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Polynomial function and logic 0

In this note we tentatively establish a connection between strict polynomial functon

F : modk - modk
,

for ka char . 0 alg . closed field
,

and linear logic .
let

reptck

denote the category of finitely generated polynomial function of  degreed ,
and ! modk

the
" universal enrichment

"

of modk over the category of k - co

algebras
( see below )

We show that there is a fully faithful functor

reptile
- [ !

modmmodbfk

1 1.1 )

where for k - linear categories 8,8
'

we unite [ 98
' ]k for the category of k - linear function .

The connection to lineav1ogI is as follows .
Consider the 2- category Uk of k - linear categories ,

k -

linear
function

,
and natural transformations .

this  is ( almost ) closed monoidal using
titk

and QK ( but modulo set - theoreticissues )
.

For
any

K - linear category 8 we denote by 1.8

the universal k - linear category enriched over Coalgk which maps to 8 in UR
,

via a functor

1.8 ¥ 8
.

( 1. 2)

the structured tuple ( Uk
,

QK
,

GTK
,

! ) should give a semantics of intuitionist 'c

first-order linear logic ( tee [ 4 ] for references )
, although the theory of 2- categorical

semantics is still undeveloped .

Move precisely ,

I would expect the category B ( Uk )

( with the same objects as Uk and arrows 2- isomorphism classes of tmorphisms ) to

carry a semantics of linear logic as defined in [ 5 ]
.

The point being that linear logic

expresses
all formal constructions of functions possible using QK

,
t.tk and !

.

( x anatomic formula)

ForexampI any
term ( i.  e.  algorithm ) I in linear logic of type

! ( !x - !  x ) ol
'

. xo !x )

gives use
,

after interpreting [1×1] :  = modk
,

to a K - linear function ( - is the logician 's Hom )

ftp. .

! [ ! modh
,

!modk]k

-7 [ ! modn
,

!modh]k

( 1. 3)
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If FE

reptdk

then under ( 1. 1) there is an associated k - linear

!modh→

modk which

by the universal
property lifts to

ak
- linear functor

!m0dn→tmodk

we denote by F. Then
,

since obl ! b) = oblb )
,

F is also an objectof ! [ ! modh
.

,

tmudk

]k and thus a valid

input to the functor 11.3 )
,

the output might be
,

for example
"

F2
"

meaning
FOE

.

Upshot Polynomial function give a natural class of inputs to the 2- categorical semantics

of linear logic in k - linear categories .

This semantics gives an elaboration of

many ways
to construct new function out of these basic examples ,

for  example

by iterating F ( i . e. iterating F)
. Maybe some of these constructions are interesting ?

y

Following [ 1,2 ] we denote by !V # V the universal morph ism in

Modhtoa
vector

space
V (possibly infinite - dimensional ) out of a co commutative co associative wunitul

walgebra ( henceforth just Walter )
.

We denote the wunitandco multiplication by

( wedwp subscripts on d
,

c
,

D where it will not cause confusion )

a. : N → K
,

D
, ,

: !V - ! VQ ! V
. ( a = -0k )

Letb beak - linear category ,
by Sweedler and [ 42 ] we have ( for Hails ) finite . dimensional )

!f( a ,b)= TO sym( 8 lap ) ) Symf = Sym ( 1. 5. 1)
f

.

f :  a→b

Our notation is
,

for 9 's . . . ,9kE8( a
, b) to unite

|gy . . . ,gk)f = g|a#gk

esymf
( Ela , b) ) E ! 8 ( al b)

. ( 1. s
. 2)

Remain Everything we say
works for Ua

,
b) infinite - dimensional

,
with some care

.

Probably also outside char .

0 and algebraically closed
.

But general bone rings

Kane much less clear
.
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Notation modk - f. d. vector
spaces 112

Modk - all vector spaces 1k

Coalgk
- all www.mulativewassociativewunitalwalgebras/k .

f ,

- In - K - linear function

�1� Categories enriched over walgebras

Our reference for categories enriched over a monoidal category is [ 3 ]
.

Given a category b enriched over Modh Have is a natural way to produce a category 18

enriched over the category Coalgk of ( counted
,

wwmmututie ) co algebras,
see for example [ 77

.

D# Let 8 beak - linear category .

We define a new k . linear category 1.8 by

objl ! 8) =objl8 )
,

( '

. 8) ( a
, b) = 1.8 ( qb )

.

The composition
M¥6

'

: 1.8lb
,
c) a !8( ais ) -

'
. Elaic ) is the unique

maphismofwalgebtas making the diagram below commute

dad

! Elb
, c) a !E( a ,b ) - Elb , c) a Ela , b)

my
" ! f- a , )

¥e( a
,
c) - oo ( a ,c )

d

I

Note 1.8 is enriched over Modkbutnt additive
,

as e. g.
End !e( D= !O± K

.

Remade Using [ it it is easy
to see that

, given f : a → b
, g

:b → c in 8 and

corresponding 10 > fell . b) laib )
,

107g E ( ! 8) ( b
,

L ) that
 

to }o|¢7f = 10 >
gf .
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Lemma_1.8isaktinearcategoyPwofAssociahiityfo11owsfwmwmmulatnityofCgtCgd1aeilb.d1ael.laib1-CiCgoDol8tlb.4oeYqbDJrelqd1al8lbidG81qhDT@kid1a8lbicHoeYaidf8tlgdIoCYlbichqbDffunakgommD.ca
.n¥e

can

)
Ylbsd ) @ btlqb)

~

it.t%\✓
v

✓

✓

ftlb ,d ) a Y :( a. b) → 81k$04 ' "

Ecgdjoelqdaq
!( q d) of !( a ,c )

t t

v

elapd
)

µ
\

, q !( and ) <

Givenaeoblclwedefine IF Etelaia ) to betta : - 1012.ae is the Dirac

distributional 1aeia→ainE . Torethisadsasan identity ,
consider

m

:b

!b( b. b) Q !8( a. b) - !8( aib )

11%01/7
)

,

dad on f. d

k@!8(aib ) - El bi b) Qclqb ) - Elaib )

1bQd
- o

-
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To show mtbo (1017%01)=1 tea , b) observe the LHS is a co algebra morph Dm
,

so

it suffices to check commutating after applying d. But then it is dear
. similarly

1.81 aib ) a !8( a. a)
÷ !e( a ,b )

16-14>1
 at \

,

dad f
,

d

! Elaina K - El a ,b) a Clan ) =
Elaib )

data

commutes
. D

Remade Note that !b is not just k - linear
,

but actually enriched over the category

of walgebrasmk ( Horns are co algebras ,
composition maps are moophisms of

co algebras)

,
which is symmetric monoidal (actually cartesian ) under QK .

Here enrichment of * over coalgk means in particular units are given by

walgebmmouphisms K → It ( × ,x )
,

so 1x satisfies Sttx )=1xQ1x
.

Lemma_ there is a ktineavfunctor F : :b → 8 defined by FK ) ⇒ ( for objects x
,

and

Fa
,b

: !8( a
, b) - Elaib ) is Fa

,
b

:  = d
,

the universal map .

Root This is clear from ( 2. 1) D

Remark One should i
-

ew.tl as the category of finitely supported distributions on

the morphisms of 8 ( 2
,

§Ar2]
,

i.  e. over each f : a → b sits the Dirac

distribution 107£ El ! 8) (aib ) and its derivatives 12 ,
. . dig

Remade Using the description of d from A ] we have Fa ,b( 110> f) =f and

Fa ,b ( k > f) =D
,

while Fa
,

b ( Ky . . ,dr7f ) = 0 for rzz
.
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Remand Using [ 1) Thm 2.22 ] and [ 2) $2 'D we can describe the composition

mtaob
,

: 1.8lb
, c) a 1.8C a. b) - ! Ela

, c)

explicitly .

Let dry ... ,drE8 ( be ) and B , a ,
.

. ,psEE( Gb ) be given ,

with v. s 70 . Then we first consider the map of ( 2.1 )
,

in the 7
 direction

,
i.e.

k : ! ( 8lb , c) a Elaib ) )± !C( b) c) • 1.8 ( a. b) - Ela , c)

given by the formula

lay . .

,
dr

, A ,
.

. ,p . )
up ,

1- d( Hi ,
. . .ir >a) od ( lpy .  . PDP )

= Sr=ofs=o&P

+ Sr=ifs=o Lip 14.1 )

+ Jr
- o

fs  =
1 d Pi

+ Sr - 14=1 dip 1
.

Writing do =D
, po =p we can write this as freifseldrps .

The lifting is

therefore the mouphismofwalgebras [ 1,1hm 2.221

! ( blb , c) aelaib ) ) - !E( a ,c ) ( 4. 2)

It ,

,
... ,dr , p ,

,
. .

, p , >
, a ,p ,

- [ | KIC ' }ap , ,
.  - - ikl G)

cap ) )ap
Capavktion

off ,
. .

,
As }

where C a- { I
,

...

,
r

,
RH

,
...

,
rts } stands for the product of the appropriate matching

element of Li
,

...

,
dr

, By .  .
. Arts in Sym ( Elk c) 08196 ) )

.

Fwm ( 4. 1) we deduce

that the partition C is made up of subset of size 1 or 2
.
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The description becomes easier when d=B=O since then the only nonzero summands

in 14.2) come from its =L in 14.11
, and hence partitions C in which

every element

has size two
,

with one element from d
,

. .

,
dr and one element from p ,

. . yps .

In

particular
:

Lemond We have

lit mtaep
,

.
( k ,

... ,&r%o lpi ,
... ,pDo ) = 0 unless r=s > I

Iii ) For r > I
,

we have

mtaeb
,c ( lay . .

.hr?oQlpy...ipr)o)=&gIdipaas,.../drpacn)o .

( s
.

' )

Observe that there is a commutative diagram

1.8lb , c) a !E( qb )
¥

! @ ( a
, c)

Ul Ul

Symo ( b
,
c) Q Symo ( acb) Symo ( a

,
c)

Ul Ul
Q

Symotb,
a) a Symorlaib) - symro ( 9,4

where

Q ( d
, @ . .  . adr

, p , @ . . . of ) = { ( dpn , , ) @ . .
. a ( dr pair ) ) ( 5. 2)

zesr

Def Let

Zd
E !b denote the category with the same objects as 8

, and morphisms ( d >11 )

Zella
, b) =

Symodlelaib
) )={ Hi ,

. .

,x¢%
laiee (a ,b ) ) e 1 1. e) laid

.
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d

The composition in Ze is
given by the composition in !E and thus by ( El ) .

the  identity at a eob ( 2dg )

is at 11A
,  

. . .

,
1 a)

o ,
as is clear from ( 5. 1)

.

So
28

is a category but not a subcategory of !8
.

Lemma_ Let K
,

C be k - linear categories with A enriched over Coalgk
,

and

a : A  → G a k . linear function Then there exists a functor E making

1.8

%'

"

fd ( 6.1 )

*

'

- e
a

commute ( on the nose )
.

Moreover £ is a function of Coalgh . enriched categories
,

in the sense that on Horn -

spaces it is compatible with the w algebra structure
.

Proof Define E
on objects by

£ ( x ) = Gk )
.

For xiye # consider

^
1.8 ( ax

, ay )

Gxiy
.

.
 7

,

.

-

- t
,

d

A ( x , y ) - 8 ( ax
, ay )

.

Gxiy

We define day as the unique Morphis m of co algebras making this diagram
commute

. We need to check that E is a k - linear function It is clear ( 4. 1) commutes
.

Regarding identities
, for x=y ,

we have

d ( Ex
, × ( 1× ) ) = Gx

, xttx ) = 1
ax

Moreover since 1xE * ( ' '
l

' ' ) is
gwup

- like
,

so is
Cixx ( Ix )

,
whence it is 1$71

 ↳  . as claimed . D
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�2� Strict polynomial functions

a

A strict polynomial fanctormodk → modk is a functor whose action on mophism spaces

is computed by polynomial maps ,
i.  e. morph isms of  affine k - schemes

Homk ( kW ) -

Homa
1 GYGW ) .

The reference is [ 101
,

see also [6/9]
. Before giving the precise definition

,

recall that for

k - vector
spaces

V
,

W the associated schemes are Spec ( Sym ( V* ) )
, Spec ( Sym ( WTY )

,
so

Homsayk ( V
,

W ) :  = Homann ( Spec ( symlvty )
, Spedsymlwty ) )

=

Homalglk ( Sym ( W* )
, Symlvt ) )

± Homk ( W*
, Sym ( Vt ) )

± W a sym N
*
)

.

g

We
say a function V → W is polynomial ( Msp .pe#alwd ) if there is

a tensor Eiwioqi with
qi E Jym ( V* ) ( rap .

all 9iESymd(V* ) ) such that for

all µeW* we have as functions V → k an equality

no g
= Eirelwi ) .

qi
.

D# Afunctor a : modk → modk is strict polynomial if ( note a is  not assumed linear ! )

( I ) V.V
,

We mock the function Guw : Homklviw ) → Homklav ,
GW )

is polynomial in the sense just defined
,

and

( ii ) there is a constant N such that Gym
: Endklv ) → Endk 1 GV ) has

degrees N for all Vemodk
,

( i.  e. these Gun have a representation

using qi of total deg s N )
.



poly@80WesayaishomogeneousofdegreedifGv.wis so
,

for all YW .

Def Let P - Plmodk
,

modk ) denote the category of strict polynomial function and

natural transformations
,

and Pdthefullsubcakgouyoffuncton homogeneous

of  degreed .

Lemma_ P±Qd>oPd
,

i. e.  eveuyfunctor decomposes uniquely as a direct sum

of finitely many homogeneous funoton .

Remavk_ Given GEP for Ywemodkwehauea tensor

Gv ,wE Homklav ,aW)GSym( Homklyw )* )
.

Letusseehowto express
that Gisafunctor purely in terms of these tensors .

• Given Unhwwmmutativilyof ( scheme
maps )

Gv ,w× Gun

Homkhhw ) XHOMKWN ) > Homklav ,aW)×Homk( au ,aV )

at
,

to
Homklu ,W ) Homklau ,aw )

Guin

means commutating of algebra maps

* *
Gu ,wQ Gun

Sym( Homklviw ) ) @ SYMIHOMKIUN)) - Sym ( Homklakaw )* ) a symlttomklw ,av)* )
^

a

C
,

|
| Cz

* Gu ,W

8ymk( Homkwsw ) ) < symlttomklav , awjt )
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where c
, is induced by the dual of the composition map

HomklU.wY-fHomk1yw1@HomklU.V
) ]*± Homklkw To Homklu ,H*

and similarly ↳
.

• To
say

G ( 1x ) =1av is to
say

that
the k - point 1y :

Sym ( Homklv ,VJ*) -7k sends

Gave Homk ( all
,

all )oSym(HomkHVJ* )
,

to 1av
. That is

, noting that hesymtt ) may he evaluated at te T
,

if Gy ,v=Eiwi09i we

require that Eiwi .

qi ( 1v ) = Iav
.

If

GEPD
,

then for V
,

WE modk we have a polynomial map of degreed

Guw : Homklkw ) - Homk ( all
,

aw )

and hence tensor in

d

Homk ( all
,

AW ) a Sym ( Homklyw )
*

)
± Td ( Homkkhw ) )

*

a Homk ( GV
,

GW ) ( 9. 2)

± Homk ( Tdttomklv
,

w )
,

Homkkyaw ) )
,

where the dividers are given by
TdV= ( V

•  

d)
"

.

In characteristic zew the map

a ,a
.

. . oad IT dtaia .
.

.

@ ad ( 9.3 )
Tdy

-

- Sym 'll

&
,

96 ' &  

Qaae,
← , go

.

.  . oad

is an isomorphism .

In general Symdl " )*±Td(V* )

.
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The discussion above shows that these associated linear maps

GT, ,w
: Tdttomklyw ) -7 Homklakaw ) 110.1 )

send
,

in the case V=W
,

1¥d to tav
,

and that they are functional with respect to

the following composition :

Def Wedefineak - linear category Tdmodk

Ob ( Tclmodk ) = oblmodk )

( Tdmodn ) ( v. w ) = Tdttomkhhw )
.

Composition is defined to be the map m induced in

[ Homklv ,WPd ]
"

a [ Homklu
,
'D

#
]

"

e Homklv ,wPdoHomk(YVPD

! yz ( any choice of pairing )

m I [ Homkkhw ) a Homk 1 UN ) ]
#

1
, f

,

compo
'd

[ Homklywttd ]
"

-> Homklu ,w)•d

the identities are
Itydmdh =1Fd

.

the upshot of the above is

Lamina There are equivalences

( ; ) Pd ± [ Tdmodk
,

modk ]k

( ii ) P ± Qd >,o[ Tdmodk
,

modk ]k
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Def ( notation of [G) We write Th for Tdmodk and reptck for [ Tdmodk
,

modk]k

Note similarly we can define strict polynomial function E → 8
,

E
,

8 enriched over modk
.

�3� The connection

We have discussed the
"

free
"

enrichment 1.8 of a k - linear category
6 over

co algebras ,
and the category Pa

± reptile of strict polynomial function of degreed .

Since the spaces Symd ( Clap ) ) ± Td Elaib ) appear in 1.8 the existence of a

connection between [ ! modk
,

modk ]k and Pa is obvious ; we now spell it out .

Recall the category 28 of
p

@
, consisting of morph isms in 1.8 composed

according to the composition rule of !8
,

but without the identity of !E
.

Lemma_ With 8= modk there is an equivalence 28 ± The
.

Root We have ob ( Zto ) = oblmodk ) and for vector spaces
V

,
W we have

28 ( V
,

W ) = Symd ( Homkkhw ) ) al . I )

= Td ( Homklv
,

W ) ) .

From ( s
. 1) we see that the maps

sym
'

Homkkhw ) - TDHOMKN
,

w )

&
,

a .  - . Odd 1-7 [ zesddsa ) Q . . . 026 ( d ) 111 . 2)

give an equivalence 2k¥ Tf . D
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.

Roof Let Fereptdk be
given .

We define I ( F ) on objects by I ( F) I D= FN )
.

On mophisms we define
,

for V
,

WE modk
,

F- ( F ) , , ,w
: ( ! modk ) ( VM ) -

g
# wsymf

( Homkllhw ) ) → Homk ( FV
,

FW )

to restrict to zero on Symf ( Homkkhw ) )
,

unless f= 0 a V=W
,

f- = 1v
.

These

cases only overlap when VEO
,

in which case we have a third prescription :

Corsetti EC F) ywlsymo vanishes on Symio unless i=d
.

In this case it

is  defined using ( II. 2) to be

Iolfhawlsymod
=

Symdttomkhhw ) ±-

Tdttonfklyw
)

E
, W

HOMKIFV ,
FW )

Caseltwfx I V ¥0 ) I (F) v.v |sym± vanishes on Symi unless i= 0
,

and in

this case it is defined by

E (F) v.v hym ;
 : K . 1$71

, ,

- HOMKIFV ,
FV )

sending 10171
, ,

to Ifv
.

It is dear from the previous page
that El F) is a K - linear function

Case V=W=O
,

F=1v=Qi I (F) v. vlsymiois non vanishing for i=O where it

is given by the above
,

and since Symilo ]±O for I > 0 that is all there is to
say .
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It is dear from p @ that
,

thus defined
,

# (F) is a k - linear fomctor. Any natural

transformation 4 : F → E gives
EH ) : El Fi ) → El E) defined by

EH )v = Tv
,

which is clearly natural .

Thus E is a well-defined functor ( k - linear )
,

and it  is easily checked to be full . D

This completes the connection between strict polynomial functions Pa ⇒ EPTL and

the construction 8 1→ ! E on k - linear categories .

One could dress this
up

in the following way
: let )3 be a bi category of Modk - enriched categories ,

A a

bi category of Coalgk - enriched categories .

The existence of an adjunction

F

Coalgk = Modk F  + Fp ( so ! = EE )
Fp

where F is the forgetful functor , gives
rise to an adjunction

a

s =p
Gp

where G is also forgetful ,
and Gp (E) = the

.

In the Kleisli bicategory Ki
.

for the

wmonad ! = Go ap on § ( called Uk in the introduction ) we have

Home
,
( b

,
8

'

) = Homp ( ! 8,8
'

) = [ t.ee
,

e
'

]k
.

Upshot The bi category of K - linear categories and strict polynomial functos

is a sub - bi category of the Kleis Ii bicategouy of the wmonad ! on

the bicategory Uk of k - linear categories and k . linear fun ( ton
.

Since linear logic is precisely the language expressing all formal constructions possible

with Qk
,

f-
, -1k and !

using the various units and co units of adjunction and the

function themselves
,

this suggests a natural connection to polynomial fandom .
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I have not checked the above in
any detail

,
but the only nontrivial point seems to be

that composition in the Kleislibkategoy matches composition of polynomial function .

To see this
,

let X. Y : modk → modk be strict polynomial of degrees d
,

e. Then it is

easy to he YOX is strict polynomial of degree de ( using the deft of p .

�7� )
.

Let

I : Tdmodh → modrg F : Temodk -7 modk ( 14.1 )

be the associated linear function ,

and # ( I )
,

ELF ) E [ tmodk
,

modk ]k as defined

on P @ ' These are both arrows modk → modk in the kleisli category,

and their

composite is

! to ( k ) # F)

! mock -
! ! mock - ! modk - modk

.

F- ( I )
lift

By the Universal property we can also compute this by first lifting F- (F) to !modk→ ! modk

( afunctor compatible with the Co algebra structures ) and then composing ,
i. e .

Elk )

! modk - modk modk

\
, |

'

( 14.2 )

¥47
'

-
→

! modk
E€

lift

On objects this is V - Y ( XM )
,

and we may compute it on mophisms using
[ 1

, Pwp 2.21 ]
,

which
says

that for V
,

Wemodk and dy .  . . ,Xs , f E Homkhhw )

¥ ( X )
, ,

ftp.w
: ( ! modh ) ( YW ) - ( ! modk ) ( XV

,
XW )

11
1 ' ( 14.3 )

g.
ftp.symlttomklvm

) Q sym ( Homklyw ) )

gixvtxw
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is given by ( it
.

i )

F- ( X )
, ,.µ,y ,

w ( | dy . .
.

,
is )f ) = { / ECXTV,w|&c , )f

,
.

.
.

,
ETN . , ,v|&cg)f)g

partitions

C of { 1.
. ,s}

where
g

= It ( I ) x ,w 14¥
,

and Xci stands for the sub tensor of a
,

Q .  - - a as

picked out by the element Ci of the partition ( = { Cy . .

, Cq }
.

Now the way
# ( K ) is

defined this is zero unless f= 0 or V=W and f=1x
.

CaseV=W,f== ( 15.1 ) is zew unless -50
,

where it gives El 5) lift
,

v.v
I $71

, ,

is equal to 10km ,
which is just part of Io ( Ihitt being a function

Caselltw # the night hand of ( 15.1 ) is zero unless 1 Cil =D for all i
,

which

means s = ad for some a > 1

.
Moreover g=O ,

and if I Cikd then

Iohtluw Had = XI ,w
( Eg

,

Kdci ) )

where Xyw : Td Homklkw ) → Homk ( XYXW )
,

and 8 acts on Homklyw Pd in the

obvious
way .

In particular the RHS of 115.1 ) belongs to Symaotlomk( XYXW )
.

Referring to 114.2 ) we conclude that for Vtw
,

de

• [ I ( I ) ° ECI ) lift ]v
,

w
is nonzero only on
Symo Homk ( YW )

•
on d

,
.

.

,
d de EHOMKN ,

w ) it takes the value
given overleaf
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,
.

. ,dde% ) = [ EC F)
* ,

,×w| Xv,w(§6Ka) )
,

...

partitions

Cot 4.  He }
. . .

,
XT

, ,wl§6Kce ) Do
with each

kit = d

( 16.1 )

=pftp.E#'xw(E*wB6KaaiD0i0Xx.wl.EaKcae,
) ) )

We compare this to them orphism of schemes

Xx ,w
Yxv

,
xw

Homkllhw ) - Honk ( XY
,

XW ) - Homklyxv ,
YXW )

computed by contracting

XT
, ,w

E Homk ( XYXW ) a Symd ( Homkhhw )* ) Fxyxw E Homk ( YXYYXW ) a Syme(Homn(×YXw)* )
= Td Homkhhw #Homklxyxw )

along the shared degrees of freedom ,
i.e. evaluation of the polynomial in functional spat

of F on the pointsin Homk ( XYXW ) of X
. Modulo some combinations this seems

likely to
agree

with 116.1 ) ( TODO )

this justifies the
"

Upshot
' '

claim on p . @
,

i.e.

Lemma_ Given strict polynomial function X
,

Y : modk → modk with associated

ktinearfuncton I ( I )
,

El F) '

 
- tmodktmodk we have Io( YT ) equal to

! to ( k ) # F)

! mock -
! ! modk - ! modk - modk

.

which is also equal to El F) o Tel #
lift .
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�4� Linear logic with polynomial function

To summarise the discussion thus far : a strict polynomial functor of degreed

X : modk -7 modk ( 17.1 )

is the same data as aktinearfunctor ( see ( 10.1 ) )

I : Tdmodk - modk 117.2 )

and these in turn
may

be identified with a special class of k - linear function

F- ( X ) : 1. modk -7 modk

,
( 17.3 )

by the Lemma on p
. @ .

Moreover the composition YOX
,

for Y : Moak -7 modk

polynomial of degree e
, may be realised as composition of F- ( I )

,
El F) using

the structure of the comonad ! on k - linear categories ( P .
 @ -160 )

.

We now explain how linear logic provides algorithms for constructing new

function out of input data like El 5)
.

There are a few final ingredients that

need to be introduced first
,

however :

• Comulti plication on !8 : let C be k - linear
,

and define ah - linear tunctor

D: 1.8 - 1.801.8

to be the diagonal on objects
,

D (a) = (a) a) and onmorphismstobethew multiplication

in the wfeew algebra !8( a
,

b )
,

i.  e
.



poly@18ODaib-Dtqa.b)
: !8( aib ) - ( 1.8 @ ! E) ( ( a ,a )

,
( b

,
b) )

"

!L( ai b) a 1.81 a
, b)

.

To see this isafunctor we need to check wmmututiuity of

- 0 -

1.8lb
, c) a 1.81 a ,b ) - ! Ela ,

c )

Db
,  c G- Dais | Sa

, (|
,

i. q( a,j' • 1.819 ,
' )( !E( b. c) 01.8lb , d) a ( tfla , b) a !8( qb ))

112

1.8lb , c) oliela , b) a !E( b. c) a !8la , b) Toh
. ° - )

which holds because by construction the composition
- ° - = mtaeb

, a isomorphism of

co algebras . Compatibility with identities holds since 1$71
 aisgwup

- like
. Clearly this

D: 1.8+1.80 '
. 8 iswassociative in a suitable sense

,
and wwmmutative

.

• Couniton !b define afunctor c : 1.8 → K ( k being the one - object category with

Ended = k ) by sending every object to • and cqb
: !8( a

, b) → k the wunit .

Then the diagrams

IG c C @ I

1.8 ⇐ 1.8012<-1.80 !8 - Ka !e±!8

to

1.8

commute
,

so
1 !8

,
D

,
c) is a

"

walgebra object
"

in k - linear categories .



poly@l9OWiththeseingvedientsinp1aqwecandescribethec1assofwnstmctionsdescribedbythelanguageoflineavwgic.Wewilldothisbyjuxtaposmgcategorica1wnstmctionswiththedeductionm1esoflineavlogicCseeC41formonedetaiD.ThwughoutA.B

,C ,
... stand for formulas of linear logic, buitttomatomicfovmulas

xiy ,z ,
... using connectives Q

,
→ and ! ( e.g.

! ( xoxtocxox ) ) where

a ,
o are binary and ! isunany .

• A
,

13,7 stundforsmallk - linear categories ( therearesomeset - theoretic issues

sinuwewanttouriteeg . [ [ it
,
)37n

,
8) kbutweignorethisfovnow )

,
and

I ,p,K,O ,
... for ktinearfancton

Categorical construction Deduction Rule

- ax

Axiom Rule It :S - it At A

? ?
Given I

:S
- Al

, p :P -43
'

Ata
'

BTB
'

Right Q - rule
fovmthetensovpwdnct

- → R

AIBTA
' ,Bl

stop :Ao)3 → A' 03
'

÷
,

A. Btc

Left @ . rule Does nothing : tulsustomlevpret ,
-

- • L

ontheltlsoftasao
AOBTC

JT

Given I :utoD→C produces
:

Rightomle AIBI
, r

theadjointfunctor A- + B- C

A ->[ Belk
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IT ?
Given I :A→D

, p :b→8 : :

Pwduusthefunctor ATB CTD

Leftomle - ol

to [ D ,8]k - D
A ,B - CTD

( a. F) l→p( Fta ) )

÷
,

Rightlmle
Given I : !A→)3 usestheunivenal

1. A+B

( Promotion ) Pwpeub ( P . 8) topwduu .
... > in t.AT

Mm

I!t-)3
"

'

.

,

.

fd
"

1.13

÷
,

Left !mle Given I :S -

Bpvewmposesuith ATB
- -

der

( Dereliction ) theunivenald : !t→tto obtain !AtB

Iod : !t→/3 .

÷
,

contraction Given I : !tol .tt/3prewmposes !AtAtB_
or

with D: !A→!t0!tto obtain !AtB

Tlos : !t-)3 .

IT

* B
- weak

Weakening Given I :S - Pprewmpoeswith tc ,A+B

c :B → ktoobkin !8aA→kat±tIy3 .

IT
?

i. .

.

ATB Btc
Cut Given kit -43 ,p:P→8fomthe - cut

-

Atc

composition post
:A→E

.
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Examplett The following pwofttreeofdeductionmleswithall leaves Axiom Rules )

At#× Ataax
- ax

- oh

AtAA,AoAtA_
<

A,AoA,AoA= - R
( 21.1 )

AOA ,AoAtAoA
- der twice

!lAoA )
, !lAoA)tAoA

- ah

!lA - A) TAOA

enwdesthefunctor ( 21.2 )

![ it ,t]k± ![ A ,t]k6![ t.tk#ft.t7kaft,A1nIPft.tJk
,

whichiendsalineavfunctor Heat

,A]k
( nolethattteoblftntk ) - obl !ht,A]k ) to

H - ( H ,H ) - ( H ,H ) - Holt
.

( 21.3 )

andonmouphismspaosis

!NaHH,H' ) # !NaHHiH '

) @ ! NAHHIH
' ) #

NAHH ,H' IQNAHHIH
'

) ( 2 ' . 4)

fhonwnlalwmp
NAHHIH

'

)

wherethelastmapisthehonzontal

composition

⇒
.

.

A toutIts (4*01) :HoH→H' OH
'

- - H

H
'

H
'

( YH
'

)°(H¢ )
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Given a natural transformation f : H ⇒ H
'

, evaluating 121.4 ) on Iihf gives

11%-1-7 1$ )f 01107£ 1-7 f Of 1- ftf
.

( 22 .

1 )

So the semantics of ( 21.1 )
,

called the Churchnumeroil 2-
,

is to both square

endofuncton and natural transformations ( the latter via horizontal composition )
.

Example In the context of the previous example the link between the

puff ( 21.1 ) and the function ( 21.2 ) was made by choosing it as the

denotation of A
,

written IA D= At ( one should think of the logical formulas

as objects and terms lpwoh as arrows
,

so that the language forms a freely generated

category over the set of  
its atomic formulas .

Thus
, supposing A atomic

,

setting[1 A D= A induces a functor f- 'I out of this free category which assigns ( 21.2 )

to (21-1) ) . Suppose now instead that A  = ! x with x atomic
,

and choose

[1×1] = modk

,
so [I A D= A !x D= ! [1×1]=1

.

modk
.

Then ( 21.21 is now ak . linear functor

[12-1] : ! [ ! modk
,

!modk]k -7 [ ! modk
, !modk]n

.

( 22.2 )

Any polynomial functor XEPD
,

via (17.11-117.3)
, gives K - linear Io ( I ) '

-

I. modk→ modk
,

which by the Universal properly gives
FIT )

iitt
: ! modk → ! modk

.

Then we may

compute

[12-1] ( F- (F) lift ) = F- ( Hutto F- ( X ) lift ( 22.3 )
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But considering

ECE )

! modk - modk modk

\\
,

,

df €¥ Td
( 23.1 )

Ehthitt
-

'

-

→ 1. modk - - .  - .  - → ! modk

Tetxhitt

we see that ECXTIH = [ ECB ° # I Hutt ]Ht
,

which by p
. @ is equal to

the lift of ECXT) : !modk→ modk .

In conclusion then
,

[12-1] ( ECI ) iitt ) = EC E) lift (23-2)

so that once we have properly encoded polynomial function modk → modk as endofuncton

of ! modk the church numeral 2- ( resp . a) acts by squaring ( resp . raising to the nlh

power )
.

Examp1e3_Thefu1lyfaithfu1functovEdivepTfe-Hm0dk.m0dhfkofp.i@hasthepwpev1ythatHomlImElsImoI9-Otordte7o.A
natural

transformation EYI ) -71047 ) would be the same data as a natural transformation

X → Y which is zewifetd ( TODO check this ) .

Hence we have a fully faithful

P = Otdnoveptdn - [ ! modk ,modk]k 123.3 )

and moreover the above embeds Pasamonoidalagy ( under composition )

I ( Et ) 63.4 )
.

P - [ ! modk
,

!modk]k
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Now we have aialgebras ( see for example [ 11
, Proposition 3.2 ] )

Ko ( P ) ± B ( 24 .

'

)

where B is the ring of symmetric functions in infinitely many variables over 2. In

particular for each partition X we have the khur function GEB and a corresponding

SXEP st . [ Sx ]
maps to fx

,
and Sµ° Sx is computed ( at least in Ko To DO ) via

the Littlewood - Richardson coefficients .
This gives as interesting combinations for

composition in [ ! modk
,

! modk ]k which can be fed into proofs like ( 21.1 )
. Possibly

B can be used to model linear logic in this
way , entirely in terms of symmetric functions

and their combinations
.

Example 4 From [ 2
,

$3.2 ] we
may encode a sequence

SE { 0
, B

*

as a proof § of

Kinta :  = 1.1A - A) → ( ! IAOA ) - to A) )
.

124.2 )

Taking A  = !x as above and [1×1] = modk
,

and using the embedding of

123.4 )
,

the semantics of S is a functor

[15-1] : P xD - 3 124.3 )

given for example on
5=001 by

[1001-1] ( X
,

Y ) = Yo Xo X 124.4 )

If
, say ,

XIV ) = Sdv and YN ) - New ) then [1001-1] ( Sd
,

he ) is

the functov V H A ( sd ( Stv ) )
.
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On natural transformations ¢ :X ⇒ xl
,

Y

:Y⇒Y
'

we have

God D( of
,

4 ) = 4*01*4 .

( 25.1 )

In the concrete example X - 89,4=15
,

and say
X=X

,
so ¢ : Sd ⇒sd

,
Y :1e⇒M

,

we have

sd
sd

re

- - n
.

modk µ,

modk # ,

modk¥ ,

modk

got sd he

4*01*01=(4*01)*01
= I Hs d) ohecf ) ]*$

= [ ( 4574M$ ) ]5t ° s
"

51$

= Ysdsdonelosdosdsdd

and hence

fog Dl 4
,

4 )
, ,

= ( 4*01*01 )y : he ( sdcsdv ) ) → he ( sdcsdv ) )

is equal to

Ysdcsdu
,

° N(¢sdv ) ° Sds
"

Cctv ) (25-2)

This shows that

[100+1] : Natlsd
,

set ) × Nathe
,

re ) - Natlresdsd ,
resdsd )
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is itself polynomial in the inputs $ , Y
,

and moreover the polynomials we obtain

are related to the square of the polynomials computing Sd on Hom -

spaces ,

multiplied with the polynomials computing A
.

The precise polynomials we

get are detailed by the linear maps of the form ( 21.4 )
,

and we read off which

linear maps from the shape of the pwof 001
.

We now explain this
.

In this case [ 21 Example 3.10 ] shows that [100117 is the functur (writing A for

! mod k ) shown below :

! ft
,

it ]n a ! [ it
,

An ]
#

! [ Sit ] no ! [A
, of no ! lit ,

it if

f
,

do  dad

ft
,

it ]k @ ( it
, A) ha [ A

, AT k ( 26.1 )

|
,

comp @

ft , A) k

applied
to Eli ) lift 0 # (F) lift this gives

El # ) lift .

In the final step to

the function are encoded via the tensors making up XTF
,

and there are contacted

in an appropriate way with the coefficients of 0,4 to form ( 25.2 )
.

Upshot The semantics of linear logic proofs construct new polynomial function

from old ones
,

and in a functional way .

Moreover
,

the semantics also

computes the polynomial functions which compute these functional

constructions on the level of natural transformations
.
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