Singular Learning Theory 20 - In-context learning

The nature of in-context learning in Transformer models is likely to cleeply inform any future theory which links the geometry of singularities in Transformer as learning machines to the emergent phenomena such as reasoning and abstraction which make these systems interesting.

In each layer of a Transformer model $[\mathrm{PH}]$ a list of entity representations $e_{1}, \ldots, e_{l} \in V$ are processed to form new representations $e_{l}^{\prime}, \ldots, e_{l}^{\prime}$. This processing depends on the weights of the Transformer, in several ways
(i) The layer normalisation
(ii) The attention mechanism
(iii) The feed forward layer in each block.

The final prediction also clepends on embedding and unembedding weights, which we ignore here. We focus on (ii) the attention weights and how they are changed by backpropagation. The claim in [ICL1, ICL2] and other papers is that in-context learning is "similar" to this change in attention weights. These papen are not to be taken seriously, but let us investigate the question.

The cartoon Let Twi denote the Transformer model with attention weights W, as a family of functions $\left\{T_{w}{ }^{(n)}\right\}_{n \geqslant 1}$ where $T_{w}{ }^{(n)}$ takes a sequence of tokens $\underline{x}=x_{1}, \ldots, x_{n}$ as input and returns the prediction of the next token as a probability distribution. So the contribution of a sequence $x_{1}, \ldots, x_{1}, x_{1+1}$ to a gradient step is

$$
\begin{align*}
\Delta W & =-\eta \nabla_{w}\left(-\log T_{w}^{(n)}(\underline{x})\left[x_{l+1}\right]\right) \tag{1.1}\\
& \propto \nabla_{w} T_{w}^{(n)}(\underline{x})\left[x_{l+1}\right]
\end{align*}
$$

Suppose the tokens were examples of a task
$\underbrace{x_{1}, \ldots, x_{l}}_{\text {Question }} \quad \underbrace{x_{l+1}}_{\text {answer }}$

Then in -context learning refers to the possibility that on a second question y_{1}, \ldots, y_{1}

$$
\begin{equation*}
\tau_{w}^{(2 l+1)}(\underline{x}, x l+1, \underline{y}) \text { is closer to } y_{l+1} \text { than } T_{w}^{(l)}(\underline{y}) \tag{2.2}
\end{equation*}
$$

"learned from \underline{x} "
There is of course another way to "improve" Nw given $\underline{x}, x l+1$ which is to take the above gradient step. Which motivates an interesting question: is there some similarity between learning by gradient descent and in-wntext learning? More formally, is there some relationship between (for some η)

QI. $T_{W}\left(\underline{x}, x_{\ell+1},-\right)$ and $T_{W+\Delta W}(-)$?

Providing a context is a form of currying where you can generate a new model, and the question is, in part, is this new model a Transformer for some perturbed weights? And if so in what direction?

Q2. $T_{w}(\underline{x}, x \ell+1,-) \approx T_{w^{\prime}}(-)$ how does W^{\prime} relate to W ? "contexts to weights by prothesis"
Quite unusually for statistical models, the attention weights actually specify an infinite farnily of models $\left\{T_{w}{ }^{(n)}\right\}_{n}$ and providing contexts allows us to move between them, potentially internalising many operations such as training which are currently on the outside.

Remark Contra [ICLI, ICL2] there seems/ittle reason to believe in generall that $\|W-W '\|$ is small. For instance for the treacherous turn $\underline{x}=$ "In deployment".

We can probably safely say "No" to Q1, except in special cases. We focus on Q2.
Let us consider the algorithm computing $T_{w}\left(\underline{x}, x_{\ell}+1, \underline{y}\right)$

To simplify matters we are going to assume the entities e_{1}, \ldots, e_{l+1} are frozen, and consider the effect on entity i of having $\underline{x} x_{l+1}$ in the context.

In the attention step the attention weight matrix $W: V \rightarrow H \oplus H \oplus V$ generates queries, keys and value vectors (notation of $[2 S]$) (we ignore biases)

$$
(\underbrace{q_{i}, k_{i}, v_{i}}_{i n H})=W e_{i}=\left(W^{Q} e_{i}, W^{k} e_{i}, W^{v} e_{i}\right)
$$

and the update rule is (ignoring layer normalisation and feed forward)

$$
\begin{aligned}
e_{i}^{\prime} & =e_{i}+\sum_{j} \operatorname{softmax}\left(q_{i} \cdot k_{1}, \ldots, q_{i} \cdot k_{l}\right)_{j} v_{j} \\
& =e_{i}+\sum_{j} \frac{e^{q_{i} \cdot k_{j}}}{\sum_{u} e^{q_{i} \cdot k_{u}}} v_{j}
\end{aligned}
$$

If we define softmax (A) for a matrix A column-wise (again following $[P H]$)

$$
\operatorname{softmax}(A)_{i j}=\frac{e^{A_{i j}}}{\sum_{u} e^{A_{u j}}}
$$

$$
=\frac{e^{q_{i} \cdot k_{j}}}{\sum_{u} e^{q_{i} \cdot k_{u}}} e^{\left(k^{\top} Q\right)_{j i}}=e^{q_{i} \cdot k_{j}}
$$

Hence with $E^{\prime}[:, i]=e_{i}^{\prime},(1.2)$ becomes

$$
E^{\prime}=E+V \text { softmax }\left(K^{\top} Q\right)
$$

Retuming to our situation where entities e_{1}, \ldots, e_{l+1} are for zen

$$
\begin{aligned}
& \Delta e_{i}=\sum_{j} \frac{e^{q_{i} \cdot k_{j}}}{\sum_{u} e^{q_{i} \cdot k_{u}} v_{j}} \\
& =\frac{1}{\sum_{u} e^{q_{i} \cdot k_{u}}}\left\{\sum_{j \text { frozen }} e^{q_{i} \cdot k_{j}} v_{j}+\sum_{j \text { not foren }} e^{q_{i} \cdot k_{j}} v_{j}\right\}
\end{aligned}
$$

Some special cases If $q_{i} \cdot k_{j} \approx 0$ for forzen j, and $q_{i} \cdot k_{j}$ sufficiently large for other j,

$$
\begin{aligned}
\Delta e_{i} & \approx \frac{1}{\sum_{u \text { not fores }}^{q_{i} \cdot k_{u}}}\left\{\sum_{j \text { not fore }} e^{q_{i} \cdot k_{j}} v_{j}\right\} \\
& =\text { update in } T_{w}(\underline{y})
\end{aligned}
$$

Suppose that for each frozen t, there is an unfrozen index $a(t)$ such that $V_{j} \approx V_{a(j)}$ and write

$$
\Delta e_{i} \approx \frac{1}{\sum_{n} e^{q_{i} \cdot k_{u}}}\left\{\sum_{\substack{j \text { not } \\ \text { for en }}}\left(e^{q_{i} \cdot k_{j}}+\sum_{\substack{t f_{\text {oren }} \\ a(t)=j}} e^{q_{i} \cdot k_{t}}\right) v_{j}\right\}
$$

The Log-Sum-Exponential $\operatorname{LSE}\left(x_{1}, \ldots, x_{n}\right)=\log \left(\sum_{i} e^{x_{i}}\right)$ is an approximation to $\max \left\{x_{i}\right\}_{i}$ for x-values large relative to $\log n$, A common approx is $\left(x^{*}=\max \left\{x_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \operatorname{LSE}\left(x_{1}, \ldots, x_{n}\right) \approx x^{*}+\log \left(\exp \left(x_{1}-x^{*}\right)+\cdots+\exp \left(x_{n}-x^{*}\right)\right) \\
& x^{*} \leqslant \operatorname{LSE} \leqslant x^{*}+\log (n)
\end{aligned}
$$

$$
\begin{aligned}
& e^{q_{i} \cdot k_{j}}+ \sum_{\substack{t f_{\text {wren }}}} e^{q_{i} \cdot k_{t}}=e^{z} \\
& a(t)=j \\
& z=\operatorname{LSE}\left(\left\{q_{i} \cdot k_{j}\right\} \cup\left\{q_{i} \cdot k_{t} \mid \text { frozen } a(t)=j\right\}\right) \\
& \approx q_{i} \cdot k_{j} \quad \text { where this is maximised, }
\end{aligned}
$$

Suppose there is a clear winner, for each unfrozen index j, then

$$
\Delta e_{i} \approx \frac{1}{\sum_{n} e^{q_{i} \cdot k_{u}}}\left\{\sum_{\substack{j \text { not } \\ \text { frozen }}} e^{q_{i} \cdot k_{j *}^{*}} v_{j}\right\}
$$

which is attention but with modified key weights W^{K} for entity j.
Perhaps sometimes the winner is a frozen entity, and in this way

$$
\tau_{w}(\underline{x}, x l+1, \underline{y}) \approx \tau_{w}(\underline{y})
$$

where W^{\prime} includes the modified weights.
Remark - Treat properly using SVD and RG ideas.

In-context learning and SLT
A learning machine in $\operatorname{SL} T$ is a tuple (W, p, q, φ) consisting of a parameterspace W, a model p, truth q and prior I. Let us formulate such a learning machine for a large language model like GPT. Note that "APT" refers to more than just the Transformer model, it also refer to the data distribution and to some extent the training procedure.

Data distribution given some maximum context size C, sample sequences of consecutive tokens of length C from a fixed corpus of tokenstrings (e.g .text)

$$
\begin{equation*}
t_{1}, \ldots, t_{c} \tag{7.1}
\end{equation*}
$$

Then we have input-output pain

$$
\begin{equation*}
\left(t_{1}, t_{2}\right),\left(t_{1} t_{2}, t_{3}\right), \cdots,\left(t_{1} \cdots t_{c-1}, t_{c}\right) \tag{7.2}
\end{equation*}
$$

The data distribution is the distribution of all examples like (7.2). So if S is the set of possible tokens, we have actually true distributions

$$
\begin{array}{cl}
q_{1}(x, y) \text { on } S \times S & \left(\text { prob. of }\left(t_{1}, t_{2}\right)\right) \\
q_{2}(x, y) \text { on } S^{2} \times S & \left(\text { prob. of }\left(t_{1}, t_{2}, t_{3}\right)\right) \\
\text { : } & \\
q_{c-1}(x, y) \text { on } S^{c-1} \times S &
\end{array}
$$

Note that we can make predictions $T_{w}\left(t_{1}\right), \ldots, T_{w}\left(t_{1}, \ldots t_{c-1}\right)$ for all these examples with the same set of weights. The loss function for the Transformer is a sum over the cross-entropies for each of these predictions.

$$
\begin{equation*}
L(w)=\sum_{l=1}^{c-1} L^{(l)}(w) \tag{8,1}
\end{equation*}
$$

where for $1 \leq 1 \leq c-1$,

$$
L^{(l)}(w)=\sum_{\left(t, t^{\prime}\right) \in S^{l} \times S} q_{l}(\underline{t}) C E\left(q_{l}\left(t^{\prime} \mid \underline{t}\right), \tau_{w}(\underline{t})\right)
$$

Thus the tue distribution is on $X=\left(\bigsqcup_{l=1}^{c-1} S^{l}\right) \times S$ and given by q_{1}, \ldots, q_{c-1} taken together. The model is, given $t \in S^{l}, t^{\prime} \in S$,

$$
\begin{aligned}
p\left(\underline{t}, t^{\prime} \mid \omega\right) & =p\left(t^{\prime} \mid \underline{t}, w\right) q_{l}(\underline{t}) \\
& =\operatorname{Tw}(\underline{t})\left[t^{\prime}\right] q_{l}(\underline{t})
\end{aligned}
$$

and the $K L$ divergence is similarly a sum over l

$$
\begin{align*}
K(\omega) & =\int_{x} q\left(\underline{t}, t^{\prime}\right) \log \left(\frac{q\left(\underline{t}, t^{\prime}\right)}{\left.p\left|\underline{t}, t^{\prime}\right| \omega\right)}\right) d \underline{t} d t^{\prime} \\
& =\int_{x} q\left(\underline{t}, t^{\prime}\right) \log \left(\frac{q\left(t^{\prime}(\underline{t})\right.}{p\left(t^{\prime} \mid \underline{t}, \omega\right)}\right) d \underline{t} d t^{\prime} \tag{8.3}\\
& =\int_{x} q\left(t^{\prime} \mid \underline{t}\right) \log \left(\frac{q\left(t^{\prime} \mid \underline{t}\right)}{p\left(t^{\prime}(\underline{t}, \omega)\right.}\right) q(\underline{t}) d \underline{t} d t^{\prime} \\
& =\sum_{l=1}^{c-1} \int_{s^{\prime}} q\left(t_{x} \mid \underline{t}\right) \log \left(\frac{q\left(t^{\prime}(\underline{t})\right.}{p\left(t^{\prime}(t, w)\right.}\right) q((t) d \underline{t} d t \\
& =\sum_{l=1}^{c-1} K^{(l)}(\omega)
\end{align*}
$$

where $K^{(l)}$ is the $K L$ divergence for $\left(W, p_{l}, q_{l}, \varphi\right)$.

By a familiar calculation

$$
\begin{align*}
K^{(l)}(w) & =- \text { Entropy } q l+\int_{s_{l}} C E\left(q_{l}\left(t^{\prime} \mid \underline{t}\right) \mid T_{w}(\underline{t})\right) q_{l}(\underline{t}) d \underline{t} \\
& =\text {-Entropy } q l+L^{(l)}(w) \tag{9,1}
\end{align*}
$$

so minimising $K^{(l)}(w)$ is the same as minimising $L^{(1)}(w)$.
Remark Since the same parameter $\omega \in W$ is used to make next-token predictions for any length this is not a sum of $K L$ divergences for distinct models.

The Bayesian posterior of a language model

The nature of the data distribution (that we see, for a sequence of tokens x_{1}, \ldots, x_{c} every initial segment x_{1}, \ldots, x_{n}) and of the model (we use the same parameters to predict for any sequence length) have some interesting implications for the Bayesian posterior when we incorporate the contexts-to-weights hypothesis.

Recall that given a set of samples $D_{n}=\left\{\left(\underline{t}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{n}$ the posterior is

$$
\begin{align*}
p\left(w \mid D_{n}\right) & =\frac{p\left(D_{n} \mid w\right) p(w)}{p\left(D_{n}\right)} \tag{9.2}\\
& =\frac{1}{Z_{n}} \varphi(w) \exp (-n \operatorname{Ln}(w))
\end{align*}
$$

where $L_{n}(w)$ is the empirical loss

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} C E\left(q_{l}\left(t^{\prime(i)} \mid \underline{t}^{(i)}\right), T_{w}\left(\underline{t}^{(i)}\right)\right. \\
&=-\frac{1}{n} \sum_{i=1}^{n} \log T_{w}\left(\underline{t}^{(i)}\right)\left[t^{(i)}\right]
\end{aligned}
$$

The model evidence $Z_{n}=\int d w \varphi(\omega) \exp (-n \operatorname{Ln}(w))$ is the basis of model selection in a Bayesian framework. We view model selection as internalised in LLMs to phase selection where two regions $W_{1}, W_{2} \leq W$ are preferred in accordance with which has higher evidence"

$$
Z_{n}\left(W_{a}\right):=\int_{w_{a}} d w \varphi(w) \exp \left(-n L_{n}(w)\right) . \quad a \in\{1,2\}
$$

Or what is the same, which has lower free energy $F_{a}:=-\log Z_{n}\left(W_{a}\right)$ (the effective Boltzmann weight). Under some conditions we have the

Free Energy Formula

$$
Z_{n}\left(w_{a}\right) \approx n L_{n}\left(w_{a}^{*}\right)+\lambda_{a} \log n
$$

(leading terms in asymptotic exp. See Given book, WBII paper, DLT3)

Each point $\left.\left(\underline{t}^{(i)}, t^{\prime(}\right)\right)$ contributes to free energy of eve y phase.

$$
\begin{aligned}
Z_{n}\left(W_{a}\right) & =\int_{w_{a}} d w \varphi(w) \exp \left(\sum_{i=1}^{n} \log T_{w}\left(\underline{t}^{(i)}\right)\left[t^{\prime(i)}\right]\right) \\
& =\int_{w_{a}} d w \varphi(w) \prod_{i=1}^{n} T_{w}\left(\underline{t}^{(i)}\right)\left[t^{\prime(i)}\right]
\end{aligned}
$$

Suppose The contexts-to-weights hypothenis holds for some sample D_{n} an above, with $\underline{t}^{(i)}=\leq \underline{x}^{(i)}$ for all i (in practice we find in Din some subset like this) in the sense that $T_{\omega}\left(\underline{\underline{x}} \underline{x}^{(i)}\right)\left[t^{(i)}\right] \approx T_{f_{\underline{s}}(\omega)}\left(\underline{x}^{(i)}\right)\left[t^{(i)}\right]$ and moreover assume this works for all we Wa in some way continuous in w. That is

Note f_{c} is likely to be highly degenerate

$$
\begin{aligned}
Z_{n}\left(W_{a}, D_{n}\right) & =\int_{w_{a}} d w \varphi(w) \prod_{i=1}^{n} \tau_{w}\left(\underline{t}^{(i)}\right)\left[t^{\prime(i)}\right] \\
\text { "fewshot" } & =\int_{w_{a}} d w \varphi(w) \prod_{i=1}^{n} \tau_{w}\left(\leq \underline{x}^{(i)}\right)\left[t^{(i)}\right] \\
& \approx \int_{w_{a}} d w \varphi(w) \prod_{i=1}^{n} \tau_{f_{\leq}(w)}\left(\underline{x}^{(i)}\right)\left[t^{\prime(i)}\right] \\
& =\int_{f_{\leq}\left(w_{a}\right)} d w \bar{\varphi}(w) \prod_{i=1}^{n} \tau_{w}\left(\underline{x}^{(i)}\right)\left[t^{\prime(i)}\right] \\
& <Z_{n}\left(f_{\leq}\left(w_{a}\right),\left(\underline{x}^{(i)}, t^{\prime(i)}\right)_{i=1}^{n}\right)
\end{aligned}
$$

Since in the asymptotic expansion $f \leq$ contributes additional degeneracy on the LHS.
Hence

$$
\begin{gathered}
n \operatorname{Ln}\left(w_{a}^{*}\right)+\lambda a \log n<n \operatorname{Ln}_{n}\left(f_{\underline{c}}\left(w_{a}^{*}\right)\right)+\lambda_{a}^{c} \log n \\
c<\lambda_{a}^{c}=\lambda_{a}+\text { "degeneracy of } f_{\leq} "
\end{gathered}
$$

and so (the rough argument goes) $\lambda_{a}<\lambda_{a}^{\subseteq}$. The singularity at ω_{a}^{*} must be move complex than the one at $f_{\leq}\left(\omega_{a}^{*}\right)$ (roughly because $f_{\subseteq}\left(w_{a}^{*}\right)$ is "specialised" and this cowesponds to f_{\leq}being a projection, ie. being degenerate. The morespecialised the model becomes in context c, the (arger the gap).

Phase as UTM, contexts as codes
Suppose W_{a} knows to direct predictions to other phases (subroutines) for multiple contexts $\subseteq_{1}, ธ_{2}$. So cure suppose a dataset Din consists of

$$
D_{n}=\left\{\left(\underline{c}_{1} \underline{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n_{1}} \cup\left\{\left(\underline{c}_{2} \underline{x}^{(j)}, y^{(j)}\right)\right\}_{j=1}^{n_{2}} \quad n_{1}+n_{2}=n
$$

Then

$$
\begin{aligned}
& Z_{n}\left(w_{a}, D_{n}\right)= \int_{w_{a}} d w y(w) \prod_{i=1}^{n_{1}} T_{w}\left(\underline{c}_{1} \underline{x}^{(i)}\right)\left[y^{(i)}\right] \\
& \cdot \prod_{j=1}^{n_{2}} T_{w}\left(\underline{c}_{2} x^{(j)}\right)\left[y^{(j)}\right] \\
& \approx \int_{w_{a}} d w \varphi(w) \prod_{i=1}^{n_{1}} \tau_{f_{s_{1}}(w)}\left(\underline{x}^{(i)}\right)\left[y^{(i)}\right] \\
& \cdot \prod_{j=1}^{n_{2}} \tau_{f_{\leq_{2}}(w)}\left(\underline{x}^{(j)}\right)\left[y^{(j)}\right]
\end{aligned}
$$

Suppose $f_{c_{1}}$ is constant in all the directions $f_{\mathcal{E}_{2}}$ has nonzero partial derivatives at w_{a}^{*} and vice-vessa, so there are local coordinates u, v in which

$$
\begin{aligned}
& \approx \int_{w_{a}} d u d v \varphi(u, v) \prod_{i} T_{f_{c_{1}(u)}}(\cdots) \prod T_{j} T_{f_{c_{2}(v)}}(\cdots) \\
& =\int d u \varphi(u) \prod T_{i} T_{f_{\leq},(u)}(\cdots) \int d v \varphi(v) \pi T_{f_{\leq_{2}(v)}}(\cdots)
\end{aligned}
$$

[w, Remain 2.2]

$$
-\log Z_{n} \approx n L_{n}\left(w_{a}^{*}\right)+\left(\lambda_{a}^{c_{1}}+\lambda_{a}^{c_{2}}\right) \log n
$$

We see here a hint of a picture where the tue distribution can be approximately divided into subtarks, each of which is much simpler in isolation than the tue distribution, and under the context-to-weights hypothesis some contributions to the free energy of the "mother singularity" or phase Wa come form the free energy of submodels $\left(f_{\leq}\left(W_{1}\right)\right.$ lower-dim $)$ on these tasks.

This suggests an approach to un destanding the phase structure of the full model in terms of
(A) Phasetransitions where a given context is recognised
(1.e. The context-to-weights hypothesis begins to be applied)
(B) Phase transitions in the submodels
(C) Interactions between the transitions in (B). In the generic case they are simply superimposed.

References
[PH] M. Phuong, M. Hitter "Formal Algorithms for Transformers" 2022.
[GPT3] T. Brown et al "Language models are few shot learners" 2020.
[ICLI] J. van Oswald et al "Transformer slearn in-context by gradient descent" 2022
[ICL2] D. Daiet al "Why can GPT learn in context?" 2022.
[25] J. Cliftet al "Logic and the 2-simplicial Transformer" ICLR 2020

