Bar versus Koszul

Let k be a commutative ring, and $A=k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ing. In the category of A - A-bimodules there are two natural projective resolutions of A as a bimodule (1.e. The diagonal)

By stand ard homologic al algebra there exist monphisms of complexes Φ and Ψ such that

$$
\pi_{K} \circ \Psi=\pi_{B}, \pi_{B} \circ \Phi=\pi_{A}, \Phi \circ \Psi \simeq 1_{B}, \quad \Psi \circ \Phi \simeq 1_{\mathbb{K}} .
$$

The aim of this talk is, starting from only a knowledge of basic (homological) algebra, to fint of all define \mathbb{B}, \mathbb{K} and then describe explicitly Φ, Ψ. The map Φ is standard (e-g.form the poo of of Hochschild-Kostant-Rosenberg's theorem) but the explicit description of Ψ as a chain map seems less well-known. On the latter point we are following the papers
[Sw] A.V. Shepler and S.Witherspoon," "Quantum differentiation and chair maps of bimoclule complexes" ANT (2011).
[CM] N. Carqueville and D.Murfet "Adjunctions and defects in Landau-Ginzbury models" Adv. Math (2016).

Our story begins, however, with the paper
[CQ] J. Cunt and D. Quillen, "Algebra extensions and nonsingularity" JAMS (1995).
and the concept of
Noncommutativedifferential forms (over a commutative ring k)
A differential graded algebra (DGA) is a monoid in the monoidal calegory of \mathbb{Z}-graded complexes of k-modules $\left(\operatorname{Ch}_{\mathbb{Z}}(k), \otimes, \mathbb{B}=k\right)$, that is,
a DGA is a tuple (A, ∂, m, n) where $(A, \partial) \in\left(h_{\mathbb{Z}}(k)\right.$ and

$$
m: A \otimes A \longrightarrow A, u: k \longrightarrow A \quad\left(A=\bigoplus_{i \in \mathbb{Z}} A^{i}\right)
$$

are mouphisms of complexes satisfying associativity and unit constraints
Remarks (1) $I_{A}:=u\left(1_{k}\right)$ is a closed element of $A^{0} . \quad\left(\partial^{i}: A^{i} \rightarrow A^{i+1}\right)$
(2) A^{0} is a k-algebra with $m^{0} / A^{\circ} \otimes A^{0}$ and I_{A}
degree zero
(3) If (A, m, u) is a k-algebra then $(A, 0, m, u)$ is a $D G A$.
"Lemma" There is an adjoint pair of functor s ($I=$ inclusion)

"Proof" The unit is the identity $\eta_{A}: A \longrightarrow I(A)^{\circ}=A$. This is natural, and given any algebra map $\alpha: A \longrightarrow B^{\circ}$ for a $D G A B$,

$$
\tilde{\alpha}: I(A) \longrightarrow B \quad \tilde{\alpha}_{i}= \begin{cases}0 & i \neq 0 \\ \alpha & i=0\end{cases}
$$

is the unique monghism of DCiAs making

commute. " \square "

The problem with this "prof" is of cone that $\tilde{\alpha}$ is not a mouphism of $D G A$ s as soon as $\operatorname{Im}(\alpha) \neq Z^{\circ}(B)$, since if $\partial_{B} \alpha(a) \neq 0$ then

$$
\partial_{B} \tilde{\alpha}(a) \neq 0=\widetilde{\alpha} \partial_{I(A)}(a) .
$$

To fix this and find a right adjoint to $(-)^{0}$ we meed "dA" fitting in a diagram

Def ${ }^{N}$ The DGA of noncommutative differential forms over an algebra A is, if it exists, a pair $(\Omega A, \eta)$ consisting of

- a DGA ΩA,
- a mouphism of algebras $\eta: A \longrightarrow(\Omega A)^{\circ}$
which is universal, in the sense that if B is a $D G A$ and $\alpha: A \rightarrow B^{\circ}$ an algebra mouphism, there is a unique mouphism of DCAs $\tilde{\alpha}: \Omega A \longrightarrow B$ such that the following diagram commutes:

equivalently, unique

$$
\text { st. } \tilde{\alpha} \circ \eta=\alpha \text {, viewing }
$$

dos a map into $\Omega A 」$
Theovem (Cuntz-Quillen) ($\Omega A, \eta)$ exists for all A, so there is an adjunction

$$
\operatorname{DGA}(k) \underset{\Omega}{\stackrel{(-)^{0}}{\rightleftarrows}} \operatorname{Alg}(k) \quad(-)^{0} \longmapsto \Omega
$$

That is, we have natural bijection

$$
\operatorname{HomAlg}(k)\left(A, B^{0}\right) \cong \operatorname{Hom}_{\operatorname{DaA}(k)}(\Omega A, B) .
$$

Remark The monphism of algebras $A \xrightarrow{1_{A}} I(A)^{0}=A$ induces a mophism of $D G A$ s

$$
\omega: \Omega A \longrightarrow I(A) \text { st. } \omega^{\circ} \circ \eta=1_{A} \text {, }
$$

1.e. $\eta: A \rightarrow(\Omega A)^{\circ}$ has a section $\omega^{\circ}:(\Omega A)^{\circ} \longrightarrow A$, in $A \lg (k)$.

Poof Fint observe that in any $\operatorname{DGA}(\Omega, d)$ with $A \subseteq \Omega^{0}$ as a subalgebra
(I) $d\left(a_{0} d a_{1} \cdots d a_{n}\right)=d a_{0} d a_{1} \cdots d a_{n}$
(2) $\left(a_{0} d a_{1} \cdots d a_{n}\right)\left(a_{n+1} d a_{n+2} \cdots d a_{k}\right)$

$$
\begin{aligned}
= & (-1)^{n} a_{0} a_{1} d a_{2} \cdots d a_{k} \\
& +\sum_{i=1}^{n}(-1)^{n-i} a_{0} d a_{1} \cdots d\left(a_{i} a_{i}+1\right) \cdots d a_{k}
\end{aligned}
$$

The second formula results form multiple applications of

$$
d(b) c=d(b c)-b d(c) .
$$

Thus Ω has a sub-DG-algebra spanned by expressions $a_{0} d a_{1} \cdots d a_{n}$. Since $\lambda \in k$ implies $d(\lambda \cdot \mid A)=0$ (since $/ A=1 \Omega$) this leads us to define a \mathbb{Z}-graded k-module $\left(~ \otimes=\otimes_{k}\right)$

$$
\Omega A:=\bigoplus_{n \geqslant 0} \underbrace{A \otimes \bar{A}^{\otimes n} \quad \bar{A}=A / k}_{\text {denote this } \Omega^{n} A}
$$

and make $(\Omega A, d)$ a complex with

$$
d\left(a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right)=1 \otimes \overline{a_{0}} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}} .
$$

Now there is a clever trick to in duce the desired DGA structure. Define

$$
\begin{array}{ll}
\varepsilon=\operatorname{Hom}_{k}^{*}((\Omega A, d),(\Omega A, d)) & \text { (DG-algebra) } \\
{[d, f]=d \circ f-(-1)^{|f|} f \circ d} & \text { with differential }(d,-] \\
(f: \Omega A \rightarrow \Omega A \text { is a degree } n \text { map of } \mathbb{Z} \text {-graded modules })
\end{array}
$$

Define k-linear maps

$$
\begin{array}{rr}
l: A \longrightarrow \varepsilon^{0}, & l(a)\left(a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right)=a a_{0} \otimes \overline{a_{1} \otimes \cdots \otimes \overline{a_{n}}} \\
l_{*}: \Omega A \rightarrow \varepsilon, & l_{*}\left(a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right)=l\left(a_{0}\right)\left[d, l\left(a_{1}\right)\right] \cdots \\
\cdots\left[d, l\left(a_{n}\right)\right]
\end{array}
$$

Note that

$$
\begin{align*}
{[d, l(a)]\left(1 \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right) } & =d\left(a \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right) \tag{k}\\
& =1 \otimes \bar{a} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}} .
\end{align*}
$$

By $(1),(2)$ we have $\operatorname{Im}\left(l_{*}\right) \subseteq \varepsilon$ is the $D G$-subalgebra spanned by $l(A)$. Now define $J: \varepsilon \longrightarrow \Omega A$ by $J(f)=f(1)$, this is k-linear and degree zeno. Moreover, using (*),

$$
\begin{aligned}
\mathcal{T} l_{*}\left(a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right) & =\left\{l\left(a_{0}\right)\left[d, l\left(a_{1}\right)\right] \cdots\left[d, l\left(a_{n}\right)\right]\right\}(1) \\
& =\ell\left(a_{0}\right)\left[d, l\left(a_{1}\right)\right] \cdots\left[d, l\left(a_{n-1}\right)\right]\left(1 \otimes \overline{a_{n}}\right) \\
& \vdots \\
& =\ell\left(a_{0}\right)\left(1 \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}}\right) \\
& =a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}} .
\end{aligned}
$$

Hence $J l_{*}=1_{\Omega A}$ and l_{*} is infective. Since $l_{*}(\Omega A) \subseteq \varepsilon$ was a sub-DGA this equips ΩA with a unique $D G$-structure s.t. l_{*} is a map of $D G A$ s.

So far we have defined a $D G A \quad\left(\Omega A=\bigoplus_{n \geqslant 0} A \oplus \bar{A}^{\otimes n}, d\right)$, and in this $D G A$

$$
a_{0} d a_{1} \cdots d a_{n}=a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}} . \quad \text { (apply } l_{*} \text { to both sides) }
$$

\therefore the structure of this DGA is completely determined by (1), (2).

It remains to show the algebra map

$$
\eta=1_{A}: A \longrightarrow(\Omega A)^{\circ}=A
$$

is universal: suppose B is a $D G A$ and $u: A \rightarrow B^{D}$ an algebra map. Then

$$
\tilde{u}: \Omega A \rightarrow B, \quad a_{0} \otimes \bar{a}_{1} \otimes \cdots \otimes \overline{a_{n}} \longmapsto u a_{0} \partial_{B}\left(u a_{1}\right) \cdots \partial_{B}\left(u a_{n}\right)
$$

is a monphism of DGAs using $(1),(2)$ and is clearly unique st. $\left.\tilde{u}\right|_{A}=u$.

Example $A=k[x] \quad \Omega A=\left(k[x] \longrightarrow k[x] \otimes x k[x] \longrightarrow k[x] \otimes(x k[x])^{\otimes 2} \rightarrow \cdots\right.$

$$
\begin{aligned}
x^{i} \longmapsto & 1 \otimes \overline{x^{i}} \\
& x^{i} \otimes x^{j} \longmapsto \gg 1 \otimes \overline{x^{i}} \otimes \overline{x^{j}}
\end{aligned}
$$

$$
\therefore \quad H^{0}(\Omega A) \cong k, H^{n}(\Omega A)=0 \quad n>0 .
$$

Remark If A is commutative $(\Omega A)_{\text {sup }} \cong\left(\bigwedge_{A} \Omega_{A / k}^{1}, d\right)$ as $D G A s$. T quotient making it graded commutative and $r^{2}=0$

The Bar complex \mathbb{B} (normalised) is the complex

$$
\begin{gathered}
\mathbb{B}=\left(\Omega A \otimes A, b^{\prime}\right) \\
b^{\prime}\left(w d a \otimes a^{\prime}\right)=(-1)^{|w|}\left(w a \otimes a^{\prime}-w \otimes a a^{\prime}\right) \quad a_{1} a^{\prime} \in A
\end{gathered}
$$

More explicitly, $\mathbb{B}_{n}=\Omega^{n} A \otimes A=A \otimes \bar{A}^{\otimes n} \otimes A$ and using (2),

$$
b^{\prime}\left(a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{n}} \otimes a_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \otimes \overline{a_{1}} \otimes \cdots \otimes \overline{a_{i} a_{i+1}} \otimes \cdots \otimes a_{n+1}
$$

Lemma The complex of A - A-bimodules

is exact, in fact contractible as a complex of right A-modules.
Poof $(\Omega A, d)$ is a $D G A$, and $d \otimes l$ is a right A-linear clegree - operator on $\mathbb{B}=\Omega A \otimes A$. One checks directly that

$$
b^{\prime} d+d b^{\prime}=1 \text { on } B_{n}, n \geqslant 0
$$

where we include $b^{\prime}: A \otimes A \longrightarrow A$ for $n=0$.
Question How to see b^{\prime} as an operator on $\Omega A \oplus A \cong \Omega_{A}(A \otimes A)$ purely from the universal property? I don't know.

The Koszul complex $1 K$
Now we specialise to $A=k\left[x_{1}, \ldots, x_{n}\right]$ so $\mathbb{B} \longrightarrow A$ is a free resolution . Another free resolution is the Koszul complex $\left(A^{e}=A \otimes A,\left|\theta_{i}\right|=1\right)$

$$
\mathbb{K}=\left(\Lambda\left(k \theta_{1} \oplus \cdots \oplus k \theta_{n}\right) \otimes A^{e}, \quad \sum_{i=1}^{n} \theta_{i}^{*} \otimes\left[x_{i} \otimes|-| \otimes x_{i}\right]\right)
$$

Think of θ_{i}

$$
\theta_{i}^{*}(\alpha \beta)=\theta_{i}^{*}(\alpha) \beta+(-1)^{|\alpha|} \alpha \theta_{i}^{*}(\beta)
$$ as $\frac{\partial}{\partial x_{i}}$ so the differential is an Euler v.field

Remark with exterior multiplication, \mathbb{K} is a $D G A, m: \mathbb{K} \rightarrow A$ is a mouphism of DCAAS.

We have now two free resolutions of A as an $A-A$-bimodule.

$$
\mathbb{B} \xrightarrow{\pi_{B}} A, \mathbb{K} \xrightarrow{\pi_{k}} A
$$

It is sometimes useful (in e.g. perturbation theory, which is the context of $[C M]$) to know formulas for chain maps $\Phi: \mathbb{K} \rightarrow \mathbb{B}, \Psi: \mathbb{B} \rightarrow \mathbb{K}$ lifting the identity on A. One reason to cave about Ψ is that lifting into \mathbb{B} as in the diagram below, is often easier than lifting into \mathbb{K}, as noncommutative
 differential forms are better behaved than ordinary differential forms. One can obtain an explicitlifting to \mathbb{K} by fist lifting to \mathbb{B} (i.e.F) and then composing to get $\Psi \circ F$. But only if one knows a formula for Ψ !

Now for the formulas

The induced homotopy equivalence $\Phi: \mathbb{K} \longrightarrow \mathbb{B}$ is

$$
\Phi\left(\left(r \otimes r^{\prime}\right) \theta_{i,} \cdots \theta_{i p}\right)=\sum_{b \in s_{p}}(-1)^{|b|} r d x_{i_{6(1)}} \cdot d x_{i 6(p)} \otimes r^{\prime}
$$

and itshomotopy inverse is $\Psi: \mathbb{B} \longrightarrow \mathbb{K}$,

$$
\Psi\left(r d f_{1} \cdots d f_{p} \otimes r^{\prime}\right)=\sum_{1 \leqslant i_{1}<\cdots<i_{p} \leqslant n}\left(r \otimes r^{\prime}\right) \prod_{k=1}^{p} \partial\left[i_{k}\right]\left(f_{k}\right) \theta_{i_{1}} \cdots \theta_{i_{p}}
$$

where we use the clivided difference operator

$$
\begin{gathered}
\partial_{[i]}: A=k[\underline{x}] \longrightarrow k\left[\underline{x}, \underline{x}^{\prime}\right]=A^{e} \\
\partial_{[i]}(f)=\frac{f\left(x_{1}^{\prime}, \ldots, x_{i-1}^{\prime}, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}^{\prime}, \ldots, x_{i-1}^{\prime}, x_{i}^{\prime}, \ldots, x_{n}\right)}{x_{i}-x_{i}^{\prime}}
\end{gathered}
$$

The formula for Φ is standard, Ψ is form $[S W],[C M]$. To prove Φ, Ψ are mutually inverse up to homotopy one just checks by hand the formulas give cochain maps, and that they induce 1_{A}.

Lemma Φ, Ψ are mouphisms of $D G A$ s between \mathbb{K} and $\left(\mathbb{B}, b^{\prime}, x\right)$ where x is the shuffle product.

Defn Givenan. A-A-bimodule M,
Hochschild homology $H H_{n}(A, M):=H_{n}\left(M \otimes_{A^{e}} \mathbb{B}\right)$
Hochschild cohomology $H^{n}(A, M):=H^{n}\left(\operatorname{Hom}_{A^{e}}(B, M)\right)$.

