The category of simply-typed lambda terms

Recall that in the simply-typed lambda calculus there is a countable set of atomic types and the set $\Phi \to$ of simple types is built up from the atomic types using the connective \to, i.e. all atomic types are simple types and if α, β are simple types then so is $\alpha \to \beta$. We say type for simple type.

For each type β there is a countable set \mathcal{V}_β of variables of type β, and if $\alpha \leftrightarrow \beta$ then $\mathcal{V}_\alpha \cap \mathcal{V}_\beta = \emptyset$. We write $x : \beta$ for $x \in \mathcal{V}_\beta$.

Let Λ' denote the set of (untyped) lambda calculus preterms in the variables $\bigcup_{\beta \in \Phi} \mathcal{V}_\beta$. We define a subset $\Lambda'_{wt} \subseteq \Lambda'$ of well-typed preterms, together with a function $t : \Lambda'_{wt} \to \Phi \to$, by induction:

- all variables $x : \beta$ are well-typed and $t(x) = \beta$,
- if $M = (P \ Q)$ and P, Q are well-typed with $t(P) = \beta \to \gamma$, $t(Q) = \gamma$ for some β, γ, then M is well-typed and $t(M) = \gamma$.
- if $M = (\lambda x. N)$ with N well-typed, then M is well-typed and $t(M) = t(x) \to t(N)$.

We define $\Lambda'_\beta := \{ M \in \Lambda'_{wt} \mid t(M) = \beta \}$ and call these preterms of type β. Next we observe that $\Lambda'_{wt} \subseteq \Lambda'$ is closed under the relation of α-equivalence on Λ', as long as we understand α-equivalence type-by-type (i.e. $\lambda x. M =_{\alpha} \lambda y. M[x := y]$ with $t(x) = t(y)$), and we may therefore define

$$\Lambda_{wt} := \Lambda'_{wt} / \sim_{\alpha}$$
$$\Lambda_\beta := \Lambda'_{\beta} / \sim_{\alpha}$$

so that Λ_{wt} is the disjoint union of Λ_β over all $\beta \in \Phi \to$. We write $M : \beta$ as a synonym for $[M] \in \Lambda_\beta$, and call these terms, of type β.

Recall the equivalence relation \equiv_{β} on Λ_{wt} for each \textsf{Z}, generated by β-reduction (which is now typed)

\[
(\lambda x. M) \text{ N : } \textsf{J} \xrightarrow{\beta} M[x := \text{N}]
\]

well-typed, so $N : \textsf{i}$
and $t((\lambda x. M)) = \textsf{i} \to \textsf{J}$
with $t(x) = \textsf{i}$, $t(M) = \textsf{J}$

Once we impose \equiv_{β}, different types become "the same". The right way to make sense of this is to say the types are isomorphic objects of the category \mathcal{L} of simple types and β-equivalence classes of terms. We begin with a motivating example of such an isomorphism, but first we need \equiv_{\sharp}-equivalence.

Def Let \equiv_{\sharp} denote the smallest equivalence relation on Λ_{wt} satisfying

- $\lambda x. (Mx) = \equiv_{\sharp} M$ for any $x \notin \text{FV}(M)$, $x : \textsf{Z}$, $M : \textsf{b} \to \textsf{J}$,
- if $M = \equiv_{\sharp} N$ then $\lambda x. M = \equiv_{\sharp} \lambda x. N$ for any variable x,
- if $M = \equiv_{\sharp} N$ then $(PM) = \equiv_{\sharp} (PN)$ whenever $P \in \Lambda_{\text{wt}}$ and $(PM), (PN)$ are well-typed
- if $M = \equiv_{\sharp} N$ then $(MP) = \equiv_{\sharp} (NP)$ whenever $P \in \Lambda_{\text{wt}}$ and $(MP), (NP)$ are well-typed.

Note There are good reasons to not impose \equiv_{\sharp}-equivalence, but for categorical approaches to λ-calculus (at least at a naive level) it's necessary.

Def For every type \textsf{Z} let $\text{id}_{\textsf{Z}} := \lambda x. x$.

Note For any term $M : \textsf{Z}$, $(\text{id}_{\textsf{Z}} M) = \beta M$.
Example Let b, t, p be types and consider

\[
\begin{align*}
T_1 &:= b \rightarrow (t \rightarrow p) \\
T_2 &:= t \rightarrow (b \rightarrow p)
\end{align*}
\]

we claim these are "isomorphic" types

Here is a term M_{12} of type $T_1 \rightarrow T_2$, and M_{21} of type $T_2 \rightarrow T_1$

\[
\begin{align*}
M_{12} &:= \lambda u. b \rightarrow (t \rightarrow p) \cdot \lambda v. t \cdot \lambda w. b \cdot ((u \cdot w) \cdot v) \\
M_{21} &:= \lambda u. t \rightarrow (b \rightarrow p) \cdot \lambda w. t \cdot \lambda v. b \cdot ((u \cdot v) \cdot w)
\end{align*}
\]

Recall from Sam's lecture that we compose λ-terms F, G by taking $\lambda x. (F (G x))$ where $x \notin FV(F) \cup FV(G)$. Observe that for $t : T_2$,

\[
\begin{align*}
\lambda t. (M_{12} (M_{21} t)) &= \beta \lambda t. (M_{12} (\lambda w. t \cdot \lambda v. b \cdot ((u \cdot w) \cdot v))) \\
&= \beta \lambda t. \lambda v. \lambda w. ((u \cdot w) \cdot v) \cdot \lambda v. \lambda w. ((u \cdot w) \cdot v) \\
&= \beta \lambda t. \lambda v. ((u \cdot w) \cdot v) \\
&= \gamma \lambda t. (u \cdot w)
\end{align*}
\]

Similarly, for $s : T_1$,

\[
\begin{align*}
\lambda s. (M_{21} (M_{12} s)) &= \gamma \text{id}_{T_1}
\end{align*}
\]

So if we work up to β-equivalence, M_{12} and M_{21} behave like isomorphisms between T_1 and T_2, which "secretly" are $(b \times t) \rightarrow p$, $(t \times b) \rightarrow p$, and $b \times t \cong t \times b$, so these two types are "the same".
A category \(\mathcal{C} \) consists of:

1. A class \(\text{ob}(\mathcal{C}) \) whose elements are called objects of the category.

2. For each pair of objects \(A, B \) a set \(\text{C}(A, B) \) whose elements are called morphisms from \(A \) to \(B \) and are written \(f: A \rightarrow B \).
 (also called arrows from \(A \) to \(B \)).

3. For every triple of objects \((A; B; C) \) a function
 \[C_{ABC}: \text{C}(B, C) \times \text{C}(A, B) \rightarrow \text{C}(A, C) \]
 called composition and written \(g \circ f = C_{ABC}(g, f) \).

4. For each object \(A \), a morphism \(1_A \in \text{C}(A, A) \) called the identity on \(A \).

Satisfying the following axioms:

1. **Associativity**: For any tuple \((A; B; C; D) \) of objects and morphisms as indicated in the diagram
 \[
 A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D
 \]
 we have \(h \circ (g \circ f) = (h \circ g) \circ f \).

2. **Units**: For any morphism \(f: A \rightarrow B \) we have
 \[1_B \circ f = f = f \circ 1_A. \]
We take a nonstandard approach to defining a category of λ-terms. For a standard treatment see P. Taylor "Practical foundations for mathematics" or Lambek & Scott "Introduction to higher-order categorical logic".

We take as our guide the following desiderata for our category \mathcal{L} constructed from simply-typed lambda calculus as defined above:

1. $\text{ob}(\mathcal{L}) = \Xi \to \eta \{1\}$ the set of simple types with an adjoined "empty" type, which we will see is basically forced on us, by 2.

2. Every λ-term is represented by a morphism in \mathcal{L}.

3. The operations on λ-terms (application and λ-abstraction) are represented by natural constructions in \mathcal{L}.

Notes
(a) We should take $\beta\eta$-equivalence classes of λ-terms (i.e. the set Λ_{wt} of well-typed terms modulo $=\tau$) as morphisms, not just λ-terms, since our identities $\text{id}_Z : Z \rightarrow Z$ only work up to $=\tau$. Notice for $M : Z \rightarrow T$

$$\lambda x^k \left(M \left(\text{id}_Z \left(x \right) \right) \right) = \beta \lambda x. \left(M \left(x \right) \right) = \tau M.$$

(b) Clearly then $\mathcal{L}(\Xi, T) = \Lambda_{Z \rightarrow T} / =\tau$, but what about terms of atomic type? For these we add a new object 1 and declare

$$\mathcal{L}(1, Z) := \Lambda_{Z \rightarrow =\tau}$$

for any type Z (not just atomic type. This wouldn't work, see below).
Note that with this definition, a single term in \(\Lambda 8 \to J \) is represented as both a morphism in \(\mathcal{L}(8, J) \) and as a morphism in \(\mathcal{L}(J, 8 \to J) \). This is OK.

Here is the formal definition:

Def. The category \(\mathcal{L} \) has

- **objects**: \(\text{ob}(\mathcal{L}) = \mathbb{I} \rightarrow \mathbb{I} \{1\} \)

- **morphisms**: for simple types \(8, J \) we define

\[
\begin{align*}
\mathcal{L}(8, J) &:= \Lambda \beta \to \gamma / = \gamma \downarrow \{*\} \quad \mathcal{L}(8, \mathbb{I}) := \{*\} \\
\mathcal{L}(\mathbb{I}, 8) &:= \Lambda \beta / = \gamma \quad \mathcal{L}(\mathbb{I}, \mathbb{I}) := \{*\}
\end{align*}
\]

- **composition**: for simple types \(8, J, P \)

\[
\begin{align*}
\mathcal{L}(J, P) \times \mathcal{L}(8, J) \xrightarrow{- \circ -} \mathcal{L}(8, P) \quad N \circ M := \begin{cases}
\lambda x^8 \cdot (N \cdot (M \cdot x)) & M, N \neq * \\
* & \text{otherwise}
\end{cases}
\end{align*}
\]

where \(x \notin \text{FV}(N) \cup \text{FV}(M) \).

\[
\begin{align*}
\mathcal{L}(J, P) \times \mathcal{L}(\mathbb{I}, J) \xrightarrow{- \circ -} \mathcal{L}(\mathbb{I}, P) \\
\mathcal{L}(\mathbb{I}, P) \times \mathcal{L}(\mathbb{I}, \mathbb{I}) \xrightarrow{- \circ -} \mathcal{L}(\mathbb{I}, P)
\end{align*}
\]

\[
\begin{align*}
N \circ M &:= \begin{cases}
(M, N) & N \neq * \\
* & \text{otherwise}
\end{cases} \\
N \circ * &:= N.
\end{align*}
\]

In all other cases \(8 \to J \to P \) with \(8 \neq \mathbb{I} \) but at least one of \(J, P \) equal to \(\mathbb{I} \), the composite is always \(* \).
Proposition \(\mathcal{L} \) is a category with identities \(\text{id}_b \in \mathcal{L}(b, b) \).

Proof. We need to check associativity and that identities work. For the former, consider the case of simple types \(b, T, P, S \)

\[
\begin{array}{c}
b \\ M \\ \downarrow \\ T \\ N \\ \downarrow \\ P \\ \downarrow \\ S \\
\end{array}
\]

with \(M, N, P \) not \(* \). Then in \(\mathcal{L} \) (\(= \) now means \(=_\gamma \))

\[
P \circ (N \circ M) = \lambda y^b ((P \circ (N \circ M) y))
\]

\[
= \lambda y^b (P ((\lambda x^b (N (M x))) y))
\]

\[
= \lambda y^b (P (N (M y)))
\]

\[
= (P \circ N) \circ M.
\]

The only other nontrivial case is

\[
\begin{array}{c}
1 \\ M \\ \downarrow \\ T \\ N \\ \downarrow \\ P \\ \downarrow \\ S \\
\end{array}
\]

where we calculate (\(M \in \Lambda_7 / =_\gamma \))

\[
P \circ (N \circ M) = P \circ (N M) = (P (N M))
\]

\[
(P \circ N) \circ M = (\lambda y^7 (P (N y)) M)
\]

\[
= (P (N M))
\]

so associativity holds. The identities follow as in (5.1) from \(\gamma \)-equivalence. \(\square \)
Example Returning to p.3, for types β, γ, ρ we defined

\[T_1 : = \beta \rightarrow (\gamma \rightarrow \rho), \quad T_2 : = \gamma \rightarrow (\beta \rightarrow \rho) \]

and we constructed $M_{12} \in \mathcal{L}(T_1, T_2), \ M_{21} \in \mathcal{L}(T_2, T_1)$ with

$M_{12} \circ M_{21} = \text{id}, \ M_{21} \circ M_{12} = \text{id}$, so $T_1 \cong T_2$ in \mathcal{L}. More generally

for types $\gamma_1, \ldots, \gamma_n$, β, ρ, we have an isomorphism for any

permutation $\sigma \in S_n$

\[\gamma_1 \rightarrow \cdots \rightarrow \gamma_n \rightarrow \rho \cong \gamma_{\sigma(1)} \rightarrow \cdots \rightarrow \gamma_{\sigma(n)} \rightarrow \rho \]
It remains to discuss desiderata (3), i.e., how function application and λ-abstraction are represented in L. In the standard approach this is done by putting a Cartesian closed structure on a (different) category of λ-terms, in which we (a) add product types to our language, and associated constructor/destructor and modified β-equivalence, and (b) take as objects pairs $(x : \beta, \beta')$, and morphisms $(x : \beta, \beta') \rightarrow (y : \beta, \beta')$ are terms $M : \beta \rightarrow \beta$ with $FV(M) \subseteq \{x\}$.

Function application is just composition. Given $M : \beta$ and $N : \beta \rightarrow \beta$ we have by definition a commutative diagram in L

$$
\begin{array}{c}
1 \xrightarrow{M} \beta \\
\downarrow (N, M) \quad \downarrow N \\
\beta \quad \beta
\end{array}
$$

(8.1)

λ-abstraction is more complicated, and we treat it in Part II of these notes.