nabla=\sum_{j} \frac{\partial}{\partial t_{j}} d t_{j}$.
Prof \hat{R} is a direct summand of a finite direct sum of copies of $k[\mid \underline{\mid}]$, which has a connection. Choosing a section δ we obtain a connection ∇_{b},

$$
\nabla_{b}(r)=\sum_{M \in \mathbb{N}^{n}} \sum_{j=1}^{n} M_{j} z\left(r_{M}\right) t^{M-e_{j}} \otimes d t_{j}
$$

The "formal" tubular neighborhood is not an actual tubular neighborhood, so the intuition can be misleading, but one can think of the connection ∇ as differentiation in the directions normal to $Y \subset X, 1.0$.

The plan for the remainder of the lecture is to use this connection to define residues and provide a natural homotopy equivalence between the Koszul complex of $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)$ and its cohomology R / I. But fins, an example:

Example k a field, $R=k[x], a=x^{d}$. Choose the k-line resection

$$
\sigma: R / I \longrightarrow R, \quad \sigma\left(x^{i}\right)=x^{i} \quad 0 \leqslant i \leqslant d-1,
$$

and let ∇ be the associated connection, with $\frac{\partial}{\partial t}: R \rightarrow R$. Then $(d>2)$

$$
\frac{\partial}{\partial t}\left(x^{2}+x^{d+1}\right)=\frac{\partial}{\partial t}(\underbrace{\left[x^{2}\right]}_{R / I} \underbrace{1}_{t^{0}}+\underbrace{[x]}_{R / I} \cdot \underbrace{x^{d}}_{t^{\prime}})=x .
$$

Remark Since the t_{i} are the coordinates in $\left(I / I^{2}\right)^{*}$ arising form the a_{i}^{*}, we will often write $\frac{\partial}{\partial a_{i}}$ for $\frac{\partial}{\partial t_{i}}$ where it will not cause confusion.

Proposition Let $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a sequence in R. Then
(i) \underline{a} regular $\Rightarrow \underline{a}$ quasi-regular
(ii) If R is noetherian, \underline{a} is quasi-regular \Longleftrightarrow the Koszul complex on a is exact except in degree zew.
(iii) If (R, m, k) is local and $\underline{a} \leq m$ then regular \Leftrightarrow quasi-regular.

Def Suppose $a \subseteq R$ quasi-regular and $R / I f \cdot g$. projective over k.
Given $r_{0}, r_{1}, \ldots, r_{n} \in R$ we define

$$
\begin{aligned}
& \operatorname{Res}_{R / k}\left(\frac{r_{0} d r_{1} \cdots d r_{n}}{a_{1} \cdots a_{n}}\right):=\operatorname{tr}_{R / I}^{k}\left(r_{0}\left[\nabla, r_{1}\right] \cdots\left[\nabla, r_{n}\right]\right) \in k \\
& \hat{R} \longrightarrow \hat{R} \otimes \Omega^{1} \longrightarrow \hat{R} \oplus \Omega^{2} \longrightarrow \cdots \rightarrow \hat{R} \oplus \Omega^{n} \cong \hat{R} \\
& \prod_{\sigma} \longrightarrow \cdots \cdots \cdots \\
& R / I \cdots \cdots+\cdots \cdots
\end{aligned}
$$

Remark This is essentially the definition of residues given by Lipman, rephrased to use connections. He pres the basic properties (egg. the transformation mile) for these residues.

Example $\operatorname{Ress}_{k[x] / k}\left(\frac{x^{i} d x}{x^{d}}\right)=\operatorname{tr}_{k[x] / x^{d}}\left(x^{i}\left[\frac{\partial}{\partial t} x-x \frac{\partial}{\partial t}\right]\right)=\operatorname{tr}_{k[x] / x^{d}}\left(x^{i} \frac{\partial}{\partial t} x\right)$

$$
\left.=\left.\operatorname{tr}\right|^{1} \begin{array}{llll}
x & x^{2} & \cdots & x^{d-1} \\
& & \\
& & \\
\\
& & \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=\delta_{i, d-1}
$$

Remark If $r_{0} \in I$ the residue is sew.

Remark Suppose $r_{i}=子\left(s_{i}\right)$ for $1 \leqslant i \leqslant n$ (this is typical). Then the residue is

$$
\begin{equation*}
\sum_{i_{1}, \ldots, i_{n}} \operatorname{tr}_{R / I}^{k}\left(b\left(s_{0}\right) \cdot \frac{\partial}{\partial t_{i}} \cdot b\left(s_{1}\right) \quad \cdots \frac{\partial}{\partial t_{i n}} \cdot b\left(s_{n}\right)\right) \tag{*}
\end{equation*}
$$

If $Z^{*}: R / I[\mid \underline{I}] \stackrel{\cong}{\rightrightarrows}$ were anisomonohism of rings, we would have (in \hat{R}) $b(s) b\left(s^{\prime}\right)=b\left(s s^{\prime}\right)$ and so the residue would have to be zew. The ven idle reflects the failure of z^{*} to be ving isomorphism, or move precisely, it is an expression in the t-derivatives of the following tensor:

Def" With the same hypotheses as in the definition of residues, let T be the tensor

$$
T \in(R / I)^{*} \otimes_{k}(R / I)_{\otimes_{k}}^{*}(R / I) \otimes_{k} k[\mid \pm 1]
$$

given by the k-linear map

$$
R / I \notin k R / I \xrightarrow{3 \otimes \sigma} \hat{R} \notin k \hat{R} \xrightarrow{\text { mult }} \hat{R} \xrightarrow{\cong} R / I \otimes k k[I E]] .
$$

Example $R=k[x], a=x^{d}, R / I=\bigoplus_{i=0}^{d-1} k x^{i}$, for $0 \leq i, j \leq d-1$ unite

$$
\begin{gathered}
i+j=q d+r \quad 0 \leqslant r, q<d \\
z\left(x^{i}\right) z\left(x^{j}\right)=x^{i+j}=x^{r} \cdot\left(x^{d l}\right)^{q}=b\left(x^{r}\right) t^{q}
\end{gathered}
$$

Hence

$$
\Gamma\left(x^{i}, x^{j}\right)=x^{r} \otimes t^{q}, \quad T_{k l}^{i j}=\delta_{k, r(i, j)} \delta_{l, q(i, j)}
$$

(now assumingkis a \mathbb{Q}-algebra)
Contractions on the Koszul complex Let a be a quasi-regular sequence, and assume R / I is $f \cdot g$. projective over k. Consider the quasi-isomophism

$$
\left.\begin{array}{c}
K:=\left(\Lambda\left(k \theta_{1} \oplus \cdots \oplus k \theta_{n}\right) \otimes k \hat{R}, d_{k}=\sum_{i=1}^{n} a_{i} \theta_{i}^{*}\right) \\
\downarrow \pi \\
R / I=(R / I, 0) .
\end{array}\right\} \begin{aligned}
& \text { freeverolution of } R / I \\
& \text { as an } R \text {-module } \\
& \text { (eve nos a } D G-R \text {-algebra) }
\end{aligned}
$$

In fact this is a homotopy equivalence over k. Choose 6 a k-linearsection and ∇ the associated homotopy. We view $\nabla=\sum_{i} \frac{\partial}{\partial t_{i}} \theta_{i}$ as an odd k-linear operator on K. Then

$$
\begin{aligned}
{\left[\nabla, d_{k}\right]\left(r \theta_{i,} \cdots \theta_{i p}\right)=} & \left(\nabla d_{k}+d_{k} \nabla\right)\left(r \theta_{i} \cdots \theta_{i p}\right) \\
= & \nabla\left(\sum_{j=1}^{p}(-1)^{j+1} r a_{i j} \theta_{i} \cdots \hat{\theta}_{i j} \cdots \theta_{i p}\right) \\
& +d_{k}\left(\sum_{k=1}^{n} \frac{\partial}{\partial t_{k}}(r) \theta_{k} \theta_{i,} \cdots \theta_{i p}\right) \\
= & \sum_{j, k}(-1)^{j+1} \frac{\partial}{\partial t_{k}}\left(r a_{i j}\right) \theta_{k} \theta_{i,} \cdots \hat{\theta}_{i j} \cdots \theta_{i p}
\end{aligned}
$$

by def^{N} of a connection

$$
\begin{aligned}
& \frac{\partial}{\partial t_{k}}\left(r a_{i j}\right)=a_{i j} \frac{\partial}{\partial t_{k}}(r) \quad+\sum_{k=1}^{n} \frac{\partial}{\partial t_{k}}(r) a_{k} \theta_{i,} \cdots \theta_{i p} \\
& \text { unless } k=1_{j}+\sum_{j, k}(-1)^{j} \frac{\partial}{\partial t_{k}}(r) a_{i j} \theta_{i j} \cdots \hat{\theta}_{i j} \cdots \theta_{i p} \\
&= \sum_{j}\left\{\frac{\partial}{\partial t_{i j}}\left(r a_{i j}\right)-\frac{\partial}{\partial t_{i j}}(r) a_{i j}\right\} \theta_{i,} \cdots \theta_{i p} \\
&+\sum_{k=1}^{n} \frac{\partial}{\partial t r k_{2}}(r) a_{k} \theta_{i,} \cdots \theta_{i p} \\
&=\left\{\sum_{j} r+\sum_{k} \frac{\partial}{\partial t_{k}}(r) a_{k}\right\} \theta_{i 1} \cdots \theta_{i p}=\left\{p+d_{k} \nabla\right\}(r) \theta_{i 1} \cdots \theta_{i p} .
\end{aligned}
$$

Obsewe that

$$
\begin{aligned}
d k \nabla\left(\sum_{M} b\left(r_{M}\right) t^{M}\right) & =\sum_{M} \sum_{j} M_{j} a_{j} b\left(r_{M}\right) t^{M-e_{j}} \\
& =\sum_{M} \sum_{j} M_{j} b\left(r_{M}\right) t^{M} \\
& =\sum_{M}|M| \sigma\left(r_{M}\right) t^{M}
\end{aligned}
$$

Lemma $\operatorname{Im}\left(d_{k} \nabla^{\circ}: R \rightarrow R\right)$ is the ideal I.

Lemma Let $K \geqslant 1 \subseteq K$ denote the submodule spanned by $r \otimes \theta_{i}, \cdots \theta_{i p}$ with $p \geqslant 1$.
Then $K \geqslant 1$ is closed under $[\nabla, d k]$ and the k-linear map $[\nabla, d k]: K \geqslant 1 \longrightarrow K \geqslant 1$ is invertible.
$\underline{\text { Poof }}\left[\nabla, d_{k}\right]^{-1}\left(r \theta_{i}, \cdots \theta_{i p}\right)=\sum_{M} \frac{1}{p+\overline{|M|}} \sigma\left(r_{M}\right) t^{M} \theta_{i,} \cdots \theta_{i p}-\square$
Theorem Consider the diagram of k-linear maps

$$
H C(K, d K) \stackrel{\pi}{6}(R / I, 0)
$$

where $H=[\nabla, d k]^{-1} \circ \nabla$. Then we have
(a) π, σ are cochain maps (of k-complexes)
(b) $\pi \sigma=1$
(c) $6 \pi=1_{k}-\left[d_{k}, H\right]$
(d) $H^{2}=0, H_{8}=0, \pi H=0$.

This kind of situation is called a strong deformation retract.

Proof We pave (c). Obsewe that, writing $J=\left[\nabla, d_{k}\right]$

$$
\begin{align*}
d_{k} J=d_{k}\left[\nabla, d_{k}\right] & =d_{k}\left(\nabla d_{k}+d_{k} \nabla\right) \\
& =d_{k} \nabla d_{k}=\left[\nabla, d_{k}\right] d_{k}=J d_{k} \tag{*}
\end{align*}
$$

Write $K_{p} \leq K$ for the submodule spanned by $r \otimes \theta_{i}, \cdots \theta_{i p}, r \in \hat{R}$. Then on K_{p} for $p>0$ we have by $(*)$ that $d k=J d_{k} J^{-1}$ on K_{p}, and hence

$$
\begin{aligned}
{[d k, H] } & =d_{k} H+H d_{k} \\
& =d_{k} J^{-1} \nabla+J^{-1} \nabla d k \\
& =J^{-1} J d_{k} J^{-1} \nabla+J^{-1} \nabla d k \\
& =J^{-1} d k \nabla+J^{-1} \nabla d k \\
& =J^{-1}\left(d_{k} \nabla+\nabla d k\right)=J^{-1} J=1
\end{aligned}
$$

whereas on K_{0} we have for $r \in \hat{R}$ that $r-z(r) \in I$ and for $x \in I$ we know there exists $y \in \hat{R}$ with $x=d k \nabla(y)$. Then

$$
\begin{aligned}
\left(1-d_{k} H\right)(x) & =\left(1-d_{k} H\right) d_{k} \nabla(y) \\
& =d_{k} \nabla(y)-d_{k} J^{-1} \nabla d_{k} \nabla(y) \\
& =d_{k} \nabla(y)-d_{k} J^{-1}\left(J-d_{k} \nabla\right) \nabla(y) \\
& =0
\end{aligned}
$$

But this shows that on Ko,

$$
\begin{aligned}
\left(1_{k}-\left[d_{k}, H\right]\right)(r) & =\left(1_{k}-d_{k} H\right)(r) \\
& =\left(1_{k}-d_{k} H\right)(6(r)) \\
& =3(r)
\end{aligned}
$$

References

- J. Lipman, "Residues and traces of differential forms via Hochschild homology", Contemporary Math, Vol. 61, Amer. Math. Soc 1987.
"the purpose of this paper is to provide an elementary clevelopment of the theory of resiclues."
- T. Dyckerhoff, D. Murfet, "Pushing forward matrix factorisations", Duke Math. J., 2013.

