Generalised orbifolding of simple singularities

This talk was originally given at the Geometry at ANU conference in August 2016. The aim is to explain a remarkable theorem of the mathematical physicists Carqueville - Ros Camacho - Runkel, and my own contribution to some of the mathematical inputs to their theorem.

Schematically, the result can be described as an unexpected series of equivalences of triangulated categories associated to isolated hypersurface singularities:

\[W \in \mathbb{C}[x_1, \ldots, x_n] \quad \rightarrow \quad \text{triangulated category } \ hmf(W) \]

\[V \in \mathbb{C}[y_1, \ldots, y_m] \quad \rightarrow \quad " \quad \text{" } \ hmf(V) \]

different singularities

The equivalences are not \(hmf(W) \cong hmf(V) \) (this would be too strong to be interesting) but of the form:

\[hmf(V) \cong \text{Mod}_{hmf(W)}(A) \quad \text{Frobenius algebra/monad} \]

The interesting examples so far are pairs \((V, W) \) of simple singularities (aka ADE singularities), and unimodular singularities, but there are probably many more.

Outline
1. Matrix factorisations i.e. \(hmf(W) \)
2. Frobenius algebra
3. Statement of theorem
4. Sketch of proof (use my work of mine with Carqueville)
Let R be a commutative ring and $W \in R$. A matrix factorisation of W is a \mathbb{Z}_2-graded f.g. projective R-module $X = X^0 \oplus X^1$ together with an odd R-linear $d_X : X \rightarrow X$ s.t. $d_X^2 = W \cdot 1_X$. A morphism $\varphi : (X, d_X) \rightarrow (Y, d_Y)$ is a degree zero map with $d_Y \circ \varphi = \varphi \circ d_X$.

Definition \(\text{hmf}(R, W) := \) matrix factorisations W with homotopy equivalence classes of morphisms $(\text{so } (R \oplus R, (0, 0)) \cong 0)$.

Examples

1. $R = \mathbb{C}[x]$, $W = x^N$, $N \geq 2$, for $1 \leq i \leq N - 1$

 \[E_i := (R \oplus R, \begin{pmatrix} 0 & x^i \\ x^{-i} & 0 \end{pmatrix}) \in \text{hmf}(\mathbb{C}[x], x^N) \]

2. $R = \mathbb{C}[x, y]$, $W = y^N - x^N$, $N \geq 2$, $\gamma = e^{2\pi i/\mathfrak{n}}$, so

 \[y^N - x^N = \prod_{0 \leq i \leq N - 1} (y - \gamma^i x) \]

 Given $S \subseteq \{0, \ldots, N - 1\}$ we have

 \[P_S := (R \oplus R, \begin{pmatrix} 0 & \prod_{i \in S} (y - \gamma^i x) \\ \prod_{i \notin S} (y - \gamma^i x) & 0 \end{pmatrix}) \in \text{hmf}(\mathbb{C}[x, y], y^N - x^N) \]

Theorem (Buchweitz, Orlov) There is an equivalence of triangulated categories

\[\text{hmf}(\mathbb{C}[x_1, \ldots, x_n], W) \cong D^b(\text{wh} W^{-1}(0)) / \text{Perf}(W^{-1}(0)) \]
Proposition: If \(W \in C[x_1, \ldots, x_n] \) has isolated critical points then

\[
\varepsilon_W = \operatorname{hmf}(C[x] \otimes C[x], \mathcal{W} \otimes 1 \otimes W) \overset{Kanoubi closure}{\rightarrow} \operatorname{idempotent closure}
\]

is naturally a \(\otimes \)-triangulated category \((\varepsilon_W, \ast)\), and \(\operatorname{hmf}(C[x], W) \)

is an \(\varepsilon_W \)-module, i.e., there is an action \(\varepsilon_W \times \operatorname{hmf}(W) \rightarrow \operatorname{hmf}(W) \)

where the tensor product \(\ast \) is for \(X, Y \in \varepsilon_W \)

\[
Y \ast X := \text{finite rank representative of } \left(\frac{Y \otimes X}{\ast(x)}, \text{ dividing } \frac{dY \otimes 1 + 1 \otimes dX}{\ast(x)} \text{ in } \varepsilon_W. \right.
\]

and the action of \(X \) on \(E \in \operatorname{hmf}(C[x], W) \) is

\[
Y \ast E := \text{finite rank representative of } \left(\frac{Y \otimes E}{\ast(y)}, \text{ dividing } \frac{dY \otimes 1 + 1 \otimes dE}{\ast(y)} \text{ in } \operatorname{hmf}(W). \right.
\]

Note: \(Y \ast (-) : \operatorname{hmf}(W) \rightarrow \operatorname{hmf}(W) \) is a triangulated functor.

Example: \(\varepsilon_2^2 = \operatorname{hmf}(C[x,y], y^N - x^N) \) is monoidal, with \(0 \leq \lambda \leq N-2 \)

\[
P_a: \lambda := P_{\{a, a+1, \ldots, a+\lambda\}} \in \varepsilon_2^N
\]

where \(\lambda \geq \min(\lambda + 4, 2N-4, -\lambda - 4) \)

\[
P_a \ast P_b: \mu = \bigoplus_{\nu = |\lambda - \mu|} \bigoplus_{\text{by step of } 2} P_{a+b-\frac{1}{2}(\mu+\lambda-\nu)} : \nu
\]

(Example \(P_a: \lambda \ast P_b: \mu \overset{\varepsilon_2^N}{=} P_{a+b: \lambda} \))

Example: \(P_a: \lambda \ast P_b: 0 \overset{\varepsilon_2^N}{=} P_{a+b: \lambda} \)

Related to fusion/ \(\text{SU}(2)_{N-2} \).
2. Frobenius algebras

Let \((C, \otimes, I)\) be a monoidal category. A Frobenius algebra in \(C\) is an object \(A \in \text{ob}(C)\) equipped as an

- associative, unital algebra, \(\mu : A^\otimes \to A, \epsilon : A \to I\)
- coassociative, counital coalgebra, \(\Delta : A \to A^\otimes, \varepsilon : I \to A\)

such that the Frobenius identity holds:

\[
\begin{array}{ccc}
\mu & = & \Delta \\
\Delta & = & \mu
\end{array}
\]

i.e. \((1_A \otimes \mu) \circ (\Delta \otimes 1_A) = \Delta \circ \mu = (\mu \otimes 1_A) \circ (1_A \otimes \Delta)\)

A Frobenius algebra is separable if

\[
\begin{array}{ccc}
\mu \circ \Delta & = & 1_A
\end{array}
\]

If there is an action \(C \times J \to J, A \otimes - : J \to J\) is a monad, and \(\text{Mod}_J(A)\) denotes modules over this monad.

Theorem (Balmer) If \(C\) is a \(\otimes\)-triangulated category acting on a triangulated category \(J\), and \(A\) is a separable algebra in \(C\), then \(\text{Mod}_J(A)\) is naturally triangulated (some caveats).
3. From now on $W \in \mathbb{C}[x_1, \ldots, x_n]$, $V \in \mathbb{C}[y_1, \ldots, y_m]$ have isolated cut points.

Definition V is a weak generalised orbifold (WGO) of W, denoted $W \rightarrow_{\text{wao}} V$, if there is a separable Frobenius algebra $A \in \mathbb{E}_W$ and an equivalence of triangulated categories

$$\text{Mod}_{\text{hmf}(W)}(A) \cong \text{hmf}(V) \quad \text{(note } \text{hmf}(W) \supset A \text{-)}$$

Example (1) $W \rightarrow_{\text{wao}} W$, $A = \Delta_W \in \mathbb{E}_W$ which is the monoidal unit.

(2) $W \rightarrow_{\text{wao}} W + u^2 + v^2$, $A = \Delta_W \otimes \text{Cliff}(u^2 + v^2)$

(a form of Knörrer periodicity)

Theorem (Carqueville - Ros Camacho - Runkel '13) With the notation

- $V^{(A_{d-1})} = x_1^d + x_2^2$ with $c = 3 - 3 \cdot \frac{2}{d}$ for $d \geq 2$
- $V^{(D_{d+1})} = x_1^d + x_1 x_2^2$ with $c = 3 - 3 \cdot \frac{2}{2d}$ for $d \geq 3$
- $V^{(E_6)} = x_1^3 + x_2^4$ with $c = 3 - 3 \cdot \frac{2}{12}$
- $V^{(E_7)} = x_1^3 + x_1 x_2^3$ with $c = 3 - 3 \cdot \frac{2}{18}$
- $V^{(E_8)} = x_1^3 + x_2^5$ with $c = 3 - 3 \cdot \frac{2}{30}$

we have

(d even) $V^{(A_{d-1})} \rightarrow_{\text{wao}} V^{(D_{d+1})}$

$V^{(A_n)} \rightarrow_{\text{wao}} V^{(E_6)}$

$V^{(A_{2n})} \rightarrow_{\text{wao}} V^{(E_8)}$

i.e. "ADE from A" (true for ADE in any dimension, not just curves)
Note By a theorem of Kajiura-Saito-Takahashi for V an ADE singularity

$$\text{hm}f^W(C[x,t], V + t^2) \equiv \mathcal{D}^b(\text{rep. } CQ)$$

where Q is the corresponding Dynkin quiver. The first of the above \mathcal{WGO} relations was known (Reiten-Riedtmann '85) and corresponds to a "folding"

But the $A \to E$ relations don't seem to arise some group actions on quivers in this straightforward way.
4 Sketch of proof (assume \(m,n\) even)

Prop (Carqueville-M ’12) Any \(X \in \text{hmf}(\mathbb{C}[x,y], V(y) - W(z))\) has a dual \(X^* \in \text{hmf}(\mathbb{C}[x,y], W(z) - V(y))\) which is an adjoint (on both sides) in an appropriate bicategory:

\[
\begin{array}{ccc}
X & \xrightarrow{\text{unit}} & X^* \\
\downarrow & & \downarrow \\
X^* & \xrightarrow{\text{unit}} & X
\end{array}
\]

\(\text{(i.e. hmf}(\mathbb{C}[z], W) \xrightarrow{\text{unit}} W_{\text{co-op}} \xrightarrow{\text{unit}} \text{hmf}(\mathbb{C}[z], V)\)

This leads to morphisms in \(E_{W}, E_{V}\) resp.

\[
gdim(X) := \Delta_{W} \xrightarrow{\text{unit}} X^* \xrightarrow{\text{unit}} \Delta_{W}
\]

\[
gdimr(X) := \Delta_{v} \xrightarrow{\text{unit}} X^* \xrightarrow{\text{unit}} \Delta_{v}
\]

Prop If both \(gdim's\) of \(X\) are scalar multiples of \(1_{\Delta}\), then \(A := X^* \times X\) is a separable Frobenius alg. in \(E_{W}\) and \(\text{Mod}_{\text{hmf}}(W)(A) \cong \text{hmf}_{L}\), that is, \(W \twoheadrightarrow \text{wao} V\). (a version of the Barr-Beck theorem)

Def If \(X\) as in the proposition exists we say \(W, V\) are orbifold equivalent \(W \sim_{\text{co-op}} V\). This is an equivalence rel \(\sim_{\text{co-op}}\) stronger than \(\rightarrow \text{wao}\).

One actually proves the ADE singularities are orbifold equivalent, e.g. \(\sqrt{(A_{d+1})} \sim_{\text{co-op}} \sqrt{(D_{d+1})}\)

Note For a grading \(|x|: \mathbb{Q}\) t. \(|W| = 2\), the central charge is \(c(W) = 3 \sum_{i} (1 - |x;|)\)

Lemma \(V \sim_{\text{co-op}} W \Rightarrow m \equiv n \; (\text{mod} 2)\) and \(c(W) = c(V)\).

\[
\begin{align*}
V(D_{d+1}) &= x_1 \cdots x_d y_1^{2d} y_2^{d} |x_1| = \frac{2}{d}, |x_2| = 1 - \frac{1}{d}, c = 3 - \frac{3}{d}, \text{the same as } \\
V(A_{2d-1}) &= y_1^{2d} + y_2^{d} |y_1| = \frac{1}{d}, |y_2| = 1.
\end{align*}
\]
Theorem (Carqueville-M'12) With $X: W \to V$ as above,

$$qdim_e(X) = \pm \text{Res}_{C[z]/C[x]} \left(\frac{\text{str}(\frac{\partial x_1 \frac{\partial x_2 \ldots \partial x_n \partial y_1 \partial y_2 \ldots \partial y_m} {\partial y_1 \partial \ldots \partial y_m} } {\partial y_1 \partial \ldots \partial y_m}) dy_1 \ldots dy_m } {\partial y_1 \partial \ldots \partial y_m} \right) \cdot 1_\Delta$$

$$\text{str}(M) = \sum_i (-1)^{\text{deg} M_{ii}}$$

The residue is a polynomial in $C[x]$

and similarly for $qdim_r(X)$.

Finally: Carqueville-Ros Camacho-Runkel prove their theorem by searching the space of matrices $d x$ over $C[z,y]$ with (i) $d x^2 = V - W$ and (ii) $qdim_e(X) \in C^*$, $qdim_r(X) \in C^*$ in a clever way, and finding an explicit $d x$ in each case.

(5) Notes

- The Frobenius algebra $A := X^* \otimes X \in E_w$ has an underlying object a direct sum of P_4 matrix factorisations for some S (Carqueville)

- Conjecture Strangely dual unimodular exceptional singularities are orbifold equivalent (there are four nontrivial cases, on 6 out of 14 are self-dual).

Known: $Q_{10}: x^4 + y^3 + xz^2 \sim E_6: x^4 z + y^3 + z^2$ (Ros-Camacho, Newton '15)

- Exceptional unimodular singularities of same weight (a_1, a_2, a_3, h) are GO-equivalent (Ros-Camacho, Newton '16).

$$|x_i| = \frac{2a_i}{h}, \quad cw = \frac{h + 2}{h}$$
Q1/ What is the geometric origin of orbifold equivalences?

Q2/ Is there a better way of generating examples?
Appendix B ADE orbifolding defects \(X \)

- \(\sqrt{(A_{d-1})} \sim \sqrt{(D_{12} + 1)} \) \(\text{rank} \ X = 2 \) (i.e. \(d_1, d_0 \) are 2x2 matrices)
- \(\sqrt{(A_{11})} \sim \sqrt{(E_6)} \) \(\text{rank} \ X = 2 \)
- \(\sqrt{(A_{10})} \sim \sqrt{(E_7)} \) \(\text{rank} \ X = 2 \)
- \(\sqrt{(A_{24})} \sim \sqrt{(E_8)} \) \(\text{rank} \ X = 4 \)
References

• Carqueville, Ros-Camacho, Runkel “Orbifold equivalent potentials” arXiv:1311.3354.

• Carqueville, Runkel “Orbifold completion of defect bicategories” arXiv:1210.6363.

• Davydyov, Ros Camacho, Runkel “N=2 minimal conformal field theories and matrix bifactorisations of x^d” arXiv:1409.2144.

• Carqueville, Murfet “Adjunctions and defects in Landau–Ginzburg models” arXiv:1208.1481

• Newton, Ros Camacho “Strangely dual orbifold equivalence I”