The computational content of Landau-Ginzburg models

In this talk I would like to explain some of the computational or "logical" aspects of to pological Landau-Ginzburg models. The primary references are

- D. Murfet "The cut operation on matrix factorisations"
J. Pure and Applied Algebra 2018.
- N.Carqueville, D. Murfet "Acljunctions and defects in Landau Ginzburgmodels" Adv. Math 2016.

Flavours of 2D topological field theories (arising form algebraic geometry)

 X smooth projective

The most important structure in $\mathcal{L} \mathcal{G}$ is "defect fusion" or composition of 1-mouphisms. This is quite a complicated operation, and the purpose of this talk is to examine this operation for a logical point of view (in a sense we will shortly elaborate).

Outline
(1) A lightning introduction to logic
(2) An overview of to pological La models
(3) Theorem: an equivalence of bicategories.

1. Introduction to logic

One way to understand intuitionistic logic (1.e. logic without the law of excluded middle $P_{v} \neg P$) is as the mathematical theory of algorithmic constructions, a connection which is made precise by the Cumy-Howard comespondence, which relates proofs in various intuitionistic logics to algorithms in comes poncing "programming languages". Perhaps the most important conceptual insight provided by logic is that there is a dynamical process lying behind function composition (which as mathematicians we are inclined to treat as primitive and "atomic"). This process is called computation: a "subatomic" theory of function composition.

For an explanation of the relation between TFT and quantum computation see
M.H. Freedman, A.Kitaev, Z.Wang "Simulation of Topological Field Theories by Quantum Computers" Commun. Math. Phys. 227, 587-603 (2002).

We can illustrate the general idea with the following simple ex ample: consider functions

which from a set-theoretic point of view we identify with their graphs

$$
T_{f}=\{(x, y) \in \mathbb{C}^{2} \mid \underbrace{y=J^{2} x}_{F(x, y)}\} \quad T_{g}=\{(y, z) \in \mathbb{C}^{2} \mid \underbrace{z=\zeta^{3} y}_{\xi(y, z)}\} .
$$

From a set-theoretic point of view composition is

$$
\begin{aligned}
T_{g \circ f} & =\left\{(x, z) \in \mathbb{C}^{2} \mid \exists y \in \mathbb{C}\left(y=J^{2} x \wedge z=J^{3} y\right)\right\} \\
& =\left\{(x, z) \in \mathbb{C}^{2} \mid \exists y \in \mathbb{C}\left(y=J^{2} x \wedge z=J^{3}\left(J^{2} x\right)\right)\right\} \\
& =\left\{(x, z) \in \mathbb{C}^{2} \mid z=\zeta^{5} x\right\}
\end{aligned}
$$

substitution I)

This process of substitution and elimination "rewrites" the predicate

$$
\exists y(F(x, y) \wedge \xi(y, z)) \text { rewriting } \sim z=\zeta^{5} x
$$

and this kind of substitution and reuniting is sufficient to describe all computable functions, as was proven by Church with his λ-calculus (in combination with Turing's work). From Church's point of view computation is this process of rewriting.

Subtle point Computation does not yield new information, as in the case of

$$
2+3=5
$$

the answer 5 is already implicit in the LHS.

A slightly different but related way of looking at computation will be familiar to anyone who has studied the relation between classical and quantum computation, which hinges on the notion of reversible computation (see e.g. Feynman's "Lectures on computation"). The upshot is that, by a Theorem of Bennett any computation (more precisely, any computation performed by a Turing machine) can without loss of generality viewed as a two-phase process

input (e.g. $+2,3$)	supply of blanks

(I)
$\downarrow\left\{\begin{array}{l}\text { reversible computation, } \\ \text { ie. may be performed } \\ \text { without generating } \\ \text { entropy. }\end{array}\right.$
output (e.g.5) 1//"garbage" //// //////
(II)
projecting out the "garbage"
This is imeverible and generates entropy
output (e.g. S)

Informally, any computation can be structured as fist rearranging the information into a more useful form and then erasing part of that rearranged information.
2. Topological LG models

Let us now reinterpret this as a story about cowespondences between (zew-dimensional) isolated hypersurface singularities:

$$
\begin{array}{ll}
I=\left(y-J^{2} x\right) \subseteq \mathbb{C}[x, y], & J=\left(z-J^{3} y\right) \subseteq \mathbb{C}[y, z] \\
\left(y^{n}-x^{n}\right) \subseteq I & \left(z^{n}-y^{n}\right) \subseteq J
\end{array}
$$

$$
y^{n}-x^{n}=\underbrace{\left(y-3^{2} x\right) \cdot \prod_{i \in \mathbb{Z}_{n} \backslash\{2\}}\left(y-J^{i} x\right)}_{\begin{array}{c}
\text { this factorisation may } \\
\text { be packaged as a matrix }
\end{array}} \quad z^{n}-y^{n}=\underbrace{\left(z-3^{3} y\right) \cdot \prod_{i \in \mathbb{Z}_{n} \backslash\{3\}}\left(z-3^{i} y\right)}_{\text {packaged as }}
$$

Def Consider the matrices

$$
D_{\{2\}}=\left(\begin{array}{cc}
0 & y-J^{2} x \\
\prod_{i \in \mathbb{Z}_{n} \mid\{2\}}\left(y-J^{i} x\right) & 0
\end{array}\right), \quad D_{\{3\}}=\left(\begin{array}{cc}
0 & z-J^{3} y \\
\prod_{i \in \mathbb{Z}_{n} \mid\{3\}}\left(z-J^{i} y\right) & 0
\end{array}\right)
$$

Then

$$
D_{\{2\}}^{2}=\left(\begin{array}{cc}
y^{n}-x^{n} & 0 \\
0 & y^{n}-x^{n}
\end{array}\right), \quad D_{\{3\}}^{2}=\left(\begin{array}{cc}
z^{n}-y^{n} & 0 \\
0 & z^{n}-y^{n}
\end{array}\right)
$$

Def ${ }^{n}$ A potential is $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{cim}_{\mathbb{C}} \mathbb{C}[\underline{x}] /\left(\partial x, W, \ldots, \partial_{n} w\right)<\infty$.

Def n (Eisenbud) A matrix factorisation of a potential W is a block matrix over $\mathbb{C}[x]$,

$$
D=\left(\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right) \text { s.t. } D^{2}=W \cdot I_{2 k} \Longleftrightarrow A B=B A=W \cdot I_{k}
$$

which may be viewed as an odd $\mathbb{C}[\underline{x}]$-linear operator $X \mathbb{D}$, on a \mathbb{Z}_{2}-graded free $\mathbb{C}[\underline{x}]$-module of finite rank. These form a triangulated category $\operatorname{hmf}(\mathbb{C}[\underline{x}], W)$.

As was elaborated by Kapustin-Li, Herbst-Bnunner, Lazavoiu and then by Orlor, matrix factorisations are the appropriate homological objects to describe boundacy conditions and defects in topological B-twisted Landau-Ginzbungmodels. The defect part of this story is captured by the idea that the appropriate notion of "correspondence" between isolated singulanties $W \in \mathbb{C}[\underline{x}]$ and $V \in \mathbb{C}[\underline{y}]$ are matrix factorisations of $V-W$. This theory may be organised into a bicategovy $\mathcal{L} b$:

$$
\begin{aligned}
& o b(\mathscr{L})=\{\text { pain }(\mathbb{C}[\underline{x}], W) \mid W \text { is a potential }\} . \\
& \mathscr{L} \zeta(W(\underline{x}), V(\underline{y}))=\operatorname{hmf}(\mathbb{C}[\underline{x}, \underline{y}], V-W)^{\omega} \text { idempotent completion } \\
& \underline{\text { Example }} x^{n} \xrightarrow{D_{[2\}}(x, y)} y^{n} \xrightarrow{D_{\{3\}}(y, z)} z^{n} \text { arel-mophismsin } \chi \& \text {. }
\end{aligned}
$$

Def ${ }^{n}$ The composition of $W(x) \xrightarrow{D_{1}} V(y) \xrightarrow{D_{2}} U(z)$ is the representing object $D_{2} \cdot D_{1}$ in $\mathscr{L} \xi(W, v)=\operatorname{hm} f(\mathbb{C}[x, z], u-W)^{w}$ of

$$
\left(X_{\mathbb{C}[\underline{y}]}^{\otimes} X_{1}, D_{2} \oplus 1+1 \oplus D_{1}\right) \longleftarrow \infty \text {-rank over } \mathbb{C}[\underline{x}, \underline{2}]
$$

Theorem (Khovanov-Rozansky, Carqueville-M) A representing object exists.
Example

$$
\begin{aligned}
& D_{\{33}(y, z) \cdot D_{\{2\}}(x, y) \cong D_{\{5\}}(x, z) \\
& z=3^{3} y \quad y=3^{2} x \quad z=3^{5} x
\end{aligned}
$$

This composition of 1 -monohisms is (in quite a precise sense, since $D_{\{2\}}, D_{\{3\}}$ are "universal" objects in the matrix factorisation category associated to the graphs of $f_{1} g$ viewed as subschemes) a homological analugue of the function composition from earlier. We saw how a process of computation (consisting of substitution and elimination) lay behind the equality

$$
\begin{equation*}
\Gamma_{g} \circ T_{f}=T_{h} \quad h(x)=s^{5} x \tag{*}
\end{equation*}
$$

and we now present a "homological" analogue for the isomorphism

$$
D_{\{3\}} \circ D_{\{2\}} \cong D_{\{r\}} .
$$

The appropriate kind of "projecting out" is splitting an idempotent
implicit

$$
\left.\begin{array}{ll}
X \supseteq e & X \cong Y \oplus Z_{(} \\
e^{2}=e & G
\end{array} \quad \begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Actually we consider only a special kind of idempotent, splitting as

$$
\begin{gathered}
X \cong Y \oplus Y[1] \cong Y \underset{k}{\otimes}(k \oplus k \theta) \quad|\theta|=1 \\
\sigma_{e} \cong\left(\begin{array}{ll}
(1) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\theta^{*} \theta
\end{array} \quad \theta=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \theta^{*}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right.
\end{gathered}
$$

3. An equivalence of bicategovies

Def ${ }^{n}$ The Clifford algebra C_{n} is the \mathbb{Z}_{2}-graded \mathbb{C}-algebra generated by ord elements $\gamma_{1}, \ldots, \gamma_{n}, \gamma_{1}+\ldots, \gamma_{n}{ }^{+}$satisfying

$$
\begin{gathered}
\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=0, \gamma_{i}^{+} \gamma_{j}^{+}+\gamma_{j}^{+} \gamma_{i}^{+}=0 \\
\gamma_{i} \gamma_{j}^{+}+\gamma_{j}^{+} \gamma_{i}=\delta_{i j}
\end{gathered}
$$

Lemma There is an isomorphism of \mathbb{Z}_{2}-graded algebras

$$
\begin{aligned}
C_{n} & \cong E_{n d}(\underbrace{\wedge\left(\mathbb{C} \theta_{1} \oplus \cdots \oplus \mathbb{C} Q_{n}\right)}_{S_{n}}) \quad\left|\theta_{i}\right|=1 \\
\gamma_{i} & \longmapsto \theta_{i} \wedge(-) \quad C_{n i s} M o n ' t a t i v i a l \\
\gamma_{i}^{+} & \left.\longmapsto \theta_{i}^{*}\right\lrcorner(-) . \quad \operatorname{Mod}\left(C_{n}\right) \cong \operatorname{Mod}(\mathbb{C}) .
\end{aligned}
$$

Def Let J be an idempotent complete \mathbb{Z}_{2}-graded category (e.g. $h m f(w)^{w}$). The Clifford thickening J^{\bullet} has as objects pain (X, n) where $n \geqslant 0$ and X is a representation of C_{n} in J.

$$
\operatorname{Hom}_{J} \cdot((X, n),(Y, m))=\operatorname{Hom}_{c_{m}}\left(S_{m} \underset{\mathbb{C}}{\otimes} S_{n}^{*} \underset{C_{n}}{\otimes} X, Y\right)
$$

Note The inclusion $J \rightarrow J^{0}$ sending $X \longrightarrow(X, 0)$ is an equivalence.

$$
\left.\begin{array}{c}
X \gtrless \gamma, \gamma^{\dagger} \text { satisfying clifford relations in } J \\
\operatorname{Im}\left(\gamma \gamma^{\dagger}\right) \otimes(\mathbb{C} \oplus \mathbb{C} \theta) 2 \theta, \theta^{*} \\
\operatorname{Im}\left(\gamma \gamma^{\dagger}\right)
\end{array}\right\} \begin{aligned}
& \text { all isomophic } \\
& \text { in } J^{*}
\end{aligned}
$$

Theorem (M) Theobviousinclusions define an equivalence of bicategovies

$$
Z: Z \mathscr{Z} \longrightarrow \not \mathcal{E}^{\bullet}
$$

where $\mathcal{Z} \mathscr{g}^{\circ}$ has the same objects as $\mathcal{E} \mathcal{E}$, but

$$
\mathcal{Z} \xi^{\bullet}(W(x), V(y)):=\left\{\operatorname{hmf}(\mathbb{C}[x, y], V-w)^{\omega}\right\}^{\bullet}
$$

and the composition in ζ is given by explicit formulas (unlike $\mathcal{Z} \xi$)

$$
\begin{aligned}
& \mathcal{L} \dot{\xi}(v, u) \times \mathcal{L} \dot{j}(w, v) \longrightarrow \mathscr{L} \dot{\mathscr{j}}(w, u) \\
& \left(x_{2} 2 D_{2}, x_{1} \supset D_{1}\right) \longmapsto\left(x_{2}\left|x_{1} 2 D_{2}\right| D_{1},\left\{\gamma_{i}, \gamma_{i}^{+}\right\}_{i=1}^{n}\right)
\end{aligned}
$$

$$
\text { MF of U-V MF of } V-W
$$

we call this the cut of D_{2}, D_{1}
where $n=|\underline{y}|$ and
(a hat tip to logic, and cut-elimination)
(Aliyah classes)
${ }^{\top}(\underline{t})$-adic completion

$$
\gamma_{i}=A t_{i} \quad \gamma_{i}^{\dagger}=-1 \otimes \frac{\partial}{\partial y_{i}}\left(D_{1}\right)-\frac{1}{2} \sum_{q=1}^{n} \frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{i}}(V) A t_{q}
$$

These operators satisfy Clifford relations up to homotopy.
To complete the stor let us elaborate the "computational" view this equivalence provides on the composition of 1 -monphisms in $2 \mathscr{F}$

$$
\begin{aligned}
& X_{2}\left|X_{1}=X_{2} \otimes \underset{\mathbb{C}[\underline{]}]}{\operatorname{Jacv}} \underset{\mathbb{C}[\underline{2}]}{\otimes} X_{1} \supseteq D_{2}\right| D_{1}=D_{2} \otimes 1+1 \otimes D_{1} \\
& A t_{i}:=\left[D_{2} \otimes 1+1 \otimes D_{1}, \frac{\partial}{\partial t_{i}}\right] \quad t_{i}=\frac{\partial}{\partial y_{i}} V \quad \hat{\mathbb{C}[\underline{y}]} \xrightarrow{\nabla} \hat{\mathbb{C}[\underline{\underline{y}}] \otimes \otimes \Omega_{\mathbb{C}(\underline{t})}^{1}} \mathbb{C}_{\mathbb{C}(\in) / \mathbb{C}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(D_{1}, D_{2}\right) \longmapsto D_{2} \mid D_{1} 2 \gamma_{i}, \gamma_{i}{ }^{t}
\end{aligned}
$$

(II) "projection"

$$
D_{2} \circ D_{1}
$$

Implemented in software, we calculate $D_{2} \mid D_{1}$ and the $\gamma_{i}, \gamma_{i}{ }^{+}$as matrices and then split idempotent $\gamma_{1} \gamma_{1}^{+}, \ldots, \gamma_{n} \gamma_{n}{ }^{+}$to compute $D_{2} \circ D_{1}$ as an explicit matrix of polynomials.

Application : this calculation of $D_{2} \circ D_{1}$ via $D_{2}|D|$ is the basis of one approach to calculating an A_{∞}-minimal model of the DG-enhancement of $\operatorname{hmf}(\mathbb{C}[\pm], w)$.

