The category of simply-typed lambda terms II
"Thus a proof is, not an object, but an act. " - Martin-Löf

These ave the notes for the second part of a lecture on the category of simply-typed lambda terms. Recall that for each type $b \in \Phi \rightarrow$ we have a set Y_{3} of variables of th at type. Aslong as this set is infinite, everything works. For a λ-term M the set $F V(M)$ of free variables is a finite (possibly empty) subset of the set

$$
I:=\bigcup_{6 \in \Phi \rightarrow} Y_{z}
$$

of typed variables. The existence of free variables works somewhat against our natural inclination to think of a term $M: Z \rightarrow \rho$ as a (set-theovetic) function with domain σ. In fact we should instead wnsider the typing as a constraint (or guarantee) that M will "yield" an output of type ρ on an input of type 3, but where the process involved in this yielding may involve other parameters - the free variables of M.

Example $M=\left(\lambda x^{3} \cdot y^{5}\right)$ has free variable y, and while it yields y on any input of type b (thus obeying the constraint of its type) this output clearly depends on the value of the parameter.

We may make these "hidden" dependencies explicit by λ-abstraction, which removes variables from the set of free variables. However we may restore the hidden clependency just as easily (see the next example). This dual process of "making dependencies explicit" and "hiding dependencies" is described by an adjoint pair of functors, and this (together with a colax 2-functor which maps terms M to a sublet of their free variables) is our categorical representation of λ-abstraction in the simply typed λ-calculus.

Example with $M=\left(\lambda x^{b} \cdot y^{J}\right)$ as above, $N=\lambda y$. M has type $T \rightarrow(z \rightarrow J)$ and no free variables, while $(N y)=((\lambda y . M) y)=\beta M$ has the free variable restored.

Given a λ-term $M: \rho$ and variable $q: J$ there is a commutative diagram in \mathcal{L}

and it is this lifting of M into $J \rightarrow \rho$ that we wish to express categorically. Fins we need to understand the set $F V(M)$ which is clearly not an invariant of M under β-reduction.

Example Forvariables x, y

$$
F V\left(\left(\left(\lambda a^{b} \cdot x^{\top}\right) y^{2}\right)\right)=F V\left(\left(\lambda a^{b} \cdot x^{J}\right)\right) \cup F V\left(y^{b}\right)=\{x, y\}
$$

$$
(a \neq x) \quad F V\left(x^{\top}\right)=\{x\} .
$$

Lemma If $M \rightarrow \beta N$ then $F V(N) \subseteq F V(M)$.
Poof In a β-reduction $((\lambda x, P) Q) \longrightarrow P[x:=Q]$ the free variables on the RHS were either already free in $\operatorname{Por} Q$.

Def Given a λ-term M we define

$$
F V_{\beta}(M):=\bigcap_{\substack{\lambda \text {-terms } N \\ \text { with } M=\beta N}} F V(N)
$$

Using that the simply-typed lambda calculus is strongly normalising and confluent, it is equivalent to say that, for \hat{M} the unique normal λ-term in the β-equivalence class of M, we have $F V_{\beta}(M)=F V(\widehat{M})$.

Lemma Given λ-terms $M: B \rightarrow \rho$ and $N: ठ$ we have

$$
\begin{equation*}
F V_{\beta}((M N)) \subseteq F V_{\beta}(M) \cup F V_{\beta}(N) \tag{3.1}
\end{equation*}
$$

Poof We may assume M, N normal, in which case there is a chain

$$
(M N) \rightarrow \beta(\hat{M N})
$$

whence use are done by the previous lemma. D

Example The inclusion (3.1) may be strict: consider $M=(\lambda a . x) \quad N=y$ as above.
Lemma Given $M: b \rightarrow \rho$ and $N: \mathcal{J} \longrightarrow \delta$,

$$
\begin{equation*}
F V_{\beta}(M \circ N) \subseteq F V_{\beta}(M) \cup F V_{\beta}(N) \tag{3.2}
\end{equation*}
$$

Poof Recall $M \circ N:=(\lambda x \cdot(M(N x))), x \notin F V(M) \cup F V(N)$, and apply the same argument. I

At this point we may view $F V_{\beta}(-)$ as a function on \mathcal{L}, sending monphisms to elements of the lattice Var (by convention $F V_{\beta}(*)=\phi$), and having a kind of weak functoriality expressed by (3.2).

Remark If we view \mathcal{L} as a 2 -category with only identity 2-mouphisms and \mathcal{V} ar as a 2-categoy with one object, and composition of 1-monphisms $1=$ finite subsets of I) as union, then $F V_{\beta}$ is a colax functor $\mathscr{L} \rightarrow$ Var.

Def For a finite subset $P \subseteq I$ define $\mathcal{L}_{p} \subseteq \mathcal{L}$ to be the subcategory with the same objects as \mathcal{Z}, and mouphisms

$$
\mathscr{L}_{p}(z, \rho):=\left\{f \in \mathscr{L}(z, \rho) \mid F V_{\beta}(f) \subseteq p\right\} .
$$

Lemma \mathcal{L}_{p} is a subcategory.

Poof Since $F V_{\beta}\left(i d_{b}\right)=\varnothing$ for all b, \mathscr{L}_{p} contains identities and (3.2) shows \mathscr{L}_{p} is closed under composition. \square

Let $\rho \in \Phi^{\Phi}$ and Q be a finite set of variables. If $Q=\phi$ define $Q^{*} \rho:=\rho$
Otherwise chouse a o ordering $Q=\left\{q_{1}: J_{1}, \ldots, q_{k}: J_{k}\right\}$ and set

$$
\begin{equation*}
Q^{*} \rho:=J_{1} \rightarrow J_{2} \rightarrow \cdots \rightarrow J_{k} \rightarrow \rho \tag{4.1}
\end{equation*}
$$

and define

$$
\begin{equation*}
2 u^{Q}=\lambda u^{Q^{*} \rho} \cdot\left(\cdots\left(\left(u q_{1}\right) q_{2}\right) \cdots q_{k}\right): Q^{*} \rho \rightarrow \rho \tag{4.2}
\end{equation*}
$$

As discussed earlier $Q^{*} \rho$ is independent up to isomonphirm of the chosen ordering, in a way utrich is clearly compatible with 21^{Q}.

Our main theorem is:

Theorem Given a finite subset $Q \subseteq \mathbb{I}$ the inclusion $I: \mathcal{L}_{Q^{c}} \longrightarrow \mathcal{L}$ has a right adjoint, given on objects by $\rho \mapsto Q^{*} \rho$, with \mathcal{L}^{Q} as the counit of adjunction.

Proof Let us first make $Q^{*}: \mathscr{L} \longrightarrow \mathcal{L}$ into a functor. It clearly suffices to define a functor $F_{J}=J \rightarrow(-), J \in \Phi \rightarrow$. This is defined on object in the natural way, with $J \rightarrow \mathbb{I}:=\mathbb{I}$. For z, ρ simple types and $M \in \mathscr{L}(3, \rho), M \neq *$ define

$$
F_{J}(M) \in \mathcal{L}(J \rightarrow 6, J \rightarrow \rho), \quad F_{J}(M):=\lambda u^{J \rightarrow b} \cdot \lambda q^{J} \cdot(M(u q))^{\mathcal{E} \text { of the the chosen var } \mathrm{Q} Q}
$$

where $u \notin F V(M)$. We set $F_{\tau}(*)=*$ in all cases, and for $M \in \mathscr{L}(\mathbb{I}, \rho)$

$$
\begin{aligned}
& F_{J}(M) \in \mathscr{L}(\mathbb{1}, J \rightarrow \rho), \quad F_{\mathcal{J}}(M):=* . \\
& \Gamma_{F_{J}\left(M_{2}+M_{1}\right)} M_{i}: \rho_{i} \rightarrow \rho_{i+1} \\
& =\lambda u \cdot \lambda q \cdot\left(M_{2}+M_{1}(u q)\right) \\
& =\lambda u \cdot \lambda_{q} \cdot\left(\lambda t \cdot\left(M_{2}\left(M_{1} t\right)\right)(u q)\right) \\
& =\lambda u_{1} \lambda_{q} \cdot\left(M_{2}\left(M_{1}(u q)\right)\right) \\
& F_{J}\left(M_{2}\right) \circ F_{J}\left(M_{1}\right) \\
& =\lambda t .\left(F_{J}\left(M_{2}\right)\left(F_{J}\left(M_{1}\right) t\right)\right) \\
& \Phi: \mathscr{L}\left(z, Q^{*} \rho\right)_{Q^{c}} \longrightarrow \mathscr{L}(z, \rho) \\
& \Phi(N):=2 \mu^{Q} \circ N . \\
& =\lambda t \cdot\left(\lambda q \cdot\left(M_{2}\left(\left(F_{J}\left(M_{1}\right) t\right) q\right)\right)\right) \\
& =\lambda t \cdot \lambda q \cdot\left(M_{2}\left(\left(\lambda q \cdot\left(M_{1}(t q)\right)\right) q\right)\right) \\
& =\lambda t \cdot \lambda q \cdot\left(M_{2}\left(M_{1}(t q)\right)\right)
\end{aligned}
$$

Naturality in 6 is clear, and naturality in ρ follows from natuiality of \mathcal{U}^{Q}, which may he ascertained from commutativity of the following for $M \in \mathcal{L}(3, \rho)$ and $q: J$

since

$$
\begin{aligned}
{[\lambda b \cdot(b q)] \circ[\lambda u \cdot \lambda q(M(u q))] } & =\beta \lambda z^{T \rightarrow b} \cdot((N z) q) \\
& =\beta \lambda z \cdot(\lambda q \cdot(M(z q)) q) \\
& =\beta \lambda z \cdot(M(z q)) \\
& =\beta \lambda z \cdot(M(\lambda a \cdot(a q) z))
\end{aligned}
$$

We define a function $\Phi^{\prime}: \mathscr{L}(z, \rho) \rightarrow \mathscr{L}\left(z, Q^{*} \rho\right)$ (as follows:

$$
\Phi^{\prime}(M):=\lambda q_{1}^{J_{1}} \ldots \lambda q_{k}^{J_{k}} \cdot M: J_{1} \rightarrow \cdots \rightarrow J_{k} \rightarrow \sigma \rightarrow \rho
$$

where we use the isomouphism discussed in Part $I\left(J, \rightarrow \cdots \rightarrow J_{k} \rightarrow b \rightarrow \rho\right) \cong\left(b \rightarrow Q^{*} \rho\right)$ in \mathcal{L}.
Clearly $F V_{\beta}\left(\Phi^{\prime}(M)\right) \subseteq F V\left(\lambda q_{1} \ldots \lambda q_{k} \cdot M\right) \subseteq Q^{C}$.
$\Phi \circ \Phi^{\prime}=i d$ is the statement that for $M \in \mathscr{L}(z, \rho)$ the diagram

commutes, which follows form the calculation (using $\beta \eta$)

$$
\begin{aligned}
\mathcal{U}^{Q} \circ \Phi^{\prime}(M) & =\lambda t^{b} \cdot\left(u^{Q}\left(\Phi^{\prime} M t\right)\right) \\
& =\lambda t^{b} \cdot\left(\cdots \cdot\left(\left(\Phi^{\prime} M t\right) q_{1}\right) \cdots q_{k}\right) \\
& =\lambda t^{b} \cdot\left(\left(\cdots\left(\left(\lambda q_{1} \cdots \lambda q_{k} M\right) q_{1}\right) \cdots q_{k}\right) t\right) \\
& =\cdots \\
& =\lambda t^{b} \cdot(M t) \\
& =\eta M .
\end{aligned}
$$

$\Phi^{\prime} \circ \Phi=i d$ Suppose $N \in \mathcal{L}\left(3, Q^{*} \rho\right)$ with $F V_{\beta}(N) \cap Q=\phi$. We may assume N itself is normal, if necessary. Then by a calculation like (6.2)

$$
\begin{aligned}
\Phi^{\prime} \Phi(N) & =\lambda q_{1} \cdots \lambda q_{k} \cdot\left(2 u^{Q} 0 N\right)=\lambda q_{1} \cdots \lambda q_{k} \lambda t \cdot\left(\left(\cdots\left(N q_{1}\right) \cdots q_{k}\right) t\right) \\
& =\eta \lambda q_{1} \cdots \lambda q_{k} \cdot\left(\cdots\left(N q_{1}\right) \cdots q_{k}\right)
\end{aligned}
$$

Now we use in an essential way the hypothesis $F V(N) \wedge Q=\phi$ to see that by η-equivalence, this is equal in \mathcal{L} to N.

We have an adjunction

with counit $U^{Q}: I \circ Q^{*} \longrightarrow$ id and unit $\eta:$ id $\longrightarrow Q^{*} \circ I$ given by

$$
\mathcal{L}\left(\rho, Q^{*} \rho\right)_{Q C} \stackrel{\cong}{\leftrightarrows} \mathscr{L}(\rho, \rho)
$$

That is,

$$
\eta_{\rho}=\Phi^{\prime}\left(i d_{\rho}\right)=\lambda q_{1}^{J} \cdots \lambda q_{k}^{J_{k}} \cdot \lambda x^{\rho} \cdot x^{\rho}
$$

Conclusion λ-abstraction has a unique property: given Q and $M \in \mathscr{L}(\sigma, \rho)$ the λ-abstraction $\lambda q_{1} \cdots \lambda q_{k} . M=: \lambda q M$ makes

commute, and it is the only munohism in $\mathscr{L}_{Q^{c}}$ with this property. So λ-abstraction is factorisation through the univenal mouphism $Q^{*} \rho \rightarrow \rho$.

Remark If $Q_{1} \subseteq Q_{2}$ then $Q_{2}{ }^{c} \subseteq Q_{1}^{c}$ so $\mathscr{L}_{Q_{2}^{c}} \subseteq \mathcal{L}_{Q_{1}^{c}}$.

Example Let R be a commutative ing and $S \subseteq R$ a multiplicately closed set (soy $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $m=\left(x_{1}-\lambda_{1}, \ldots, x_{n}-\lambda_{n_{1}}\right)$ for some $\lambda_{i} \in \mathbb{C}$, then $\delta=R \mid m$ is mult.closed).
For an R-module M there is an exact sequence

$$
O \longrightarrow t(M) \longrightarrow M \xrightarrow{\psi_{M}} S^{-1} M
$$

where ψ_{M} is canonical. The submodule $t(M)$ of tonion elements defines a functor $t(-): R-M o d \rightarrow A$ where $A \subseteq R$-Mod is the full subiategouy of to sion modules (1.e. N s.t. $\delta^{-1} N \cong 0$). This t is a right adjoint to the inclusion $A \subset R-M o d$.

Def A subcategory $A \hookrightarrow$ whore inclusion has a right adjoint is called coreflective.

There are theorems which allow is to recover the space $\operatorname{Spec}(R)$ from the category R-Mod by classifying all reflective/ coreflective subiategovies (ser e.g. Stenstiom" Rings and modules of fractions").

These ideas lend us the following "geometric" intuition, for what it's worth: a λ-term M is supported on $F V_{\beta}(M) \subseteq \bar{I} \quad$ (our $\operatorname{spec} R$) and if $F V_{\beta}(M)=\left\{z_{1}, \ldots, z_{n}, q\right\}$ then $M \mapsto \lambda z_{1} \cdots \lambda z_{n} . M$ is analogous to $M \mapsto \Gamma_{\{9\}} M$ for modules.

