The category of simply-typed lambda terms
Recall that in the simply-typed lambda calculus there is a countable set of atomic types and the set $\Phi \rightarrow$ of simple types is built up form the atomic types using the connective \rightarrow, i.e. all atomic types are simple types and if b, τ are simple types then so is $b \rightarrow \tau$. We say type for simple type. for each type z there is a countable set Y_{B} of variables of type z, and if $b \neq J$ then $Y_{b} \cap Y_{J}=\phi$. We wite $x: 3$ for $x \in Y_{3}$.

Let Λ^{\prime} denote the set of (untyped) lambda calculus preterm in the variables $U_{b \in \Phi \rightarrow} Y_{z}$. We define a subset $\Lambda_{w t}^{\prime} \subseteq \Lambda^{\prime}$ of well-typed preterms, together with a function $t: \Lambda^{\prime} w t \longrightarrow \Phi \rightarrow$, by induction:

- all variables $x: 8$ are well-typed and $t(x)=6$,
- if $M=(P Q)$ and P, Q are well -typed with $t(P)=6 \rightarrow J, t(Q)=6$ for some z, J then M is well-typed and $t(M)=J$.
- if $M=(\lambda x \cdot N)$ with N well-typed, then M iswell-typed and $t(M)=t(x) \rightarrow t(N)$.

We define $\Lambda_{6}^{\prime}:=\left\{M \in \Lambda_{\omega t}^{\prime} \mid t(M)=6\right\}$ and call these preterm of type 3 . Next we obsewe that $\Lambda_{\text {ut }}^{\prime} \leq \Lambda^{\prime}$ is closed under the relation of α-equivalence on Λ^{\prime}, as long as we undentand α-equivalence type-by-type (1.e. $\lambda x \cdot M=\alpha \lambda y \cdot M[x:=y]$ with $t(x)=t(y)$), and we may therefore define

$$
\begin{aligned}
& \Lambda_{\omega t}:=\Lambda_{w t}^{\prime} / \sim_{\alpha} \\
& \Lambda_{z}:=\Lambda_{b}^{\prime} / \sim_{\alpha}
\end{aligned}
$$

so that $\Lambda_{\text {ut is }}$ the disjoint union of Λ_{b} over all $b \in \Phi \rightarrow$. We unite $M: b$ as a synonym for $[M] \in \Lambda_{6}$, and call there terms, of type b.

Recall the equivalence relation $=\beta$ on Λ_{6} for each 6 , generated by β-reduction (which is now typed)

$$
\begin{aligned}
& \underbrace{(\lambda x, M) N: T \longrightarrow}_{\text {well-typed, so } N: 6} \longrightarrow M[x:=N] \\
& \text { and } t((\lambda x \cdot M))=6 \rightarrow J \\
& \text { with } t(x)=6, t(M)=J
\end{aligned}
$$

Once we impose $=\beta$, different types become "the same". The right way to make sense of this is to say the types ave isomonphic objects of the category \mathcal{L} of simple types and β-equivalence classes of terms. We begin with a motivating example of such an isomorphism, but fint wee need η-equivalence.

Def N Let $=\eta$ denote the smallest equivalence relation on Mut satisfying

- $\lambda_{x} .(M x)=2 M$ for any $x \notin F V(M), x: 3, M: 6 \rightarrow J$,
- if $M=\eta N$ then $\lambda x . M=\eta \lambda x$. N for any variable x,
- if $M=\eta N$ then $(P M)=\eta(P N)$ whenever $P \in \Lambda_{n}$ t and $(P M),(P N)$ are well-typed
- if $M=\eta N$ then $(M P)=\eta$ ($N P$) whenever $P \in \Lambda_{u t}$ and (MP), (NP) ave well-typed.

Note Theveare good reasons to not impose Z-equivalence, but for categorical approaches to λ-calculus (at least at a naive level) it's necessary.

Def Foreveytype 3 let $i d_{6}:=\lambda x^{6} \cdot x$.

Note For any term $M: 3, \quad\left(i d_{3} M\right)=\beta M$.

Example Let $3, \tau, \rho$ be types and consider

$$
\left.\begin{array}{l}
T_{1}:=b \rightarrow(J \rightarrow \rho) \\
T_{2}:=J \longrightarrow(b \longrightarrow \rho)
\end{array}\right\} \text { we claim these are "isomouphic" types }
$$

Here is a term M_{12} of type $T_{1} \rightarrow T_{2}$, and M_{21} of type $T_{2} \longrightarrow T_{1}$

$$
\begin{aligned}
& M_{12}:=\lambda u^{b \rightarrow(T \rightarrow \rho)} \cdot \lambda v^{J} \cdot \lambda w^{3} \cdot((u w) v) \\
& M_{21}:=\lambda u^{J \rightarrow(z \rightarrow \rho)} \cdot \lambda w^{b} \cdot \lambda v^{J} \cdot((u v) w)
\end{aligned}
$$

Recall for Sam's lecture that we compose λ-terms $F_{1} G$ by taking $\lambda_{x} .(F(G x))$ where $x \notin F V(F) \cup F V(G)$. Obsewe that for $t: T_{2}$,

$$
\begin{aligned}
& \lambda t .\left(M_{12}\left(M_{21} t\right)\right)=\beta \lambda t \cdot\left(M_{12}\left(\lambda \omega^{b} \cdot \lambda v^{\top} \cdot((t v) w)\right)\right) \\
& \left.=\beta \lambda t \cdot \lambda \bar{v}^{J} \cdot \lambda \bar{\omega}^{b} \cdot\left(\left(\lambda \omega^{3} \cdot \lambda v^{J} \cdot((t v) \omega)\right) \bar{\omega}\right) \bar{v}\right) \\
& =\beta \lambda t \cdot \lambda \bar{v}^{\top} \cdot \lambda \bar{\omega}^{\mathbf{}} \cdot\left(\left(\lambda v^{\top} \cdot((t v) \bar{\omega})\right) \bar{v}\right) \\
& =\beta \lambda t \cdot \lambda \bar{v}^{\top} \cdot \lambda \bar{\omega}^{b} \cdot((t \bar{v}) \bar{\omega}) \\
& =\eta \lambda t \cdot \lambda \bar{v}^{\top} \cdot(t \bar{v}) \\
& =r \lambda t \cdot t \\
& =i d_{T_{2}} \text {. }
\end{aligned}
$$

Similarly, for $s: T_{1}$,

$$
\lambda s \cdot\left(M_{21}\left(M_{12} s\right)\right)=\eta \quad i d_{T} .
$$

So if we work up to $\eta_{\text {-equivalence, }} M_{12}$ and M_{21} behave like isomonohisms between T_{1} and T_{2}, which "secretly" are $(8 \times J) \rightarrow p,(J \times b) \rightarrow p$, and $6 \times J \cong J \times b$, so there two types are "the same".

Def ${ }^{N} A$ category E consists of
(1) A class ob (C) whose elements are called objects of the category
(2) For each pair of objects A, B a set $\varphi(A, B)$ whole elements are called mouphisms form A to B and ave unitten $f: A \longrightarrow B$. (als called avows from A to B).
(3) For every triple of objects (A, B, C) a function

$$
C_{A B C}: \varphi(B, C) \times \mathscr{C}(A, B) \longrightarrow C(A, C)
$$

called composition and written $g \circ f=C_{A B C}(g, f)$.
(4) For each object A, a mouphism $I_{A} \in \mathscr{C}(A, A)$ called the identity on A.

Satisfying the following axioms:
(1) Associativity For any tuple (A, B, C, D) of objects and mouphisms as indicated in the diagram

we have $h \circ(g \circ f)=(h \circ g) \circ f$
(2) Units for any mouphism $f: A \rightarrow B$ we have

$$
\left.\right|_{B} \circ f=f=\left.f \circ\right|_{A}
$$

Note We take a nonstandard appwach to defining a categouy of λ-terms. For a standard treatment see P. Taylor "Practical foundations for mathematics" or Lambek \& Scot "Introduction to higher-order categovical logic'?

We take as our guide the following desiderata for our category \mathcal{L} constructed from simply-typed lambda calculus as clefined above:
(1) $o b(\mathscr{L})=\Phi \rightarrow \Perp\{\mathbb{1}\}$ the set of simple types with an adjoined "empty" type, which we will see is basically forced on us, by (2).
(2) Every λ-term is represented by a mouphism in \mathcal{L}.
(3) The operations on λ-terms (application and λ-abstraction) ave represented by natural constructions in \mathcal{L}.

Notes (a) We should take $\beta \eta$-equivalence classes of λ-terms (1.e. the set $\Lambda_{\omega t}$ of well-typed terms modulo $=\eta$) as monphisms, not just λ-terms, since our identities id $z: b \rightarrow B$ only work up to $=\eta$. Notice for $M: B \rightarrow J$

$$
\begin{align*}
& \lambda x^{b} \cdot\left(M\left(i d_{b} x\right)\right)=\beta \quad \lambda x \cdot(M x)=\eta M . \tag{5.1}\\
& \lambda x^{b} \cdot\left(d_{J}(M x)\right)=\beta \lambda x \cdot(M x)=\eta M .
\end{align*}
$$

(b) Clearly then $\mathcal{L}(b, J)=\Lambda_{3 \rightarrow T} /=\eta$, but what about terms of atomic type? For these we add a new object \mathbb{I} and declare

$$
\mathscr{L}(\mathbb{I}, \sigma):=\Lambda_{2} /=\eta
$$

for any type ζ (not just atomic types. This waldn't work, see below).
(c) Note that with this definition, a single term in $\Lambda_{z \rightarrow J}$ is represented as both a mouphism in $\mathscr{L}(z, J)$ and as a mophism in $\mathcal{L}(\mathbb{1}, \sigma \rightarrow J)$. This is OK.

Here is the formal definition:

Def The category \mathcal{L} has

- objects: $o b(\mathscr{L})=\Phi \rightarrow \Perp\{\mathbb{1}\}$
- mouhhisms: for simple types Z, J we clefine

$$
\begin{array}{ll}
\mathscr{L}(b, 丁):=\Lambda_{b \rightarrow 丁} \mid=\eta \Perp\{*\} & \mathscr{L}(b, \mathbb{1}):=\{*\} \\
\mathscr{L}(\mathbb{1}, b):=\Lambda_{z} /=\eta & \mathscr{L}(\mathbb{1}, \mathbb{1}):=\{*\}
\end{array}
$$

Tone should check this is well-defined, even though

- composition : for simple types $6, J, \rho$ $F V(M), F V(N)$ is not β-invariant

$$
\mathscr{L}(J, \rho) \times \mathscr{L}(b, J) \xrightarrow{-0-} \mathscr{L}(b, \rho) \quad N \circ M:=\left\{\begin{array}{l}
\lambda x^{b} \cdot(N(M x)) M, N \neq x \\
* \text { otherwise }
\end{array}\right.
$$

where $x \notin F V(N) \cup F V(M)$.

$$
\begin{aligned}
& \mathscr{L}(J, \rho) \times \mathscr{L}(\mathbb{1}, J) \xrightarrow{-0-} \mathscr{L}(\mathbb{1}, \rho) \quad N \cdot M:=\left\{\begin{array}{cc}
(N M) & N \neq * \\
* & \text { otherwise }
\end{array}\right. \\
& \mathscr{L}(\mathbb{1}, \rho) \times \mathscr{L}(\mathbb{1}, \mathbb{1}) \longrightarrow \mathcal{L}(\mathbb{1}, \rho) \quad N \cdot *:=N .
\end{aligned}
$$

In all othercones $\sigma \longrightarrow J \longrightarrow \rho$ with $\delta \neq \mathbb{1}$ but at leastone of J, ρ equal to I, the composite is always $*$.

Proposition \mathscr{L} is a category with identities id $_{6} \in \mathscr{L}(6,6)$.

Proof We need to check associativity and that identities work. For the former, consider the case of simple types Z, τ, ρ, δ

$$
b \xrightarrow{M} J \xrightarrow{N} \rho \xrightarrow{P} \sigma
$$

with $M, N, P_{\text {not }} *$. Then in $\mathcal{L} \quad(=$ now means $=\eta)$

$$
\begin{aligned}
P \circ(N \circ M) & =\lambda y^{b} \cdot(P(N \circ M y)) \\
& =\lambda y^{b} \cdot\left(P\left(\left(\lambda x^{b} \cdot(N(M x))\right) y\right)\right) \\
& =\lambda y^{b} \cdot(P(N(M y))) \\
& =(P \circ N) \circ M
\end{aligned}
$$

The only other nontrivial case is

$$
\mathbb{1} \xrightarrow{M} T \xrightarrow{N} \rho \xrightarrow{P} 6
$$

where we calculate $\left(M \in \Lambda_{T} /=\eta\right)$

$$
\begin{aligned}
P \circ(N \circ M) & =P \circ(N M)=\left.(P(N M)) \quad\right|_{M: b} ^{b} \text { is }\left(i d_{z} M\right)=M \\
(P \circ N) \circ M & =\left(\lambda y^{\top} \cdot(P(N y)) M\right) \\
& =(P(N M))
\end{aligned}
$$

so associativity holds. The identities follows as in (5.1) from Y-equivalence.

Example Returning to p. 3, for types $3,5, \rho$ we defined

$$
T_{1}:=b \rightarrow(J \rightarrow \rho), \quad T_{2}:=J \longrightarrow(b \longrightarrow \rho)
$$

and ur constructed $M_{12} \in \mathcal{Z}\left(T_{1}, T_{2}\right), M_{21} \in \mathcal{L}\left(T_{2}, T_{1}\right)$ with

$$
M_{12} \cdot M_{21}=i d, M_{21} \circ M_{12}=i d, s_{0} T_{1} \cong T_{2} \text { in } \mathcal{Z} \text {. Move generally }
$$

for types $J_{1}, \ldots, J_{k}, \sigma_{1} \rho$ we have an isomowhism forany permutation $\theta \in S_{k}$

$$
J_{1} \rightarrow \cdots \rightarrow J_{k} \rightarrow \rho \cong J_{\theta(1)} \rightarrow \cdots \rightarrow J_{\theta(k)} \rightarrow \rho
$$

It remains to discuss desiderata (3), 1.e. how function application and λ-abstraction averepresented in \mathcal{L}. In the standard appwach this is done by putting a Cartesian closed sturcture on a (different) category of λ-terms, in which we (a) add product types to our language, and associated constructor / destructor and modified β-equivalence and (b) take anobjects pain $(x: 6,8)$, and mouphisms $(x: z, b) \rightarrow(y: J, J)$ are terms $M: B \rightarrow J$ with $F V(M) \subseteq\{x\}$.

Function application is just composition. Given $M: 8$ and $N: 8 \rightarrow J$ we have by definition a commutative diagram in \mathcal{L}

入-abstraction is move complicated, and we treat it in Part II of these notes.

