The cobordism category 2Cob

The aim of today's talk is to complete the definition of the symmetric monoiclal category 2COb, and finally define 2D TQFTs as symmetric monoiclal functor from 2Cob to vector spaces. The next lecture will prove the main theorem, that such functor are classified by commutative Frobenius algebras.

Outline
(1) Reminder on cobordisms
(2) Smooth structure on gluings
(3) 2Cob is a category
(1) Cobordisms (here, all manifolds are compact)

Let M be a smooth manifold with boundary ∂M. Recall that an orientation on M induces an orientation on ∂M. A cobordism from an oriented n-manifold S to an oriented n-manifold S^{\prime} is an oriented ($n+1$)-manifold M together with a chosen decomposition of the boundary (as oriented manifolds)

$$
\partial M=M_{\text {in }} \Perp M_{\text {out }}
$$

and diffeomouphisms $\phi: S \rightarrow$ Min, $\phi^{\prime}: S^{\prime} \rightarrow$ Mout with ϕ orientation revering and ϕ^{\prime} orientation preserving. We unite the clata of the cobordism as a diagram

$$
\left(M, \phi, \phi^{\prime}\right): S \stackrel{\phi}{\longleftrightarrow} M \stackrel{\phi^{\prime}}{\longleftrightarrow} S^{\prime}
$$

Two cobordisms $\left(M_{1}, \phi_{1}, \phi_{1}^{\prime}\right),\left(M_{2}, \phi_{2}, \phi_{2}^{\prime}\right)$ are equivalent if there is an orientation preserving diffeomouphism $\psi: M_{1} \rightarrow M_{2}$ sit. $\psi_{0} \phi_{1}=\phi_{2}, \psi_{0} \phi_{1}^{\prime}=\phi_{2}^{\prime}$.

Def" The objects of Cob are oriented closed 1-manifolds (including the empty space) and the mouphism sets are

$$
\begin{equation*}
\operatorname{Hom}_{2 c_{0}}\left(S, S^{\prime}\right)=\left\{\text { cobordisms } S \rightarrow S^{\prime}\right\} / \text { equivalence } \text {. } \tag{2.1}
\end{equation*}
$$

Idea of composition Given cobordisms $\left(M_{1}, \phi_{1}, \phi_{1}^{\prime}\right): S_{1} \rightarrow S_{2}$ and $\left(M_{2}, \phi_{2}, \phi_{2}^{\prime}\right): S_{2} \rightarrow S_{3}$ we consider the diagram in Top (the category of topological spaces) where the marked square is a pushout (in this case, a gluing)

For example,

In her talk Michelle showed $M_{1} \Perp_{s} M_{2}$ is a compact topological manifold (.e. it is locally homeomouphic to an open ball in \mathbb{R}^{2}) but we did not yet put a smooth sturcture on $M_{1} \Perp_{s} M_{2}$. Assuming we have done so, we coil ale fine composition in 2Cob via the mile

$$
\begin{equation*}
\left[\left(M_{2}, \phi_{2}, \phi_{2}^{\prime}\right)\right] \circ\left[\left(M_{1}, \phi_{1}, \phi_{1}^{\prime}\right)\right]:=\left[\left(M_{1} \Perp_{s} M_{2}, \psi_{1} \circ \phi_{1}, \psi_{2} \circ \phi_{2}^{\prime}\right)\right] \tag{3.1}
\end{equation*}
$$

It will then remain to show that this composition mule is well-defined, associative and has units; at which point we will have constuacted 2Cob.

Remark In the case of 1-manifolds and 2-dimensional cobordisms we can use results special to surfaces (e.g. every topological surface admits a smooth structure) but we prefer an exposition using an approach which generalises to the higher-dimensional cases.
(2) Smooth structure on gluings

Our reference is Hirsch "Differential Topology" henceforth denoted $[H]$, primarly $[H,\{8.1-\oint 8.2]$. The basic results on cobordioms we need all rely on collars, the theory of which we review now.

Theorem $[H, 8.2 .1]$ Let N be a manifold with $\partial N \neq \phi$. There exists a C^{∞}-embedding

$$
F: \partial N \times[0, \infty) \longrightarrow N
$$

the "collar"
such that $F(x, 0)=x$ for all $x \in \partial N$.

Sketch of proof There exists a C^{∞} vector field X on a neighborhood U of ∂N in N which is nowhere tangent to ∂N and which points into N (cover ∂N with charts and use a partition of unity). Foreach $x \in \partial N$ we have an initial value problem $\varphi(0)=x, \varphi^{\prime}(t)=X(\varphi(t))$ which by the usual yoga has a (maximal) solution
on some interval $J(x) \subseteq[0, \infty)$, call it $\eta_{x}: J(x) \longrightarrow N$. Let $W \subseteq \partial N \times[0, \infty)$ be a neighborhood of ∂N on which the flow of X is clefined, 1.e. $\eta_{x}(t)$ is defined for all $(x, t) \in W$. Then by rescaling smoothly we get a C^{∞} embedding $h: \partial N \times[0, \infty) \longrightarrow W$ leaving $\partial N \times O$ fixed, and F is

Example Let $N=S^{\prime} \times[0, \infty)$ with $U=N$ and $X(\theta, x)=1 \cdot \partial x$.

The solutions are defined on $W=\partial N \times[0, \infty)=S^{\prime} \times[0, \infty) \quad$ (coordinates $\left.\theta, t\right)$ ancldefined by $\eta_{t}(\theta)=(\theta, t)$. Hence F is the identity.

Example Sameas above but with $X(\theta, x)=2 x \cdot \partial_{x}$, then $\eta_{t}(\theta)=\left(0, t^{2}\right)$ and $F(\theta, x)=\left(0, x^{2}\right)$ is the associated collar.

Obvioconly restricting F to some finite interval, e.g. $\partial N \times[0,1)$, given a submanifold of N more recognisable as a collar, e.g.

Now let M_{1}, M_{2} be n-manifolds together with a diagram

where $\phi_{1}^{\prime}, \phi_{2}$ are C^{∞} embeddings identifying S with a connected component of ∂M_{1} resp. ∂M_{2}. we have defined $M_{1} \Perp_{s} M_{2}$ as a topological n-manifold. Take collars

$$
F_{i}: S \times[0, \infty) \longrightarrow M_{i},
$$

with images denoted $U_{i} \subseteq M_{i}$. Let $U:=U_{1} \Perp_{s} U_{2}$, an open neighborhood of S in $M_{1} \Perp_{s} M_{2}$. We have a homeomoyphism

$$
\begin{gathered}
\psi: S \times \mathbb{R}=(S \times(-\infty, 0]) \Perp_{s \times\{0\}}(S \times[0, \infty)) \\
F_{1} \Perp_{s} F_{2} \downarrow_{\cong} \\
U_{1} \Perp_{s} U_{2}=U
\end{gathered}
$$

identifying $S \times\{0\}$ with $S \subseteq M_{1} \Perp_{S} M_{2}$.

Def Give $M_{1} ⿻_{s} M_{2}$ the smooth structure given by all charts compatible with
(a) charts on $M_{i} \backslash \partial M_{i}$ coming from the smooth structure on M_{i} and
(b) charts on U induced by the smooth sturcture on $S \times \mathbb{R}$ via ψ.

Note that the charts of type $(a),(b)$ ave compatible by virtue of F_{i} being C^{∞}, and thus the canonical continuous maps $M_{i} \longrightarrow M_{1} \Perp_{s} M_{2}$ embed the M_{i} as submanifolds.

Remark If we choose our collars differently we may end up with different smooth structures on $M_{1} \Perp_{s} M_{2}$. Consider

$$
\sum_{S=S^{1}}^{M_{1}=S^{\prime} \times(0, \infty)} \quad M_{2}=S^{\prime} \times[0, \infty)
$$

Let $F_{1}=$ id: $S^{\prime} \times[0, \infty) \longrightarrow M_{1}$ and let $F_{2}^{(j)}$ be obtained from either of the vector fields in the earlier example, ie. $F_{2}^{(1)}(0, t)=(0, t), F_{2}^{(2)}(0, t)=\left(0, t^{2}\right)$. Then $U=S^{\prime} \times \mathbb{R}=M_{1} \Perp_{S} M_{2}$ and the homeomonphism $\psi^{(j)}$ is

$$
\begin{array}{ll}
\psi^{(1)}: S^{\prime} \times \mathbb{R} \longrightarrow U & \psi(0, x)=(\theta, x) \\
\psi^{(2)}: S^{\prime} \times \mathbb{R} \longrightarrow U & \psi(0, x)= \begin{cases}(0, x) & x \leq 0 \\
\left(0, x^{2}\right) & x>0\end{cases}
\end{array}
$$

Clearly the smooth structure on $M_{1} \Perp_{3} M_{2}=J^{\prime} \times \mathbb{R}$ induced by $\psi^{(1)}$ is the usual smooth structure, whereas $\psi^{(2)}$ induces a different (but clearly equivalent) smooth sturetuve. Wite $\left(M_{1} \Perp_{s} M_{2}\right)^{\psi(j)}$ for the two manifolds. The homeomouphism

$$
M_{1} \Perp_{s} M_{2} \xrightarrow{i d \Perp \sqrt{x}} M_{1} \Perp_{s} M_{2}
$$

clearly gives a diffeomonphism $\left(M_{1} H_{s} M_{2}\right)^{\psi(2)} \longrightarrow\left(M_{1} H_{s} M_{2}\right)^{\psi(1)}$.

Next we prove that this is a general phenomenon: as a manifold $M_{1} \Perp_{s} M_{2}$ depends on the choice of collars, but only up to diffeomonphism. This is not as trivial as Kock's book makes itseem, and while Hirsch pwesesit as Theorem 2.1 of 58.2 of his book, this relies on an earlier theorem (1.9) which implicitly wis a result on isotopy of collar.

Def Let V, M be manifolds. An isotopy form V to M is a smooth map $F: V \times I \rightarrow M$ such that foreach $t \in I$ the map $F_{t}: V \rightarrow M, x \mapsto F(x, t)$ is an embedding. We say the embeddings F_{0} and F_{1} are isotopic. When $V=M$ and each F_{t} is a diffeomonohism we call F a diffeotopy (or ambient isotopy).

Theorem (A) Let M be a manifold with boundary and $f, g: \partial M \times[0, \infty) \longrightarrow M$ collars. Then fig are isotopic by an isotopy which fixes the boundary.

Proof Follows form Theorem 5.3 of Chapter 4 of Hirsch.

This holds just as well for any component of the boundary.

Theorem (B) Let $U \subseteq M$ be open and $A \subseteq U$ compact. Let $G: U \times I \longrightarrow M$ be an isotopy with G_{0} the inclusion, s.t. $\{(G(x, t), t) \in M \times I \mid(x, t) \in U \times I\}$ is open in $M \times I$. Then there is a cliffeotopy of M having compact support, which agrees with G on a neighborkoud of $A \times I$.

Proof sketch (see Theorem 1.4 of Chapter 8 of Hirsch.). Define $\hat{G}: U_{\times} I \longrightarrow M \times I$ $\hat{G}(x, t)=(G(x, t), t)$.

For each $x \in U,\left.\hat{a}\right|_{x \times I}$ is a came in $M \times I$ and the tangents de fine a vector field X on the open set $\hat{G}(U \times I) \subseteq M \times I$. Define H by $X(y, t)=(H(y, t), 1), H: \hat{G}(U \times I) \rightarrow T M$. By partition of unity extend to $Z: M \times I \longrightarrow T M$ and define a diffeotopy $F: M \times I \longrightarrow M$ by

$$
\frac{\partial F}{\partial t}(x, t)=Z(F(x, t), t)
$$

Corollary In the earlier notation, say we have collars

$$
F_{i}^{(j)}: S \times[0, \infty) \longrightarrow M_{i} \quad i, j \in\{1,2\}
$$

with associated homeomonohisms

$$
\psi(j): S \times \mathbb{R} \longrightarrow U=U, \mu_{s} V_{2}
$$

used to give the topological manifold $M_{1} \Perp_{s} M_{2}$ smooth stuctures, denoted $\left(M_{1} \Perp_{s} M_{2}\right)^{\psi(j)}$. There is a diffeomonphism $\left(M_{1} \Perp_{s} M_{2}\right)^{\psi(1)} \cong\left(M_{1} H_{s} M_{2}\right)^{\psi(2)}$ which is the identity outside a neighborhood of the join S.

Proof By Theorem A there is an isotopy of $F_{1}^{(1)}$ with $F_{1}^{(2)}$. Precomposing with $\left(F_{1}^{(1)}\right)^{-1}: U_{1} \longrightarrow S \times[0, \infty)$ this is an isotopy $G: U_{1} \times I \longrightarrow M_{1}$ of the inclusion $U_{1} \hookrightarrow M_{1}$ with the map $F_{1}{ }^{(2)} 0\left(F_{1}^{(1)}\right)^{-1}: U_{1} \rightarrow M_{1}$. By Theorem $B \quad$ (with $A=S \subseteq M_{1}$) there is a diffeomonphism $Q_{1}: M_{1} \rightarrow M_{1}$ which agnes with $F_{1}^{(2)}\left(F_{1}^{(1)}\right)^{-1}$ on a neighborhood of S. Doing the same on the other side we produce a $Q_{2}: M_{2} \rightarrow M_{2}$ and $Q_{1} \Perp_{s} Q_{2}: M_{1} \Perp_{s} M_{2} \rightarrow M_{1} \Perp_{s} M_{2}$ is a homeomonhism with the property that on some neighborhood of S it agrees with $\left(F_{1}^{(2)} \cdot\left(F_{1}^{(1)}\right)^{-1}\right) \Perp_{s}\left(F_{2}^{(2)} \cdot\left(F_{2}^{(1)}\right)^{-1}\right)$. From

$$
F_{1}^{(2)} H_{s} F_{2}^{(2)} S \times \mathbb{R}=(S \times(-\infty, 0]) \Perp_{s \times\{0\}}(S \times[0, \infty))
$$

it is clear that $Q_{1} H_{s} Q_{2}$ is the required differmonphism- $-D$
(3) 2 Cob is a category

We have just shown the composition operation is well-defined, and it remains to prove it is associative and has iclentities. Associativity is trivial, as the gluing (and associated smooth structures) are disjoint, as in the diagram

$$
\left(M_{1} \Perp_{s_{2}} M_{2}\right) \Perp_{s_{3}} M_{3}
$$

Lemma Given $\left(S, w_{s}\right) \in o b(\underline{2 C o b})$ we define the cobordism (w_{s} is the orientation)

$$
\text { id }:=S \times[0,1] \text { with } S \underset{x \mapsto(x, 0)}{\rightleftarrows} S \times[0,1] \underset{(x, 1) \longleftarrow 3}{\longleftrightarrow} \text {. }
$$

Here ids is given theovientation $\widetilde{\omega}(v, t)=-w_{s}(v)$ for $v \in T_{s} S, s \in S$.
Then for any mouphism $M: S^{\prime} \longrightarrow S$ or $N: S \longrightarrow S^{\prime \prime}$ in 2 Cob we have ids $\circ M=M$ and $N \circ i d s=N$ (obviously as mouphioms, ie up to differ).

Example $S=S^{1}$
ϑ

Note that the two boundaries receive opposite orientations from ids.
$\delta \times\{0\} \quad i d_{s} \quad s \times\{1\}$

$$
\widetilde{w}\left(v_{\text {out }}, v\right)=\widetilde{w}(-, v)=+\widetilde{w}(v,+)=-w_{s}(v)
$$

\Rightarrow inclucedorientationon $S \times\{0\}$ is $-w_{s}$.

Proof of Lemma We have

$$
i d_{S} \circ M:=(S \times[0,1]) \frac{\|}{S} M
$$

We have to show there is a diffeomowhism I making the following diagram commute

Let $f: S \times[0, \infty) \longrightarrow M$ be the collar chosen to define the gluing, and unite C for the submanifold $f(S \times[0,1])$ of M, and $M^{\prime}=M \backslash C$. There are diffeomouphisms

$$
\partial M^{\prime} \cong S \quad C \cong S \times[0,1] \quad M \cong C \not \|_{s} M^{\prime}
$$

and hence using the obvious diffeomonhism $[-1,0] \Perp_{0}[0,1] \cong[-1,1] \cong[0,1]$ and the pro of of a ssociativity already given,

$$
\begin{aligned}
(S \times[0,1]) \Perp_{s} M & \cong(S \times[0,1]) \Perp_{s}\left(C \Perp_{s} M^{\prime}\right) \\
& \cong\left((S \times[0,1]) \Perp_{s} C\right) \Perp_{s} M^{\prime} \\
& \cong S \times\left([0,1] \Perp_{0}[-1,0]\right) \Perp_{s} M^{\prime} \\
& \cong(S \times[0,1]) \Perp_{s} M^{\prime} \\
& \cong M .
\end{aligned}
$$

and this clearly makes (10.1) commute.

We conclude that 2 Cob is a category.

