Let k be a commutative ring, and $A = k[x_1, \ldots, x_n]$ a polynomial ring. In the category of A-A-bimodules there are two natural projective resolutions of A as a bimodule (i.e. the diagonal)

\[
\begin{array}{ccc}
\text{Bar complex (noncommutative forms)} & B & \pi_B \\
\Psi & (\Phi) & A \\
K & \pi_K & \\
\end{array}
\]

Koszul complex (commutative forms)

By standard homological algebra there exist morphisms of complexes, Φ and Ψ such that

\[
\pi_K \circ \Psi = \pi_B, \quad \pi_B \circ \Phi = \pi_A, \quad \Phi \circ \Psi \simeq 1_B, \quad \Psi \circ \Phi \simeq 1_K.
\]

The aim of this talk is, starting from only a knowledge of basic (homological) algebra, to first of all define B, K and then describe explicitly Φ, Ψ. The map Φ is standard (e.g. from the proof of Hochschild–Kostant–Rosenberg’s theorem) but the explicit description of Ψ as a chain map seems less well-known. On the latter point we are following the papers

and the concept of

Noncommutative differential forms (over a commutative ring \(\mathbb{k} \))

A differential graded algebra (DGA) is a monoid in the monoidal category of \(\mathbb{Z} \)-graded complexes of \(\mathbb{k} \)-modules \((\text{Ch}_\mathbb{Z}(\mathbb{k}), \otimes, \mathbb{I}=\mathbb{k})\), that is, a DGA is a tuple \((A, \otimes, m, u)\) where \((A, \otimes) \in \text{Ch}_\mathbb{Z}(\mathbb{k})\) and

\[
m: A \otimes A \to A, \quad u: \mathbb{k} \to A \quad \left(A = \bigoplus_{i \in \mathbb{Z}} A^i \right)
\]

are morphisms of complexes satisfying associativity and unit constraints.

Remarks

1. \(1_A := u(1_k)\) is a closed element of \(A^0\). \((\partial^i: A^i \to A^{i+1})\)

2. \(A^0\) is a \(\mathbb{k}\)-algebra with \(m^0_{A^0} \otimes A^0\) and \(1_A\).

3. If \((A, m, u)\) is a \(\mathbb{k}\)-algebra then \((A, 0, m, u)\) is a DGA.

“**Lemma**” There is an adjoint pair of functors \((I = \text{inclusion})\)

\[
\text{DGA}(\mathbb{k}) \xleftarrow{(-)^0} \text{Alg}(\mathbb{k}) \xrightarrow{(-)^0} \mathbb{k}\text{-algebras}
\]

\[
(-1)^0: \text{DGA}(\mathbb{k}) \to \text{Alg}(\mathbb{k}) \quad \text{and} \quad \text{I}: \text{Alg}(\mathbb{k}) \to \text{DGA}(\mathbb{k})
\]

\(\text{DGA}(\mathbb{k})\) is a category of differential graded \(\mathbb{k}\)-algebras, and \(\text{Alg}(\mathbb{k})\) is a category of \(\mathbb{k}\)-algebras (associative, unital, possibly not commutative).
"Proof." The unit is the identity \(\eta_A : A \to I(A)^\circ = A \). This is natural, and given any algebra map \(\alpha : A \to B^\circ \) for a DGA \(B \),

\[
\tilde{\alpha} : I(A) \to B \\
\tilde{\alpha}_i = \begin{cases} \\
0 & i \neq 0 \\
\alpha & i = 0
\end{cases}
\]

is the unique morphism of DGA\(\text{s} \) making \(\tilde{\alpha} = \text{id} \) on \(A \) and \((\tilde{\alpha})^\circ \) on \(I(A)^\circ \). However, this is not a correct proof (the lemma is false).

Commute. \(\square \)

The problem with this "proof" is of course that \(\tilde{\alpha} \) is not a morphism of DGA\(\text{s} \) as soon as \(\text{Im}(\alpha) \neq Z^\circ(B) \), since if \(\partial B \alpha(a) \neq 0 \) then

\[
\partial_B \tilde{\alpha}(a) \neq 0 = \tilde{\alpha} \partial I(A)(a)
\]

To fix this and find a right adjoint to \((-)^\circ \) we need "\(DA \)" fitting in a diagram

\[
\begin{array}{ccc}
0 & \rightarrow & 1 & \rightarrow & \cdots \\
\downarrow & & & & \downarrow \\
A & \rightarrow & dA & \rightarrow & \cdots \\
\downarrow & & & & \downarrow \\
B^\circ & \rightarrow & B^1 & \rightarrow & \cdots \\
\end{array}
\]

\(\partial_B \alpha(a) \neq 0 \rightarrow \tilde{\alpha} \partial I(A)(a) \)
Define The DGA of noncommutative differential forms over an algebra A is, if it exists, a pair $(\Omega A, \gamma)$ consisting of:

- a DGA ΩA,
- a morphism of algebras $\gamma : A \to (\Omega A)^{\circ}$

which is universal, in the sense that if B is a DGA and $\alpha : A \to B^{\circ}$ an algebra morphism, there is a unique morphism of DGAs $\tilde{\alpha} : \Omega A \to B$ such that the following diagram commutes:

$$
\begin{array}{ccc}
A & \xrightarrow{\gamma} & (\Omega A)^{\circ} \\
\downarrow{\alpha} & & \downarrow{\gamma^{\circ}} \\
B^{\circ} & & (\tilde{\alpha})^{\circ}
\end{array}
$$

equivalently, unique s.t. $\tilde{\alpha} \circ \gamma = \alpha$, viewing d as a map into ΩA.

Theorem (Cuntz–Quillen) $(\Omega A, \gamma)$ exists for all A, so there is an adjunction

$$
\begin{array}{ccc}
\text{DGA}(k) & \xleftarrow{(-)^{\circ}} & \text{Alg}(k) \\
\Omega & \xrightarrow{(-)^{\circ}} & \text{Alg}(k)
\end{array}
$$

That is, we have natural bijections

$$
\text{Hom}_{\text{Alg}(k)}(A, B^{\circ}) \cong \text{Hom}_{\text{DGA}(k)}(\Omega A, B).
$$

Remark. The morphism of algebras $A \xrightarrow{1_A} I(A)^{\circ} = A$ induces a morphism of DGAs

$$
\omega : \Omega A \to I(A) \quad \text{s.t.} \quad \omega \circ \gamma = 1_A,
$$

i.e. $\gamma : A \to (\Omega A)^{\circ}$ has a section $\omega : (\Omega A)^{\circ} \to A$, in $\text{Alg}(k)$.
Proof First observe that in any DGA \((\mathcal{A}, d)\) with \(A \subseteq \mathcal{A}^0\) as a subalgebra

1. \(d(a_0a_1 \cdots a_n) = da_0a_1 \cdots a_n\)

2. \((a_0a_1 \cdots a_n)(a_{n+1}a_{n+2} \cdots a_k)\)

\[\begin{align*}
&= (-1)^n a_0a_1a_2 \cdots a_k \\
&\quad + \sum_{i=1}^{n} (-1)^{n-i} a_0a_1 \cdots d(a_i a_{i+1}) \cdots a_k
\end{align*}\]

The second formula results from multiple applications of

\[d(b)c = d(bc) - bd(c).\]

Thus \(\mathcal{A}\) has a sub-DGA-algebra spanned by expressions \(a_0a_1 \cdots a_n\). Since \(\lambda \in k\) implies \(d(\lambda \cdot a) = 0\) (since \(1_a = 1_\mathcal{A}\)) this leads us to define a \(\mathbb{Z}\)-graded \(k\)-module \((\otimes = \otimes_k)\)

\[\mathcal{A} := \bigoplus_{n \geq 0} A \otimes \bar{A}^n\]

\[\bar{A} = A/k\]

and make \((\mathcal{A}, d)\) a complex with

\[d(a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n) = 1 \otimes a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n.\]

Now there is a clever trick to induce the desired DGA structure. Define

\[E = \text{Hom}^*_k((\mathcal{A}, d), (\mathcal{A}, d))\]

\((\text{DGA-algebra})\) with differential \([d, -]\)

\[\begin{align*}
[d, f] &= d \circ f - (-1)^{|f|} f \circ d \\
(f : \mathcal{A} \to \mathcal{A} \text{ is a degree} \ n \text{ map of} \ \mathbb{Z}\text{-graded modules})
\end{align*}\]
Define \(k \)-linear maps
\[
\ell : A \to E^0, \quad \ell(a)(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = a_0 \otimes a_i \otimes \cdots \otimes a_n
\]
\[
\ell_* : \Lambda A \to E, \quad \ell_*(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = \ell(a_0)[d, \ell(a_1)] \cdots [d, \ell(a_n)]
\]

Note that
\[
[d, \ell(a)](1 \otimes a_1 \otimes \cdots \otimes a_n) = d(a_0 \otimes a_1 \otimes \cdots \otimes a_n)
\]
\[
= 1 \otimes a_i \otimes a_{i+1} \otimes \cdots \otimes a_n.
\]

By (1), (2) we have \(\text{Im}(\ell_*) \subseteq E \) is the DG-subalgebra spanned by \(\ell(A) \).

Now define \(\mathcal{T} : E \to \Lambda A \) by \(\mathcal{T}(f) = f(1) \), this is \(k \)-linear and degree zero. Moreover, using (\(\ast \)),
\[
\mathcal{T} \ell_*(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = \{ \ell(a_0)[d, \ell(a_1)] \cdots [d, \ell(a_n)] \} \quad (1)
\]
\[
= \ell(a_0)[d, \ell(a_1)] \cdots [d, \ell(a_n)](1 \otimes a_n)
\]
\[
= \ell(a_0)(1 \otimes a_i \otimes \cdots \otimes a_n)
\]
\[
= a_0 \otimes a_i \otimes \cdots \otimes a_n.
\]
Hence \(\mathcal{T} \ell_* = 1_{\Lambda A} \) and \(\ell_* \) is injective. Since \(\ell_*(\Lambda A) \subseteq E \) was a sub-DGA this equips \(\Lambda A \) with a unique DG-structure s.t. \(\ell_* \) is a map of DGAs.

So far we have defined a DGA \((\Lambda A = \bigoplus_{n \geq 0} A \otimes A^\otimes_n, d) \), and in this DGA
\[
a_0da_1 \cdots da_n = a_0 \otimes a_i \otimes \cdots \otimes a_n. \quad \text{(apply } \ell_* \text{ to both sides)}
\]
\[
\therefore \text{the structure of this DGA is completely determined by (1), (2).}
It remains to show the algebra map

$$\gamma = 1_A : A \longrightarrow (\wedge A)^\circ = A$$

is universal: suppose B is a DGA and $u : A \rightarrow B^\circ$ an algebra map. Then

$$\tilde{u} : \wedge A \longrightarrow B, \quad a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n \mapsto u_{a_0} \partial_B(u_{a_1}) \cdots \partial_B(u_{a_n})$$

is a morphism of DGAs using (1), (2) and is clearly unique s.t. $\tilde{u}|_A = u$. \square

Example: $A = k[x]$, $\wedge A = \left(k[x] \longrightarrow k[x] \otimes k[x] \longrightarrow k[x] \otimes (x k[x]) \otimes \cdots \right.$

$$x^i \longmapsto 1 \otimes x^i$$

$$x^i \otimes x^j \longmapsto 1 \otimes x^i \otimes x^j, \quad j \geq 1$$

$$\vdash \quad H^0(\wedge A) \cong k, \quad H^n(\wedge A) = 0 \quad n > 0.$$

Remark: If A is commutative, $(\wedge A)^\text{sup} \cong \left(\wedge A \otimes A/k, \quad d \right)$ as DGAs. $^{\text{quotient making it graded commutative and } \partial^2 = 0}$

Kähler differentials
The Bar complex \mathbb{B} (normalised) is the complex

$$\mathbb{B} = \left(\bigwedge A \bigotimes A, b' \right)$$

$$b'(wda \otimes a') = (-1)^{|w|}(wa \otimes a' - \omega \otimes aa') \quad a, a' \in A$$

More explicitly, $\mathbb{B}_n = \bigwedge^n A \bigotimes A = A \bigotimes \bar{A}^\otimes \otimes A$ and using (2),

$$b'(a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_n \otimes a_{n+1}) = \sum_{i=0}^{n} (-1)^i a_0 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_i a_{i+1} \otimes \cdots \otimes a_{n+1}$$

Lemma The complex of \mathcal{A}-A-bimodules

$$\cdots \to A \bigotimes \bar{A}^\otimes A \xrightarrow{b'} A \bigotimes \bar{A} \bigotimes A \xrightarrow{b'} A \bigotimes A \xrightarrow{b' = m} A \to 0$$

is exact, in fact contractible as a complex of right A-modules.

Proof (\mathcal{A}, d) is a DGA, and $d \otimes 1$ is a right A-linear degree -1 operator on $\mathbb{B} = \mathcal{A} \bigotimes A$. One checks directly that

$$b'd + db' = 1 \quad \text{on } \mathbb{B}_n, \quad n \geq 0$$

where we include $b' : A \bigotimes A \to A$ for $n = 0$. \qed

Question How to see b' as an operator on $\bigwedge A \bigotimes A = \bigwedge A (A \bigotimes A)$ purely from the universal property? I don't know.
The Koszul complex IK

Now we specialise to $A = k[x_1, \ldots, x_n]$ so $B \to A$ is a free resolution.

Another free resolution is the Koszul complex $(A^e = A \otimes A, |\cdot| = 1)$

$$IK = \left(\bigwedge (k \Theta_1 \otimes \cdots \otimes k \Theta_n) \otimes A^e, \sum_{i=1}^n \Theta_i^* \otimes [x_i \otimes 1 \otimes x_i] \right)$$

$$\Theta_i^*(\alpha \beta) = \Theta_i^*(\alpha) \beta + (-1)^{|\alpha|} \alpha \Theta_i^*(\beta)$$

$$\Theta_i^*(\Theta_j) = \delta_{ij}$$

The first few terms look like

$$0 \to A \Theta_1 - \Theta_n \to \cdots \to \bigoplus_{i=1}^n \Theta_i^* A \to A^e \to A \to 0$$

Remark. With exterior multiplication, IK is a DGA, $m: IK \to A$ is a morphism of DGAs.

We have now two free resolutions of A as an A-A-bimodule.

$$B \xrightarrow{\pi_B} A, \quad IK \xrightarrow{\pi_K} A$$

It is sometimes useful (in e.g. perturbation theory, which is the context of [CM]) to know formulas for chain maps $\Phi: IK \to B$, $\Psi: B \to IK$ lifting the identity on A. One reason to care about Ψ is that lifting into B as in the diagram below is often easier than lifting into IK, as noncommutative differential forms are better behaved than ordinary differential forms. One can obtain an explicit lifting to IK by first lifting to B (i.e. F) and then composing to get $\Psi \circ F$.

But only if one knows a formula for Ψ!
Now for the formulas

The induced homotopy equivalence \(\Psi : LB \rightarrow IB \) is

\[
\Psi \left((\circ_i \circ_{i-1} \cdots \circ_2) \cdot r \right) = \sum_{i \in S_p} (-1)^i d x_{i(i-1) \cdots i_2} \cdot d x_{i_2} \cdot \cdots \cdot d x_{i_p} \cdot \circ_{i} \circ_{i-1} \cdots \circ_2 \cdot r
\]

and its homotopy inverse is \(\Psi : LB \rightarrow IK \),

\[
\Psi \left(r d x_{i} \cdots d x_{i_p} \circ r' \right) = \sum_{1 \leq i_1 < \cdots < i_p \leq n} \left(r \circ r' \right) \prod_{k=1}^{p} \partial_{[i_k]} (f_{i_k}) \cdot \circ_{i_1} \cdots \circ_{i_p}
\]

where we use the divided difference operators

\[
\partial_{[i]} : A = A[x] \rightarrow A[x, x'] = A^e
\]

\[
\partial_{[i]} (f) = f(x_1, \ldots, x_{i-1}, x_i, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x_i', \ldots, x_n) \quad x_i - x_i'
\]

The formula for \(\Psi \) is standard, \(\Psi \) is from [SW], [CM]. To prove \(\Psi \) are mutually inverse up to homotopy one just checks by hand the formulas give cochain maps, and that they induce \(1_A \).

Lemma \(\Phi, \Psi \) are morphisms of DGAs between \(IK \) and \((B, b', x) \) where \(x \) is the shuffle product.
Given an A-A-bimodule M, the Hochschild homology is defined as

$$\text{Hochschild homology } \quad \text{HH}_n(A, M) := \text{H}_n(M \otimes_A \text{IB})$$

and the Hochschild cohomology is defined as

$$\text{Hochschild cohomology } \quad \text{HH}^n(A, M) := \text{H}^n(\text{Hom}_A(\text{IB}, M)).$$