Generalised orbifolding of simple singularities
This talk was originally given at the Geometry at ANU wnfevence in August 2016.
The aim is to explain a remarkable theorem of the mathematical physicists
Carqueville - Rus Camacho-Runkel, and my own contribution to some of the mathematical inputs to their theorem.

Schematically the result can be described ar an unexpected sevies of equivalences of triangulated categories associated to isolated hypersurface singularities

The equivalences are not $\operatorname{hmf}(W) \cong h m f(V)$ (this would be toostong to be interesting) but of the form

$$
h m f(V) \cong M_{\operatorname{hod}}^{h m f(w)} 1(A) \text { Frobenius algebra/monad }
$$

The interesting examples so far are pain (V, W) of simple singulantien (aka ADE singularities), and unimudular singularities, but there areplobably many more.

Outline (1) Matrix factorisations 1.e. $\operatorname{hmf}(W)$
(2) Frobenius algebras
(3) Statement of theorem
(4) sketch of proof (uses work of mine with (arqueville).
$\varsigma^{\text {Eisenbud ' } 80}$
Def Let R be a commutative ring and $W \in R$. A matrix factorisation of W is a \mathbb{Z}_{2}-graded fig. projective R-module $X=X^{0} \oplus X^{\prime}$ together with an odd R-linear $d_{X}: X \longrightarrow X$ s.t. $d_{x}^{2}=W \cdot I_{x}$. A mouphism $Y:(X, d x) \rightarrow(Y, d y)$ is a degree zee map with $d y y=y d x$.

Def ${ }^{N} \operatorname{hmf}(R, W):=$ matrix factorisations of W with homotopy equivalence classes of mouphisms (so $\left.\left(R \oplus R,\left(\begin{array}{ll}0 & w \\ 1 & 0\end{array}\right)\right) \cong 0\right)$.

Examples (1) $R=\mathbb{C}[x], W=x^{N} N \geqslant 2$, for $1 \leq i \leq N-1$

$$
E_{i}:=\left(R \oplus R,\left(\begin{array}{cc}
0 & x^{i} \\
x^{N-i} & 0
\end{array}\right)\right) \in \operatorname{hmf}\left(\mathbb{C}[x], x^{N}\right)
$$

(2) $R=\mathbb{C}[x, y], W=y^{N}-x^{N} N \geqslant 2, \quad \eta=e^{2 \pi i / N}$ so

$$
y^{N}-x^{N}=\prod_{0 \leqslant i \leqslant N-1}\left(y-\eta^{i} x\right)
$$

Given $S \subseteq\{0, \ldots, N-1\}$ we have
keep

$$
P_{s}:=\left(R \oplus R,\left(\begin{array}{cc}
0 & \prod_{i \in s}\left(y-\eta^{i} x\right) \\
\prod_{i \neq s}\left(y-\eta^{i} x\right) & 0
\end{array}\right)\right) \in \operatorname{hmf}\left(\mathbb{C}[x, y], y^{N}-x^{N}\right)
$$

Theorem (Buchweitz, Orlov) There is an equivalence of triangulated categones

$$
\operatorname{hmf}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], w\right) \cong \mathbb{D}^{b}\left(\omega h w^{-1}(0)\right) / \operatorname{perf}\left(W^{-1}(0)\right)
$$

Puposition If $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ has isolated critical points then
keep

$$
\varepsilon_{w}=\operatorname{hmf}(\mathbb{C}[x] \otimes \mathbb{C}[x], W \otimes 1-1 \otimes W)^{w_{\infty}} \quad \text { Kawoubi closure / }
$$

is naturally a \otimes-triangulated category $\left(\varepsilon_{w}, *\right)$, and $\operatorname{hmf}(\mathbb{C}[\underline{x}], w)^{\omega}$ is an ε_{w}-module, i.e. there is an action $\varepsilon_{w} \times h m f(w)^{w} \longrightarrow h m f(w)^{w}$, where the tensor product $*$ is for $X, Y \in \varepsilon_{w}$

$$
\begin{aligned}
Y * X:= & \text { finite rank representative of } \\
& (Y \underset{\mathbb{Q}[x]}{\otimes} X, \underbrace{d y \otimes}_{\text {squares to } W \otimes|+| \otimes d x}) \text { in } \varepsilon_{W} . \\
& -|\otimes W \otimes| \\
& +|\otimes W \otimes|-|\otimes| \otimes W
\end{aligned}
$$

and the action of X on $E \in \operatorname{hmf}(\mathbb{C}[x], W)$ is
Y * $E:=$ finite rank representative of

$$
(Y \otimes E, \underbrace{d_{\mathbb{C}}(x)|+| \otimes d E}_{\text {squavesto } W \otimes \mid}) \text { in } \operatorname{hmf}(W) .
$$

Example $\varepsilon_{x^{N}}=\operatorname{hmf}\left(\mathbb{C}[x, y], y^{N}-x^{N}\right)$ is monoidal, with $0 \leq \lambda \leq N-2$

$$
\text { by steps of } 2
$$

(Brunner-Roggenkamp '07) related to fusion / ${\widehat{\operatorname{su(}}{ }^{(2)}{ }_{N-2}}$

$$
\begin{aligned}
& P_{a: \lambda}:=P_{\{a, a+1, \ldots, a+\lambda\}} \in \varepsilon_{x^{N}} \\
& P_{a: \lambda} * P_{b: \mu}=\bigoplus_{v=|\lambda-\mu|}^{\min (\lambda+\mu, 2 N-4-\lambda-\mu)} P_{a+b-\frac{1}{2}(\mu+\lambda-v): v} \\
& { }^{\text {Example }} P_{a: \lambda} * P_{b: 0} \\
& =P_{a+b: \lambda} J
\end{aligned}
$$

(2) Frobenius algebras

Let $(\varphi, \oplus, \mathbb{1})$ be a monoidal category. A Fobenius algebra in ζ is an object $A \in O b(B)$ equipped as an

- associative, unital algebra, $\mu: A^{\otimes_{2}} \rightarrow A, \eta: A \longrightarrow \mathbb{1}$
- wassociative, counital walgebra, $\triangle: A \rightarrow A^{\otimes 2}, \varepsilon: \mathbb{1} \rightarrow A$
such that the Frobenius identity holds:

$$
\text { i.e. } \quad\left(I_{A} \otimes \mu\right) \circ\left(\Delta \oplus I_{A}\right)=\Delta \circ \mu=\left(\left.\mu \otimes\right|_{A}\right) \circ\left(I_{A} \otimes \Delta\right)
$$

A Frobenius algebra is separable if

$$
\varrho=\mid \quad \text {, ie. } \mu \circ \Delta=I_{A}
$$

If there is an action $C \times J \xrightarrow{\otimes} J, A_{\otimes-}: J \longrightarrow J$ is a monad, and $\operatorname{Mod} J(A)$ denotes modules over this monad.

Theorem (Balmer) If C is a \otimes-triangulated category acting on a triangulated category J, and A is a separable algebra in ζ, then $\operatorname{Mod}_{J}(A)$ is naturally triangulated (some caveats).
(3) Fom now on $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], V \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$ have isolated cnit. points.

DefN V is a weak genevalised orbifold $(w G O)$ of W, denoted $W \longrightarrow$ wao V, if there is a separable Fobenius algebia $A \in \varepsilon_{W}$ and an equivalence of triangulated categonies

$$
\operatorname{Mod}_{h m f(w)}(A) \cong \operatorname{hmf}(V) \quad(\text { note } \operatorname{hmf}(w) \circlearrowright A *-)
$$

Example (1) W \rightarrow wao $W \quad A=\Delta w \in E_{w}$ which is the monoidal unit
(2) $W \rightarrow \omega_{\text {ao }} W+u^{2}+v^{2} \quad A=\Delta_{W} \otimes_{\mathbb{C}} \operatorname{cliff}\left(u^{2}+v^{2}\right)$
(a form of Knömer penodicity)

Theovem (Carqueville-Ros Camacho-Runkel '(3) with the notation

$$
\begin{aligned}
V^{\left(\mathrm{A}_{d-1}\right)} & =x_{1}^{d}+x_{2}^{2} & & c=3-3 \cdot \frac{2}{d} \\
V^{\left(\mathrm{D}_{d+1}\right)} & =x_{1}^{d}+x_{1} x_{2}^{2} & & c=3-3 \cdot \frac{2}{2 d} \\
V^{\left(\mathrm{E}_{6}\right)} & =x_{1}^{3}+x_{2}^{4} & & (d \geqslant 3) \\
V^{\left(\mathrm{E}_{7}\right)} & =x_{1}^{3}+x_{1} x_{2}^{3} & & c=3-3 \cdot \frac{2}{12} \\
V^{\left(\mathrm{E}_{8}\right)} & =x_{1}^{3}+x_{2}^{5} & & c=3-3 \cdot \frac{2}{18}
\end{aligned}
$$

wehave

$$
\begin{aligned}
\text { (d even) } V^{\left(A_{d-1}\right)} \longrightarrow \text { wao } V^{\left(D_{\left.d l_{2}+1\right)}\right)} \\
V^{\left(A_{11}\right)} \longrightarrow \text { wac } V^{\left(E_{6}\right)} \quad \text { i.e. "ADE fom } A^{\prime \prime} \\
V^{\left(A_{17}\right)} \longrightarrow \text { wao } V^{\left(E_{7}\right)} \\
V^{\left(A_{29}\right)} \longrightarrow \text { wao } V^{\left(E_{8}\right)}
\end{aligned}
$$

(ture for ADE in any dimension not just cumes)

Note Bya theovem of Kajiura-Saito-Takahashi for V an ADE singulanity

$$
\operatorname{lm} f^{g r}\left(\mathbb{C}[\underline{x}, t], v+t^{2}\right) \cong \mathbb{D}^{b}(\text { vep. } \mathbb{C} \vec{Q})
$$

where Q is the cowesponding Dynkin quiver. The fint of the abowe wCO relations was knoun (Reiten - Riedtmann '85) and comesponds to a "folding"

But the $A \rightarrow E$ relations clon't seem to anise some groupactionson quiven in this straight forward way.
(4) Sketch of proof (assume m, n even)

Plop (Carqueville-M'12) Any $X \in \operatorname{hmf}(\mathbb{C}[\underline{x}, \underline{y}], V(\underline{y})-W(\underline{x})$) has a clual $X^{v} \in \operatorname{hmf}(\mathbb{C}[\underline{x}, \underline{y}], W(\underline{x})-V(\underline{y}))$ which is an adjoint (on both sides) in an appropriate bicategoy

$$
W \underset{x^{v}}{\stackrel{x}{\rightleftarrows}} V \quad\left(\text { ie. } \operatorname{hm} f(\mathbb{C}[\underline{x}], W) \stackrel{X^{*}-}{\underset{x^{v} *-}{\rightleftarrows}} \operatorname{hmf}(\mathbb{C}[\underline{y}], V)\right)
$$

This leads us monphisms in $\varepsilon_{w}, \varepsilon_{v}$ resp.

$$
\begin{aligned}
& \operatorname{gdime}(X):=\Delta_{w} \xrightarrow{\text { unit }} X^{v} * X \xrightarrow{\text { counit }} \Delta_{w} \\
& q \operatorname{dim}(X):=\Delta_{v} \xrightarrow{\text { unit }} X * X^{v} \xrightarrow{\text { counit }} \Delta_{v}
\end{aligned}
$$

Pup If both qdim's of X are scalar multiples of 1_{Δ}, then $A:=X^{v} * X$ is a separable Fobenim alg. in ε_{w} and $\operatorname{Mod}_{\text {mf }}(w)(A) \cong h m f V$, that is, W \longrightarrow wa o V. (avesion of the Barr-Beck theorem)

Deft If X as in the proposition exist we say W, V are orbifold equivalent $V \sim a_{0} W$. This is an equivalence rel N stronger than \rightarrow wa .

One actually proves the ADE singularities are orbifold equivalent, e.g. $V^{\left(A_{d-1}\right)} \sim_{c o} V^{\left(D_{a / 2}+1\right)}$
Note for a grading $\left|x_{i}\right| \in \mathbb{Q}$ s.t. $|W|=2$, the central charge is $c(W)=3 \sum_{i}\left(1-\left|x_{i}\right|\right)$
Lemma $V \sim \sim_{\text {Go }} W \Rightarrow m \equiv n(\bmod 2)$ and $c(W)=c(V)$.

$$
\begin{aligned}
& V\left(D_{d+1}\right)=x_{1}^{d}+x_{1} x_{2}^{2} \quad\left|x_{1}\right|=\frac{2}{d},\left|x_{2}\right|=1-\frac{1}{d}, c=3-\frac{3}{d} \text {, the same as } \\
& V^{\left(A_{2 d}-1\right)}=y_{1}^{2 d}+y_{2}^{2} \quad\left|y_{1}\right|=\frac{1}{d},\left|y_{2}\right|=1 .
\end{aligned}
$$

Theorem (Carqueville-M'12) with $X: W \rightarrow V$ as above,

$$
\begin{aligned}
& \operatorname{qdime}(X)= \pm \operatorname{Res}_{\mathbb{C}[x, y] / \mathbb{C}[x]}\left(\frac{\operatorname{str}\left(\partial_{x} d x \cdots \partial_{x} d x \partial_{y_{1}} d x \cdots \partial_{\left.y_{m} d x\right)} d y_{1} \cdots d y_{m}\right.}{\left.\partial_{y_{1}} V \cdots \partial_{y_{m} V}\right)}\right) \cdot 1_{\Delta} \\
& \operatorname{str}(M)=\sum_{i}(-1)^{\mid l i} \mid \\
& M_{i i} \quad \text { the residue is a polynomial in } \mathbb{C}[x]
\end{aligned}
$$

and similarly for gdimr (X).

Finally: Carqueville - Rus Camacho - Runkel pore their theorem by searching
the space of matrices d_{x} over $\mathbb{C}[\underline{x}, \underline{y}]$ with (i) $d_{x}^{2}=V-W$ and
(ii) $q \operatorname{dime}(x) \in \mathbb{C}^{*}, q \operatorname{dimr}(x) \in \mathbb{C}^{*}$ in a clever way, and finding an explicit $d x$ in each case.
(5) Notes

C of $A D E$ pain

- In all cases the Fobenius algebra $A:=X^{v} * X \in E_{w}$ has as underlying object a divectsum of P_{s} matrix factorisations for some S (Carqueville)
- Conjecture Strangely dual unimudular exceptional singularities are orbifold equivalent (there are four nontrivial cases, as 6 out of 14 are self-dual).

Known: $Q_{10}: x^{4}+y^{3}+x z^{2} \sim q_{0} E_{14}: x^{4} z+y^{3}+z^{2} \quad$ (Ros-(amacho, Neuton'15)

- Exceptional unimodularsing. of same weight $\left(a_{4} a_{2}, a_{3} ; h\right)$ are GO-equivalent (Ros-Camacho, Newton'16).

$$
\uparrow_{\left|x_{i}\right|=\frac{2 a_{i}}{h} \quad c_{w}=\frac{h+2}{h}}
$$

Q1/ What is the geometric origin of orbifold equivalences?

Q2) Is there a better way of generating examples?

Appendix B ADE orbifolding defects X

- $V^{\left(A_{d-1}\right)} \sim V^{\left(D_{d d_{2}}+1\right)} \quad \operatorname{rank} X=2$ (ie. d_{x}^{1}, d_{x}^{0} are 2×2 matrices)
- $V^{\left(A_{11}\right)} \sim V^{\left(E_{6}\right)} \quad \operatorname{rank} X=2$
- $V^{\left(A_{17}\right)} \sim V^{\left(E_{7}\right)} \quad \operatorname{rank} X=2$
- $V^{\left(A_{2 a}\right)} \sim V^{\left(E_{8}\right)} \quad \operatorname{vank} X=4$

References

- Carqueville, Ros-Camacho, Runkel "Orbifold equivalent potentials" arXiv: 1311.3354.
- Carqueville, Runkel "Orbifold completion of defect bicategories" av Xiv: 1210.6363.
- Brunner, Roggenkamp "B-type defects in LG models" ar Xiy:0707.0922.
- Dayydov, Ros Camacho, Runkel " $N=2$ minimal conformal field theories and matrix bifactorisations of $x^{d \prime}$ arXiv: 1409.2144 .
- Larqueville, Murfet "Adjunctions and defects in Landau-Ginzburg models" arXiv: 1208.1481
- Carqueville, Velez "Calabi-Yau completions and orbifold equivalences" ar Xiv:1509.0088.
- Neuton, Ros Camacho "strangely dual orbifold equivalence $I^{\prime \prime}$

