Recall that in the simply-typed lambda calculus there is a countable set of <u>atomic types</u> and the set $\overline{\Phi} \rightarrow of \underline{simple types}$ is built up from the atomic types using the connective \rightarrow , i.e. all atomic types are simple types and if 3, T are simple types then so is $3 \rightarrow T$. We say type for simple type. tor each type 3 there is a countable set Y_3 of variables of type 3, and if $3 \neq T$ then $Y_3 \cap Y_3 = \phi$. We write x: 3 for $x \in Y_3$. tcatlam

Let Λ' denote the set of (untyped) lambda calculus preterms in the variables $\bigcup_{b \in \mathbb{Z} \to} Y_{2}$. We define a subset $\Lambda'_{wt} \subseteq \Lambda'$ of well-typed preterms, together with a function $t : \Lambda'_{wt} \longrightarrow \overline{\Phi} \to$, by induction:

• all variables
$$x: 3$$
 are well-typed and $t(x) = 3$,

- if M = (PQ) and P,Q are well-typed with $t(P) = 3 \rightarrow T, t(Q) = 3$ for some 2, T then M is well-typed and t(M) = T.
- if $M = (\lambda x.N)$ with N well-typed, then M is well-typed and $t(M) = t(x) \rightarrow t(N)$.

We define $\Lambda'_{\&} := \{ M \in \Lambda'_{wt} \mid t(M) = 3 \}$ and call these preterms of <u>type b</u>. Next we observe that $\Lambda'_{wt} \in \Lambda'$ is closed under the relation of α -equivalence on Λ' , as long as we understand α -equivalence <u>type-by-type</u> (i.e. $\lambda x.M = \alpha \lambda y.M[\alpha:=y]$ with t(x) = t(y)), and we may therefore define

$$\Lambda_{wt} := \Lambda'_{wt} / \sim_{\alpha}$$
$$\Lambda_{z} := \Lambda'_{z} / \sim_{\alpha}$$

so that A_{wt} is the disjoint union of A_2 over all $3 \in \Phi_{-3}$. We unite M: 3 as a synonym for $[M] \in \Lambda_{\mathcal{B}}$, and call these <u>terms</u>, of type 3.

Recall the equivalence relation = β on Λ_{2} for each 2, generated by <u>B-reduction</u> (which is now typed)

$$(\lambda x.M) N : T \longrightarrow_{\beta} M[x := N]$$

well-typed, so N: 6 and $t((\lambda x.M)) = 3 \rightarrow T$ with t(x) = 3, t(M) = T

Once we impose $=\beta$, different types become "the same". The right way to make sense of this is to say the types are isomorphic objects of the category \mathcal{L} of simple types and β -equivalence classes of terms. We begin with a motivating example of such an isomorphism, but fint we need <u>2-equivalence</u>.

<u> Def^N </u> Let = 2 denote the smallest equivalence velation on Λ we satisfying

• $\lambda_{x.}(M_{x}) = 2 M$ for any $x \notin FV(M)$, x:3, $M: 2 \rightarrow J$,

• if M=2 N then λx. M=2 λx. N for any variable x,

 if M=2 N then (PM)=2(PN) whenever PEAut and (PM), (PN) are well-typed

 if M=z N then (MP) = z (NP) whenever PEAwt and (MP), (NP) are well-typed.

<u>Note</u> There are good reasons to <u>not</u> impose 2-equivalence, but for categorical approaches to λ -calculus (at least at a noive level) it's necessary.

<u>Def</u>^N For every type 3 let $id_3 := \lambda x^3 x$.

Note For any term $M:\mathcal{B}$, $(id_{\mathcal{B}} M) = \beta M$.

Escample Let B, J, P be types and consider

$$T_{1} := \mathcal{E} \longrightarrow (\mathcal{I} \longrightarrow \rho) \\ T_{2} := \mathcal{I} \longrightarrow (\mathcal{E} \longrightarrow \rho)$$
 we claim these are "isomorphic" types

Here is a term M12 of type $T_1 \rightarrow T_2$, and M21 of type $T_2 \rightarrow T_1$

$$M_{\mu} := \lambda u^{\ell \to (\tau \to \rho)} \cdot \lambda v^{\tau} \cdot \lambda w^{2} \cdot ((u w) v)$$

$$M_{21} := \lambda u^{\tau \to (2 \to \rho)} \cdot \lambda w^{\ell} \cdot \lambda v^{\tau} \cdot ((u v) w)$$

Recall from Sam's lecture that we compose λ -terms F, G by taking $\lambda x. (F(G x))$ where $x \notin FV(F) \cup FV(G)$. Observe that for $t:T_2$,

$$\begin{split} \lambda t \left(\mathsf{M}_{12} \left(\mathsf{M}_{21} t \right) \right) &= \beta \lambda t \left(\mathsf{M}_{12} \left(\lambda \omega^{\lambda} \lambda v^{\tau} \left((t \vee) \omega \right) \right) \right) \\ &= \beta \lambda t \cdot \lambda \overline{v}^{\tau} \lambda \overline{\omega}^{\lambda} \left((\lambda \omega^{\lambda} \lambda v^{\tau} \left((t \vee) \omega \right) \right) \overline{\omega} \right) \overline{v} \right) \\ &= \beta \lambda t \cdot \lambda \overline{v}^{\tau} \lambda \overline{\omega}^{\lambda} \left((\lambda v^{\tau} \left((t \vee) \overline{\omega} \right) \right) \overline{v} \right) \\ &= \beta \lambda t \cdot \lambda \overline{v}^{\tau} \lambda \overline{\omega}^{\lambda} \left((t \overline{v}) \overline{\omega} \right) \\ &= \gamma \lambda t \cdot \lambda \overline{v}^{\tau} \left(t \overline{v} \right) \\ &= \gamma \lambda t \cdot t \\ &= i d_{\tau_{2}}. \end{split}$$

Similarly, for s: Ti,

$$\lambda_{S}(M_{21}(M_{12}S)) = \gamma id_{T_{12}}$$

So if we work up to 7-equivalence, M12 and M21 behave like <u>isomorphisms</u> between T_1 and T_2 , which "secretly" are $(3 \times T) \rightarrow \rho$, $(T \times B) \rightarrow \rho$, and $6 \times T \cong T \times B$, so these two types are "the same".

3

Def ~ A category & consists of

(1) A class ob (8) whose elements are called objects of the category

(2) For each pair of objects A, B a set C(A, B) whose elements are called <u>vnorphisms</u> from A to B and are withen f: A→B. (also called <u>arrows</u> from A to B).

(3) For every triple of objects (A,B,C) a function

 $C_{ABC}: \mathcal{C}(B,C) \times \mathcal{C}(A,B) \longrightarrow \mathcal{C}(A,C)$

called <u>composition</u> and withen $g \circ f = C_{ABC}(9, f)$.

(4) For each object A, a morphism IAE B(A, A) called the identity on A.

Satisfying the following axioms:

(1) <u>Associativity</u> For any tuple (A, B, C, D) of objects and morphisms as indicated in the diagram

 $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$

we have $h \circ (g \circ f) = (h \circ g) \circ f$

(2) Units For any momphism $f: A \longrightarrow B$ we have

 $|_{\mathsf{R}}\circ f = f = f \circ /_{\mathsf{A}}.$

(4)

<u>Note</u> We take a nonstandard appwach to defining a category of λ-terms. For a standard treatment see P. Taylor "Practical foundations for mathematics" or Lambek & Scott "Introduction to higher-order categorical logic".

We take as our guide the following <u>desidenata</u> for our category *L* constructed from simply-typed lambda calculus as clefined above:

() $ob(\mathcal{X}) = \overline{\Phi} \ \exists \mathbb{I}$ the set of simple types with an adjoined "empty" type, which we will see is basically forced on us, by (2).

(2) Every λ -term is represented by a morphism in \mathbb{Z} .

③ The operations on λ-terms (application and λ-abstraction) are represented by natural constructions in Z.

<u>Notes</u> (a) We should take β?-equivalence classes of λ-terms (i.e. theset Λwt of well-typed terms modulo = 2) as momphisms, not just λ-terms, since our identities idz: 3→3 only work up to = 2. Notice for M: 3→ J

 $\lambda_{x}^{b} (M(id_{x}x)) = \beta \lambda_{x} (Mx) = \gamma M.$ $\lambda_{x}^{b} (id_{y}(Mx)) = \beta \lambda_{x} (Mx) = \gamma M.$ (J.1)

(b) Clearly then L(3, J) = A 2→J /=Z, but what about terms of atomic type? For these we add a new object I and declare

$$\mathcal{Z}(\mathbb{1},\mathcal{Z}):=\Lambda_2/=\gamma$$

for any type & (not just atomic types. This wouldn't work, see below).

(c) Note that with this definition, a single term in $\Lambda_{z \to \tau}$ is represented as both a morphism in $\mathcal{X}(3, \mathcal{T})$ and as a morphism in $\mathcal{X}(1, 3 \rightarrow \mathcal{T})$. This is OK. Here is the formal definition: Def^N The category Z has • <u>objects</u>: $ob(\mathcal{X}) = \overline{\Phi} \rightarrow \amalg \{1\}$ • <u>mouphisms</u>: for simple types 3, J we define $\mathcal{L}(\mathcal{B},\mathcal{T}) := \Lambda_{\mathcal{B}\to\mathcal{T}}/=_{\mathcal{T}} \amalg \{*\} \quad \mathcal{L}(\mathcal{B},\mathbb{I}) := \{*\}$ Z(1,3) = A3/=7 $\mathcal{Z}(1,1) := \{*\}$ you should check this is • <u>composition</u> : for simple types 3, J, P $\chi(J, p) \times \chi(\mathcal{E}, J) \xrightarrow{-\circ-} \chi(\mathcal{E}, p) \qquad N \circ M := \begin{cases} \lambda x^{\mathcal{E}}(N(M x)) & M, N \neq x \\ & \text{otherwise} \end{cases}$ where $x \notin FV(N) \cup FV(M)$. $\mathcal{L}(\mathcal{I}, \rho) \times \mathcal{L}(1, \mathcal{I}) \longrightarrow \mathcal{L}(1, \rho) \qquad N \circ M := \begin{cases} (N M) & N \neq * \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$ $\mathcal{Z}(1,\rho) \times \mathcal{Z}(1,1) \longrightarrow \mathcal{Z}(1,\rho) \qquad \mathbb{N} \circ \star := \mathbb{N}.$ In all other cases $\mathcal{B} \longrightarrow \mathcal{T} \longrightarrow \mathcal{P}$ with $\mathcal{B} \neq \mathbb{I}$ but at least one of \mathcal{T}, \mathcal{P} equal to I, the composite is always *.

<u>Proposition</u> \mathcal{X} is a category with identities id $\mathcal{E} \mathcal{L}(3, \mathcal{E})$.

<u>Proof</u> We need to check associativity and that identities work. For the former, consider the case of simple types 3, J, P, S

$$b \longrightarrow T \longrightarrow p \longrightarrow d$$

with M, N, P not *. Then in \mathcal{L} (= now means = z)

$$P_{\circ}(N \circ M) = \lambda y^{2} (P(N \circ M y))$$

$$= \lambda y^{2} (P((\lambda x^{2} (N(M x))) y))$$

$$= \lambda y^{2} (P(N(M y)))$$

$$= (P \circ N) \circ M.$$

The only other nontrivial case is

$$1 \longrightarrow T \longrightarrow P \xrightarrow{N} P \xrightarrow{P} Z$$

where we calculate
$$(M \in \Lambda_T / =_{\gamma})$$

 $P_{\circ}(N \circ M) = P_{\circ}(N M) = (P(N M))$
 $(P \circ N) \circ M = (\lambda y^{T}(P(N y)) M)$
 $= (P(N M))$

so associativity holds. The identities follow as in (S.1) from 7-equivalence.

7

Example Returning to p.3, for types 3, J, p we defined

$$T_1 := \delta \longrightarrow (T \longrightarrow \rho), \quad T_2 := T \longrightarrow (\delta \longrightarrow \rho)$$

and we constructed $M_{12} \in \mathcal{L}(T_1, T_2)$, $M_{21} \in \mathcal{L}(T_2, T_1)$ with $M_{12} \circ M_{21} = id$, $M_{21} \circ M_{12} = id$, so $T_1 \cong T_2$ in \mathcal{X} . More generally for types $T_1, \ldots, T_n, \mathcal{E}, \mathcal{P}$ we have an isomorphism for any permutation $\mathcal{O} \in S_k$

$$\mathcal{J}_1 \longrightarrow \cdots \longrightarrow \mathcal{J}_k \longrightarrow \rho \cong \mathcal{J}_{\mathcal{O}(1)} \longrightarrow \cdots \longrightarrow \mathcal{J}_{\mathcal{O}(k)} \longrightarrow \rho$$

It remains to discuss desiderata (3), i.e. how function application and λ -abstraction averepresented in Z. In the standard approach this is done by putting a Cartesian closed structure on a (different) category of λ -terms, in which we (a) add <u>product</u> types to our language, and associated constructors Idestructors and <u>modified</u> <u>B-equivalence</u> and (b) take as objects pain (x:3,3), and morphisms (x:3,2) \rightarrow (y:T,T) are terms M: $3 \rightarrow T$ with FV(M) $\subseteq \{x\}$.

Function application is just composition. Given M:3 and $N:3 \rightarrow J$ we have by definition a commutative diagram in Z

X-abstraction is more complicated, and we treat it in Part I of these notes.