

## The category of simply-typed lambda terms (cuts)

<u>What we want</u> to do is define a functor  $FV: \mathcal{L} \longrightarrow Uar$  where Uar has a single object object  $\Box$  and  $Uar(\Box, \Box) = \{ finite subjects of Y \}$  with composition as union. But even one we use  $FV_{\beta}$  so that is well-defined on anows, it cannot be a functor because of the previous example. However (9.3) and (9.4) tell us we have a <u>lax functor</u> between 2-categories.

Def" A 2-category C is the data of

(1) a class of objects ob(8) withen a, b, c,...

(2) for each pair  $a_1b \in ob(\mathcal{C})$  a small category  $\mathcal{B}(q,b)$  whose objects are called <u>I-mouphisms</u> and denoted  $X, Y, \dots : a \longrightarrow b$  and whose monphisms are called <u>2-mouphisms</u>, denoted  $\alpha, \beta, \dots : e.g. X \Longrightarrow Y$ .

(3) for each triple  $a, b, c \in ob(\mathcal{B})$  a functor (composition)

 $\mathcal{C}(b,c) \times \mathcal{C}(a,b) \xrightarrow{C_{abc}} \mathcal{C}(a,c)$ 

(4) for each  $a \in obld$ ) a unit  $\Delta_a : a \rightarrow a$ .



commutes.



Def Let A, B be 2-categories. A colax functor 
$$F: A \rightarrow B$$
 is the clata of  
(1) a function  $ob(A) \rightarrow ob(B)$ , denoted  $a \mapsto F(a)$   
(2) for each pair  $a_1 b \in ob(A) a$  functor  $F_{ab} : A(a_1b) \rightarrow B(Fa_1Fb)$ ,  
(3) for each  $a \in ob(A) a$  2-morphism  $F(\Delta a) \rightarrow \Delta_{Fa}$   
(4) for each composable pair  $a \xrightarrow{\sim} b \xrightarrow{\vee} c$  in  $A = 2$ -morphism  
 $J_{XX} : F(Y \cdot X) \longrightarrow F(Y) \circ F(X)$  (3.1)  
natural in both variables,  
all subject to some axions which we omit here.  
Lemma Viewing Z as a 2-category with only identity 2-morphism, there is  
 $a colar functor (Var an defined on p. D)$   
 $FV_{\beta} : \mathcal{L} \longrightarrow Var$   
 $\frac{P_{A}(X) := \beta$ . The lemmas on p. (D) imply the "colarity" of (9.1),  $\mu$   
From now on we will silently view any category Tas a 2-category with only  
identity 2-morphism.

<u>Def</u> Let A be a category and  $F: A \longrightarrow Var$  a colax functor. Define for P a subret of Y a subcategory  $A_P \subseteq A$  with the same objects as A, but

$$\mathcal{A}_{\mathsf{P}}(a,a') := \left\{ f \in \mathcal{A}(a,a') \mid \mathsf{F}(f) \subseteq \mathsf{P} \right\}.$$

Lemma Ap is a subcategory.

<u>Roof</u> Condition (3) of a colax functor implies  $F(1_a) = \oint \text{for all } a, \text{ and}$ (4) shows Ap is closed under composition, as

$$F(f_2 \circ f_1) \subseteq F(f_2) \cup F(f_1) \subseteq P. \square$$

Our categorical description of (9.5.1) says that 21 is something like a strong carleorian monphism, but weakened in the 2-categorical setting to an adjunction rather than an equivalence. To state this properly, note that for simple types 3,p we have a functor

$$\mathsf{FV}^{\mathfrak{s}'\mathcal{F}}_{\mathfrak{s}}: \mathscr{L}(\mathfrak{d}, \mathcal{P}) \longrightarrow \mathscr{V}ar(\mathfrak{d}, \mathfrak{d}), \quad \mathsf{M} \longmapsto \mathsf{FV}_{\mathfrak{s}}(\mathsf{M}) \tag{4.1}$$

and for  $Q \subseteq \overline{Y}$  viewed as a functor  $-\cup Q : \mathcal{V}ar(\Box, \Box) \to \mathcal{V}ar(\Box, \Box)$  we can form the comma category (a certain 2-limit) of the diagram made of  $FV_{\beta}^{3'}$  and  $-\cup Q$ .



The comma calegory  $FV_{e}^{b,p}/Q$  is universal filling on this diagram with a 2-cell (i.e. natural transformation)  $\mu$ , and can be described concretely as:

4

## Deph FVs/Q has

- <u>objects</u> triples  $(M, P, \mathcal{F})$  where  $M \in \mathcal{Z}(\mathcal{F}, \mathcal{P})$ ,  $P \subseteq \mathcal{F}$  is finite, and  $\mathcal{F}$  is a 2-mouphism  $FV_{\mathcal{F}}(M) \longrightarrow PUQ$ . This is a condition, not data, so objects are really  $(M, \mathcal{P})$  s.t.  $FV_{\mathcal{F}}(M) \subseteq \mathcal{P} \cup Q$ .
- <u>mouphisms</u>  $(M, P) \longrightarrow (M', P')$  are pairs  $M \rightarrow M'$  (forcing M = M') and  $P \subseteq P'$  such that the diagram

$$FV_{\beta}(M) \longrightarrow FV_{\beta}(M')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$PUQ \longrightarrow PUQ$$

commutes, which is again no condition, so morphisms are just  $(M, P) \rightarrow (M, P')$  with  $P \subseteq P'$ .

• The functors  $FV_{\beta}^{\delta,p}/Q \xrightarrow{\pi_{1}} \mathcal{Z}(\delta,p)$  and  $FV_{\beta}^{\delta,p}/Q \xrightarrow{\pi_{2}} \mathcal{V}ar(\Omega,\Omega)$   $(M,P) \mapsto M \text{ and } (M,P) \mapsto P \text{ respectively, while the natural transformation}$  $\mu: FV_{\beta}^{\delta,p} \circ \pi_{1} \Longrightarrow (-\upsilon Q) \circ \pi_{2}$  is determined.

Remark Every morphism in  $Var(\Box, \Box)$  (thun also in  $FV_{\beta}^{3, \rho}/Q$ ) is an epimorphism (and monomorphism).

Lemma The projective objects of  $FV_{\beta}^{s,\rho}/Q$  are precisely the pairs (M,P) with  $P = FV_{\beta}(M) \setminus Q$ .

<u>Proof</u> An object (M, P) will be projective iff. P is minimal s.t.  $FV_{\mathcal{B}}(M) \subseteq P \cup Q$ , which gives the claim. 5

## Lemma For every morphism $u: \mathcal{O} \to \mathcal{P}$ with $FV_{\beta}(u) \leq \mathbb{Q}$ there is a canonically induced functor $\overline{\Phi}_{u}: \mathcal{L}(3, \mathcal{O}) \longrightarrow FV_{\beta}^{3, \mathcal{P}}/\mathbb{Q}$ .

Pwof Consider



since there is a 2-cell 
$$FV_{\beta}^{2,\rho}$$
,  $(u \circ -) \Rightarrow (-u \circ) \circ FV_{\beta}^{2,\rho}$  this is automatic.  $\Box$ 

Explicitly, 
$$\overline{\Psi}_{u}$$
 sends  $N \in \mathcal{L}(3, 0)$  to the pair  $(u \circ N, FV_{\beta}(N))$ .

Roposition For each simple type 
$$\rho$$
 and finite set  $Q \subseteq Y$  there is an object  $Q^* \rho$  in  $\mathcal{L}$   
and morphism  $\mathcal{U}^Q: Q^* \rho \longrightarrow \rho$  with  $FV_\beta(\mathcal{U}^Q) = Q$  such that the canonical  
induced functor for every type 3

$$\mathcal{Z}(\mathfrak{Z},\mathfrak{Q}^*\rho) \xrightarrow{\mathfrak{G}} \mathsf{FV}_{\beta}^{\mathfrak{Z},\rho}/Q \tag{6.2}$$

restricts to a bijection natural in 3,

$$\mathcal{Z}(\mathcal{Z}, \mathbb{Q}^*_{\mathcal{P}})_{\mathbb{Q}^c} \xrightarrow{\cong} \mathcal{P}_{wj}(\mathsf{FV}_{\beta}^{\mathcal{Z}, \mathcal{P}}/\mathcal{Q})$$
 (6.3)

where the LHS is the full subcategory of N with  $FV_{\mathcal{P}}(N) \cap Q = \phi$ and the RHS is the full subcategory of projective objects. In particular  $(Q^*p, 2L^Q)$  is unique up to unique isomorphism.

<u>Remark</u> This says in particular that for given p, Q the functor (see p. 14 for  $Z_{qc}$ )  $\mathcal{L}_{Q^c}^{p} \xrightarrow{} \underline{Set}$  $\mathcal{E} \longmapsto \operatorname{Proj}(\operatorname{FV}_{\mathcal{B}}^{\mathcal{E},\mathcal{P}}/\mathbb{Q})$ is representable, and the representing pair is  $(Q^*p, 2l^{\hat{Q}})$ Let  $p \in \overline{\Phi}$ , and Q be a finite set of variables. If  $Q = \phi$  define  $Q^*_p := \rho$ Proof Otherwise choose an ordering  $Q = \{ Q_1 : J_1, \dots, Q_k : J_k \}$  $\mathbb{Q}^* \rho := \mathcal{J}_1 \longrightarrow \mathcal{J}_2 \longrightarrow \cdots \longrightarrow \mathcal{J}_k \longrightarrow \rho.$ (7.1)and define  $2 \int_{k}^{q} = \lambda u^{q^{*} \rho} (\cdots ((u q_{1}) q_{2}) \cdots q_{k}) \cdot \otimes^{*} \rho \longrightarrow \rho$ (7.2)

(7)

As discussed earlier  $Q^*p$  is independent up to isomorphism of the chosen ordering, in a way which is clearly compatible with  $ZL^{\circ}$ . In any case the uniqueness statement of the Roposition absolves us from caving about this. Clearly FVp  $(Z^{\circ}) = Q$  so we have  $\overline{\Psi} = \overline{\Psi}_{21} \circ a_{11} \circ (16.2)$  defined by

$$\underline{\Phi}(\mathsf{N}) = (\mathcal{Z}(\mathsf{Q} \circ \mathsf{N}, \mathsf{FV}_{\beta}(\mathsf{N})))$$

// end. At this point we realised this was overly complicated ... (belatedly)