Proof synthesis and differential linear logic

Daniel Murfet based on joint work with James Clift

- J. Clift and D. Murfet, Derivatives of Turing Machines in Linear Logic, arXiv: 1805.11813 (gradient descent on TMs in Section 7).
- J. Clift and D. Murfet, Encodings of Turing Machines in Linear Logic, arXiv: 1805.10770.
- J. Clift and D. Murfet, Cofree coalgebras and differential linear logic, Mathematical Structures in Computer Science (arXiv 2017).
- D. Murfet, On Sweedler's cofree cocommutative coalgebra, J. Pure and Applied Algebra, 219 (2015) 5289-5304.
- D. Murfet, Logic and linear algebra: an introduction, arXiv: 1407.2650.

LINEAR LOGIC*

Jean-Yves GIRARD

Équipe de Logique Mathématique, UA 753 du CNRS, UER de Mathématiques, Université de Paris VII, 75251 Paris, France

V.5. The exponentials

Already in the well-known case of lambda-calculus, there are two traditions:

- the tradition of identifying the variables, which comes from beta-conversion, when we substitute u for all occurrences of x;
- the tradition coming from the implementation, which tries to repress or control substitution.
The first tradition rests on safe logical grounds, whereas the second one is a kind of bricolage with hazardous justifications.
(i) As long as linear logic was resting on quantitative ideas, the principle (inspired on the way Krivine handled beta-conversion by restricting substitution to headvariables, and on the fact that a term is linear in its headvariable) suggested to use a linear 'first-order development', based on the identification between $!A$ and $1+A!\cdot A$. The operations of identification could be seen as formal derivation or formal primitive. The interest of this approach was to propose, at the theoretical level, to replace brutal beta-conversion by iterated linear conversions.

Linear Logic (sketch)

Types: $A, B, C, \ldots,!A, A \otimes B, A \multimap B, \ldots$, int $_{A}$ (integers), int ${\underset{A}{A}}^{\text {(binary integer }}$) , \ldots

Proofs: $n:$ int A (Churchnumevals), for $n \geqslant 0$ an integer
S: ${\operatorname{bint}_{A}}^{\text {for any }} S \in\{0,1\}^{*}$ e.g. $S=001$.
repeat: ! bind $_{A} \longrightarrow$ pint $_{A}$
Cut-elimination is an equivalence relation on proofs

1 bent

$$
\frac{S S}{\cdot} \quad \text { ie. repeat }(S)=S S
$$

How does this refine the standard encoding in λ-calculus?

Available at www.ElsevierComputerScience.com
 powered by science (d)diect. Theoretical Computer Science 309 (2003) 1-41

Fundamental Study

The differential lambda-calculus

Thomas Ehrhard*, Laurent Regnier
Institut de Mathématiques de Luminy, CNRS-UPR 9016, 163 Avenue de Luminy, F-13288 Marseille, France

Abstract

We present an extension of the lambda-calculus with differential constructions. We state and prove some basic results (confluence, strong normalization in the typed case), and also a theorem relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus. (C) 2003 Elsevier B.V. All rights reserved.

Keywords: Lambda-calculus; Linear logic; Denotational semantics; Linear head reduction

Differential Linear Logic (sketch)

$$
\underline{S T}+T S
$$ in diff. linear logic

+ mint

Let $\varepsilon^{2}=O$ be an infinitesimal, then

$$
\begin{aligned}
\operatorname{repeat}(S+\varepsilon T) & =(S+\varepsilon T)(S+\varepsilon T) \\
& =S S+\varepsilon S T+\varepsilon T S+\varepsilon^{2} T T \\
& =S S+\varepsilon(S T+T S)
\end{aligned}
$$

Claim (Ehrhard-Regnier) The derivative of repeat at \underline{S} in the direction I is $S T+T S$. $\tau_{?}$

Deduction rules for (intuitionistic, first-order) linear logic

$$
\begin{gathered}
\text { (Dereliction): } \frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \text { der } \\
\text { (Contraction): } \frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \mathrm{ctr} \\
\text { (Weakening): } \frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B \text { weak }}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (Axiom): } \overline{A \vdash A} \quad(\mathrm{Cut}): \frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B} \text { cut } \quad \text { (Promotion): } \frac{!\Gamma \vdash A}{!\Gamma \vdash!A} \text { prom } \\
& (\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L \quad(\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L \\
& (\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R \quad \quad(\text { Right } \otimes): \frac{\Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R
\end{aligned}
$$

Deduction rules for (intuitionistic, first-order) linear logic

(Dereliction): $\frac{\Gamma, A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ der
(Contraction): $\frac{\Gamma,!A,!A, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B} \operatorname{ctr}$
(Weakening): $\frac{\Gamma, \Delta \vdash B}{\Gamma,!A, \Delta \vdash B}$ weak

$$
\underline{001}: \operatorname{bint}_{A}=!(A \multimap A) \multimap(!(A \multimap A) \multimap(A \multimap A))
$$

(Axiom): $\overline{A \vdash A}$

$$
\text { (Cut): } \frac{\Gamma \vdash A \quad \Delta^{\prime}, A, \Delta \vdash B}{\Delta^{\prime}, \Gamma, \Delta \vdash B} \mathrm{cut}
$$

(Promotion): $\frac{!\Gamma \vdash A}{!\Gamma \vdash A}$ prom

$$
(\text { Left } \multimap): \frac{\Gamma \vdash A \quad \Delta^{\prime}, B, \Delta \vdash C}{\Delta^{\prime}, \Gamma, A \multimap B, \Delta \vdash C} \multimap L \quad(\text { Left } \otimes): \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \otimes-L
$$

$$
(\text { Right } \multimap): \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} \multimap R
$$

$($ Right $\otimes): \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes-R$
$\operatorname{bint}_{A}=!(A \multimap A) \multimap(!(A \multimap A) \multimap(A \multimap A))$.

$$
E=A \multimap A
$$

repeat : ! $\operatorname{bint}_{A} \multimap \operatorname{bint}_{A}$

$$
\mathrm{comp}_{A}^{2}
$$

Sweedler semantics
$[1-1]: \mathscr{L} \longrightarrow$ Vect $_{k}$
(k an algebraically closed field)
$[|A \rightarrow B|]=\operatorname{Homk}_{k}([|A|],[|B|])$
If $\operatorname{dim}[|A|]=m, \operatorname{dim}[|B|]=n$
this is the space of $n \times m$ matrices.

$$
[|A \otimes B|]=[|A|] \otimes[|B|]
$$

Dimension $m n$, spanned by a basis $u_{i} \otimes v_{j}$ where $\left(u_{i}\right)_{i=1}^{m}$, $\left(v_{j}\right)_{j=1}^{n}$ are bases for $\left.[|A|],[\mid B]\right]$.

$$
[|!A|]=\bigoplus_{P \in[|A|]} \operatorname{Sym}([|A|])
$$

Coffee cocommutative co algebra over $[|A|$, studied by Sweedler.

Cut = composition
Contraction = comultiplication
weakening = count
$\llbracket\left[\begin{array}{c}\pi \\ \vdots \\ \frac{!\Gamma+A}{!\Gamma+!A} \text { prom }\end{array}\right]=\begin{aligned} & \text { unique movphism } \\ & \text { of wage bras } y \\ & \text { making the cliagram } \\ & \text { below commute }\end{aligned}$

$$
[|!\Gamma|]-\stackrel{9}{-}[|!A|]
$$

(see "core coalgebras and differential $L L^{\prime \prime}$)

Differentiating Turing Machines
language of closed symmetric monoidal categories with w free coalgebras

QUESTION: What does the derivative of a Turing Machine compute?

Differentiating Turing Machines
How to make infinitesimal changes to discrete inputs?

$$
0 \left\lvert\, 10 \rightarrow\left[\begin{array}{|c|c||}
\hline \begin{array}{l}
\text { Turing machine } \\
\text { "swapper" }
\end{array} \\
\hline
\end{array}\right] \rightarrow 1001\right.
$$

$$
\left.\frac{\partial y}{\partial x}\right|_{x=0}=\left.\frac{\partial}{\partial x}(1-x)\right|_{x=0}=-1
$$

If we propagate uncertainty using standard probability, answers are indepenclent of the algorithm and therefore meaningless.

Differentiating Turing Machines
How to propagate uncertainty through an algonthm?
Use the Sweedler semantics!
$\left.\frac{\partial y}{\partial x}\right|_{x=0} \quad \begin{aligned} & \text { is computed by the Ehrhavd-Regnier de privative }\end{aligned}$

QUESTION: What does the derivative of a Turing Machine compute?
ANSWER: Rates of change of naive probability.

Proof Synthesis / TM synthesis

Problem Given $u: A$ and $v: B$ find $\pi:!A \multimap B$ s.t. $\pi(u)=v$. (mually for multiple pair, subject to "regularisation" I.e. simplicity of π)

Turing Machine synthesis by gradient descent:
Vary distributions over code bits $\in[0,1]^{N}$ to minimise a smooth loss function $L:[0,1]^{N} \longrightarrow \mathbb{R}$.

gradient descent using Ehrhard-Regnier derivatives

Final work tape

Variables at end of training

Entropies of variables

- Synthesis by gradient descent works in toy examples, but is unlikely to work in nontrivial examples (explosion of local minima, it seems Occam's razor is not a sufficiently strong prior in the continuous regime).
- Similar methods of propagating uncertainty through algorithms have arisen (in an ad hoc way) in the machine learning literature:
- (DeepMind) R. Evans, E. Grefenstette "Learning explanatory rules from noisy data" Journal of AI Research 61 (2018) 1-64.
- (Microsoft) A.Gauntet. al "TerpreT: a probabilistic programming language for program induction" 2016.

Conclusion
(1) Proofs in linear logic admit a derivative (Ehrhard-Regnier)
(2) These derivatives compute (for certain proofs) rates of change of naive probability (Clift-M).
(3) One can do proof synthesis by gradient descent, using loss functions defined on spaces of distributions over proofs (althoug hthis is not currently practical!).

