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Watanabe claims in [w] a deep role for algebraic geometry in statistical learning

theory , which is at first quite surprising since the main function of interest Klw)

is analytic but only rarely a polynomial . So where do the polynomials come from ?

Recall from [W, 57 ] that given a triple (p, 9,9 ) with Kull back- Leibler distance

Klw) =/ qlx) log ¥w, dx

and zeta function

C. ( z ) = f klutz Yluldw

if the largest poleof 5 is C-7) then 7 is called the learning weffient of Cp, 9,7) , and

as long as Y does notvanish on Wo this agrees with the RLCTof K [W, Def
"
2-7]

,
which

recall is computed as the minimum of ( hjt
' ) / Kj over all I ←je d and coordinate

patches in the resolution that put 149141 ) into normal crossing form UZK with

Jacobian Uhdu .

From [W, Remark 7.2]

DEI Two analytic functions Hlwl , Klw) are equivalent if there exist a, ez > 0 with

a Hlw) I Klw) E Cz Hlw) itWEW
.

shows KESH
Lemma If H , K are equivalent they have the same learning coefficient .

/ implies 7k£
TH

Proof (Sketch ) We may assume H , K are simultaneously resolved, and then
ks GH means K 191411 c- GH / 9 lull or UZK E stfu) UZK

'

hence

by [W, Theorem 2.6] there is a real analytic function glu ) with a
"
= czg (a) u

""

and from the Taylor expansion Kj > Kj for all j . Hence h¥÷. 7 hIk . ☐



①

DEI we write H - K if H, Kare equivalent analyticfunctions .

It is easy to see that this

is an equivalence relation .

We sometimes write It
'

K for the situation in II. a) .

In Watanabe's book and papers
[AW, WZ] the following strategy is employed to compute

the learning coefficient of a statistical model :

① Compute a Taylorseries expansion (in x) of flaw) = log 9¥plxlw)
and use itto constructa polynomial function Hlw) equivalent to Klw) .

② Perform resolution ofsingularities on H to determine its learning coefficient

(and thus the learning coefficientof K) .

In this note we focus on ①
, following [W, Remark 7.6, p. 227 ] .

Setup

we assume ( p, q, 9) satisfy Fundamental condition II ) of [W, Det
"

6- 1) for some s 72 .

In particular FG, W) = log ( 91×7plx, w) ) is represented by an absolutely convergent

powerseries in the neighborhood of an arbitrary w*EW

Faw) = § aalx) (w - w*)✗ II. 1)

with a ✗ (x) c- LSIX, 9) (see [W, 55.27 ) .
Then in the neighborhood of w*

Klw) = / 91×1 Flaw)dx
(1-2)

= § (w - ut )
✗ faalx ) qlx) dx

is an absolutely convergentseries, so Klw) is analytic .



②

Remand Adapting this to conditional distributions works as follows : firstly replace ✗ by × ,y

and assume plxiy /w) = ply/×, a) 91×3, 91×191=9191×191×1 .
Then

Ffx, y ,w) = log ( """/ play Iw))
(2-1)

= log ( El"" )/ plylx.ws )

is represented by an absolutely convergent power series in the neighborhood of any w*EW

Flay
,
w) = ⇐ axlxiy) (w - w*Ñ (2-2)

with axlx,y)ELs(✗✗Y
, E) . Integrating over Y is continuous and linear (tee e.g.

[MHS
,
lemma LM- Ya] ) and hence induces a continuous linear map LYXXY, 9) → LYX, 9) .

Applying this to (7-2) yields

JGgw) = f 9141 >c) Flay,w ) dy
(2-3)

= § { fqlybdaalxiylc.ly/(w-w*)&

with Klw) = / Jaw) 91×1 DX . Moreover babe) =/ 9191 -e) aalxiy) dy c- LSCX, g) .

In this note we assume that we are in the special case where there exists at,w) with

Klw)=/ 91×1Glx,wide = H GH, w) 112 12.4)

where the norm is in 1449 ) and we assume that Glxiw) is represented by
a polynomial Glxiw) = Ex ax(×)w& with 9×1×3 C- LTX

, 9), i. e.

ax 1×1=-0 forth sufficiently large .



③

We assume given a linearly independent set (g)5=1 in LYX, 9) such that

00

(A) The sequence (Hejl1)j= , is square -summable Ej -5119-11.2<00
and the induced bounded linearmap 14112 )→ LYX , E)

is injective and has closed image (tee [LIL] ) .

co

with absolutely convergent series 9 ✗ (X) = Ej= , Cj, aejlx) for all d, with

coefficients cj , ✗ C- IR
.

Then with fj (w) = Ea Cj , ✗ W
✗

we have

Glx, w) = [ ✗ a ✗ (x)wt

= EJE , Eacj , ✗ Wd ejlx ) ( 3. 1)
= Ej! , fjlw ) ejlx )

with polynomial coefficient fjlw) .

Example In Remark 7.6 ( p .
225 ) Watanabe gives the following example of a statistical model

plylx,w)9(x) and true distribution given by (we assume qlx) is given )

plylx, w) = tzexpl - Ily - flaw))
' )

qlylx ) = I exp (
- Ily - fo (xD

'

)

so that play / w ) = plylxiw) 91×1 , qlx, y ) = qlylx ) qlx) and

Klw ) = I / ( flaw) - f. (x)Tq(x)d×
= EH flx, w) - f. (x ) 112

so we take Glx, w)=¥(fHw) - to (x )) . It remains to be checked G satisfies the hypotheses .



④

Hypothesis (A) implies F- 14F)→ [ IX.9) is bounded and bounded below, so there exist

Cycz > 0 such that for all a=(aj)j= , in 14F)

2

C.(Ej-919-14<-11 Ej ajej /Is cz(Ej= , lait ) 14.11

In particular, applying this to § fjlwlejlx)= Glxiw) we have

c. (Ejiifjlw)
' ) £ Klw ) s Cz ( Ej! , f- (wt ) (4. 2)



⑦

( pageswere

skipped )
The upper bound

Let I c- Rlw] denote the idealgenerated by the polynomials {fj}jÉ . By the Hilbert

basis theorem I
= (fi, - .

-it) forsome integer J. Let > denote the graded lex

monomial order on Kio where lR[w] = IR [Wy - - -own]
,
see [GGB, p .

17]
.
We assume

f., . . ,f,- is a Gñibnerbasisof I (see [CLO] for background)
,
andwe introduce

the following notation from [aaB]\ dainty

☐✗ = { j I kj EJ and LT( fj ) / wd ) ✗ c- 250 (7-1)

where LT denotes the leading term with respect to >.

We write da =/ Dal and for a >P

and an indexje Da we write (see [GAB, p - ① ] )

Tap ,j
= ( fj )PER (7-2)

where f)p denotes the coefficientof WP. Then for a
> P

Tap = [je Da
Ja

,Bj (7-3)

The proposition on [GAB , P -1407 shows that if f- c- I then (using a
"

generic
" form of the

division algorithm ,
called AlgorithmI in [AaB] )

C-1)
mt '

f- = É E E da
,

-
-

- dam (7-4)
m =\ 4

, >
-
- -7dm j c- Dam ✗ m

- fi
,

Jd
, .dz
Jaz

, as
- - - Jxm-i.am#fjfj
-

this is 1- it m =\ , and f-✗ ,
= f- ✗m

1-e. m =\ has § and a ,
= 2m = 2 .

Where the summand is zero if dai = 0 for any kism .
This is a

"
sum overpaths

"

.
We have

used the observation on p -② d-ggb① which allows us to avoid fixing a downward closed set A- .



⑧

J

In particular this means we may write f-
= Eka akfk with polynomials Ak given by

C-1)
Mt ' ✗ m

at = £ £ fqja.dz Jonas - - - Jxm-i.am _W ( 8. 1)
m=i ✗

,
> . . .> an da

-
-

- dam LT( fk )
K C-Ddm ¥1s

As above
, for them -_ 1 term we have [ ✗ and f- a Tfk) . Despite the "N "

this sum is finite .
We associate each summand to a path in the oriented graph

which has Iko as vertices and an edge B.→ ✗ if Tap -40 ,

21
•

am
(8-2)fan •

←
.

'

'

'

•

[
•
am ,

Thi
, dz

•

✗
z

Jam
-gym ,

m-1,4m

DEI We call (8. 2) the division graph of the Giobnerbasisfy . - it
.

Note that
,
as opposed to the standard division algorithm, which

" branches "depending on f,

(8. 1) depends on f- only via the coefficients fa , and in this sense is
"

generic
"
in f. We

can write this even more manifest by defining for a >Poo
Gym
"

Kla ,p ) = [ [ 18.3 )

m= I d , >
. - -7dm da

,
-
-

- dam
%

,
✗2%21×3 - - - Jim-1,2m

✗ 1=4 , am=p { them -4 contribution is

[ FIX
so that

at = § [ fakldip )# ( 8.4 )
P LTCFK)
KEDP

Since > is total we can think of { as a sum over IN , and think of (8. 4) as a dot product
d- a sequence (Fala and ([ps.t.keppkld.PDWPK-lfrllx.wese.lk

Ra = [ klaip )%fTk ) 18.5)
p< a

KEDP



⑨

so that it ! c- IRIW] and

ak = § farka 19,1)

If we now have a sequence of polynomials ( Fi ) ?= , in place of f then Fi
= EKÉ ,

Aki fk

where a} = [ IF ;) aRI . Suppose we wishto construct an upper bound for E FE

in terms of Sj fj? Then we will want to use Cauchy - Schwartz as follows

2¥
,
Fi = EE ,

( EÉ⇒aIfk )
"

(9. 1)
E EE ,

LEE , (AIT ) ( E,É ,
fi )

= ( EJE ,
f;-) - EE ,

EE ,
Ca :)
'

so the existence of the upper bounded hinges on convergence of EFÉ ,
la! )?

Remade If there is no path from p to ✗ in the division graph then KHip )
= 0

.

Theorem suppose in addition to Hypothesis (A) of pz -5 we additionally assume

(B) The sequence (Cj, a )jÉ , is square
-summable Ej? , / Six 12<00 for all ✗

(recall that fj = 2×9 , awh) . We write 11 fall = {I j,at }
"
?

(c) [ 11 fall:(SLIT < • for leks T.
&

Then K is equivalent to §?= , fj?

Proof The lower bound follows from 14.2) so it suffices to show the upper bound .

Set E. = fJ+i .
Then by hypothesis (B), the sequence ( ( Fi ) a) 5=1 is square

-summable

foreach ✗ c- I>?o . Hence by Cauchy- Schwartz, in the above notation



Contains mistake ④

EE.la?T=EE,(EalFi1arI )
'

E EE ,
Ea (Fiji (R1 )

-

t "
"

cion )

= [ ✗ ( E;-51Fili trial
'

the sum 19.1) is finite because f- is polynomial, but in (9. 2) we mustkeep in mind that as N

increases the numberof ✗ being summed over may also increasewithout bound .

Foreach N

let ✗N c-250 be sufficiently large in the monomial order that

[ ✗ ( E;-51Fili trial
'

= [ E.
,
I Fila (R! )

'

ao .a)
✗ €2m

Let 11 Falk = {Et Fili }
""

which we have assumed is finite .

Then 110.2 ) gives

II. (a :)'s E. 11 Fall:(115 110.31
✗ C- ✗N

Hypothesis (c) says the RHS is boundedabove and hence the LHS converges .

This is uniform

convergence , so the limit is a continuous function Aklw ) = EEE , la
'
? ) (w)? since W

is compact Aklw) s Mk forsome constantMK . By 14.2) there exists C > 0 with

Klw) E CE
,
?=

, fj (w)
2

= C EJE , fjlw)
'

+ CE ?= ,
Fi 142 110.4)

(9.2)

a- CEj-Ifjlwftcfzj-E.fi ) - EE ,
Aklw)

s { Ct CCEKMK ) } Ej? , fjlw)2

as claimed . ☐



④

I (al? 12 = EE ,
([✗ (Fi ) ✗1£ )

2

those ✗ appearing in E-

E E ( EalFili )(EÑkT) ( Ion )

= (EISLEY ) [ a EE , (Fila

[ assuming this converges
the sum 19.1) is finite because f- is polynomial, but in 19.2) we mustkeep in mind that as N

increases the numberof ✗ being summed over may also increasewithout bound .

Foreach N

let an c-250 be sufficiently large in the monomial order that

[ ✗ ( E;E , 1Fili trial
'

= [
,
1 Fila (R! )

'

ao .a)
✗ €2m

Let 11 Falk = {Et Fili }
""

which we have assumed is finite .

Then 110.2 ) gives

EI , (a :)'s E. 11 Fall:(1%5 110.3)

✗ C- ✗N

Hypothesis (c) says the RHS is boundedabove and hence the LHS converges .

This is uniform

convergence , so the limit is a continuous function Aklw ) = EEE , la
'
? ) (w)? since W

is compact Aklw) s Mk forsome constantMk . By 14.21 there exists C > 0 with

Klw) E C§?= , fj (w)
2

= C EJE , f,
- (w )
'

+ CE ?= ,
Fi 142 110.4)

(9.2)

a- CEj-Efjlwftcfzj-E.fi ) - EE ,
Aklw)

s { Ct CCEKMK ) } Ej? , fjlw)2

as claimed . ☐



④

Example In [W, Example 7.☐ we have
, up to a factor of Ya we will ignore ,

GH, w) = EF , ?¥ (abitcdj) (1H )

where R[w]=R[aibisd] .

As is typical, there is some choice of how to allocate the factor

Yj ! between ejlx) and fjlw) . Let us choose sj, rj > 0 such that sjrj
= Yj ! and set

g- (x) = Sjxi, fjlw) = rjlabitcdi ) . The { ej} are linearly independent (under

any reasonable choice of
X
, E) and Spencer 's note shows that e.g. if g-

= Yrj. then

Ej-911 ej 112<00 it ✗ = I-1,1] with qlx) uniform , so (A) is satisfied . Hence we

get the lower bound CHEK of p. ⑥ with H=§É, fj ?

✓
NO

we concentrate our attention here on (B), (c) . For themoment take fj = abit cold .
A Gnibner basis for I is fi, 92 where gz

= Ed '
.
Note that ifwe can upper

bound K by a constant multiple of fit 9? we can certainly upper bound it by

a constant multiple of fitfi (by Cauchy-Schwartz) so wejust now assume f. = gz

in the above .

Note that for Id / 75 (to avoid f ,
,
fz )

H fall = {⇐ 1g, xp }
's
= {
1 ✗ =L' - i. 0,0 ) or (0,0, i. j )

0 otherwise

Hence (B) holds and for (c) it suffices to show that

[ (IIT < as 11=111 ,j ,0,011J > 4) u { 10,0, Ij> 4} 111-21
✗ C- A-

For this we analyse the constants of 17.2) and paths of (8-2) .

For ✗ >P , if LTG, ) / w
✗

and say ✗
= 8+(1,1/0,0) then

Japp = (w÷ (abtcd )) p = ( w
"
+ WEd) p 111.3 )

= (Wrcd)p = 8 ( p = 8+10,0, 1,1 ) )

= 8 ( P = 2+1-1, -1,1, D)



④

If Ltlfz) / w ✗

say D=
Tt (0,0, 2,2) then for a> p

Ta
, p,z
= (Y÷dz( act) )p = (ut )p = 0 112.1 )

Hence Tap = Éj c- Da JaBj is zero if abt w✗ and otherwise it is equal to

8 ( P = 2+1-1, -1,1, 1) ) .

Thus the division graph 18.2) consists of edges from BEZIO to

p + ( 1,1, -1,
- 1) whenever this makes sense, , -e. belongs to 25,0 .

Now

r! = E.kla.ph?Ff-mpsxkc-Dp
and LT(fill WP ←→ A> 1

,Pil , LT(fz) / WB ←→ Ps 72 , Pg72 . But Kld ,B) -1-0

implies ✗ =p + r2 where 7=11,1, -1, -1 ) and r> 1 is an integer. If 2 C- A- then

p = X
- r2 can only be in Kio if 2=11 . j , 0,0 ) for some j > 4 in which case the

only possibility for B is a -7 = (Oij -1,1 , 1) .

But LT(f.) TWP , LT / felt WP hence

JLI = O FK F✗ c- A- (12-2)

proving (c) . Hence by the theorem

K ~ fit fi = (abtcd)
'

+ ( abated)
(12-3)

~ fit gi = (abtcd )'t c4d4



http://therisingsea.org/notes/mast90132/background1.pdf
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Now

(IIT = [ KK.plkk.pl)Y¥¥÷y 112.11
Bp'sa

ktDpnDp '

entrywise notgrevlex
1

Hence for TEI"zo(if we have Ltlfk)= hw
}
then kc-Dpilf.ws/wPiff.p -3%0)

(r :B =3 Klapka.pl/I-Yf-?f1r3Ip,p'
< a

= E KK ,p)k(xp
') - ¥8 (Ptp '

-23=8 )
3 Epp '< ✗

(12-2)

= ¥ [ KHPJKK.pl )
3 É Pip '< a

Btp '= 81-23

Hence

[ (NYT, = ¥[ [ K(dip ) kldip
') 112.3)

✗ c-A-
✗

ftp.tp/--Jt233Ep.p'



④

Now

° abt -wd
- in
and c2d2fwd

- iz

da
- iz
= { I ab / wt

- IZ
or czdz / wa- iz (13-4)

2 ab / wt- IZ and czdz / wt
- i?

Hence d✗=1 , da-2--1 so K(did -7) = -L - Now p= d- r7= to,j -1,41 )

so Ltlfk ) / WB is impossible fork c- { 1,2} . Hence

[ (NYT, = 0 113.5)
✗ C-A-



- - . ✗
qt , hey - - - 4

, dz 2
,

f
,

÷

• Ja ,b= 0 for ✗
a
>> ✗ b

lie .

b >> a)

so paths between distant ✗ 's involve

many steps , henuifwecanbound T's <
1

we can probably get convergence ?

• assume fy . . ,fJ
are monomial ?

⇐ abktcdk

2

%'t ' =(¥µf, ),
"€• ) / x

"
<⇒ xp, / &&→ ,

✗ = (1,1/0,0)+8

✗ >

ftp.tlbh-h-1/j--i--(xrf,)p--Giabtx7d)p←

[
•

p
= f✗=pt8p= -0+(0,0/1,1) q

.

/
= f(p= ✗ + C- 1

, -1,41 ) ) 4+11,3-1, -4LTHz)|xd⇐> 43422>12
= f( ✗ =p +4,1, -1, -1 ) ) 3

<⇒ 2=(1,2/0,0)+8 bounded

Jars,z= ( ftp.
=(x°ab2txrcd4p

= UP = ✗ + C- 1 , -2,42) )

=8( ✗ =P +11,2, -1, -2 ) )



④

In (12-3) we can rewrite the sum as being indexed by r, r
'
> 1 such that P = d - M, P

'
= d- r

' Z

belong to 250 and satisfy the required conditions . These are

22 - (rtr ')2 = 81-25
④

5 + r7 ,
I + r'7 I ✗

Hence ✗ only contributes if 22 is on a path in the division graph starting at 8+25 . There are only

finitely many such 2, so [ ✗ (RLIF is a finite sum .

{Crispy ⇐ ¥2 Elka , d-RUKH, ✗ - rn ) /
✗ rtr '=t

22=81-25+1-2 r
, r

'
> 1

forsome t 72

[ 4. z
- Crtry

⇐ ¥2
✗ rtr '=t

22=81-25+1-2 r
, r

'
> 1

forsome t 72

= 4- { It - 1) 2-
t

h2 ✗

22=81-25+1-2

forsome t 72

ME
£ ¥ [ It - c) 2-

t

1- = 2

where MY = min { 181-2513 , (81-2514) .



⑦

The upper bound

we now assume ( Hejl )jÉ c- LTR) and let c> 0 be such that Klw) = C Ej! , fjlw)?

Let An Iw) = E.
•

j=n+ , filwt which is analytic since An Iw) = Klw) - , fj (w)?,

and clearly Anti Cu) £ An Cat forall WEW.

Lemma For all WEW there exists Nw such that An (w) f [ j^= , filwt for all n3 Nw .

Proof If we Wo this is vacuous , since both sides are zero .

If WEI Wo then fjo (w) -1-0
for some jo , and since limn→• An Iw)

= 0 there exists N such that

An Iw) < fjolwl
'

for all n> N . Set Nw = max {N, j. } then for n >Nw

{JI , fjlw) ' Z f,-☐ Lwt > An (w )

as claimed . ☐

By the Lemma the following quantity is well-defined :

Mlw) : = inf-{ N I N 71 , An Iw) a- Ej_ , fjlw)
'

for all n > N}

Note that Mlw) = 1 for all we Wo .

Lemma_ The function M is uppersemi- continuous : for every weW there is

an open neighborhood U of W such that M (a) £ Mcw) for all u c- U -

Proof If M = Mlw) then EJ= , fjlw)2- An Lw) 70



old

④

Hence by [MHS, Thm 121-10]

Klw) = £11 flaw ) - foil 112

= {[¥ , / < flaw ) - fot)
, g- 1×1> F ( Parseval)

= I Ej?# E- ifklwkek , Cj> 12

= ÉEj%miI• / EE ,
fklwkek.gr> 12 (4. 1)

⇐ I 1mi:L ( EE ,
front )( EE ,

Leng-7 )

(? )

= III.
•
( EEE , fklwl

' ) ( EEE , EI , Lek, g-7)

= III. ( EEE , faint )( IKE , Hear )

We can rescale the g- G) to ensure that SEE ,
/ lekltwnverges (for example if

ejlx)=j¥xi
- '

on ✗ = [-1/1] with 91×1=1 uniform,llejli-tzkj-T.li/-,x4-2dx=IlYg=yif2(j--x4-' ] ! ,
= [ Ycj -11 ! ]

'

Yzj - i and

"Y¥ =
[%tT%s =L 1

Cj ! /2%(4^-1)
!)%j - 1)2

( Ycj -11 ! /
' '

ly ' - I

= (f)44 = ¥, ( z - J )
'

2J 1- I

hence limj → •
"

= 0
so the series Eiiillekllconverges ) - then

Klw) ⇐ ICE,E ,
fklw)2 c= Iii , Health (4-2)



old

⑤

Suppose g. (x)
= ¥ Xi so that 12.3 ) is for any fixed j a globally convergent

Taylor series expansion of the LHS at zero (we switch to g- 20) . It is necessarily thecase that
this function is differentiable and that its derivative may be computed term

-by- term, so

da
-

ofjlwlejlx ) ) = Efjlw) §÷aej( x)
j=o
oo

= [ fj ( w) ej-alx) 15.1 )
j=o

?= §=a fjta (w) g- (x)

If we Wo then the LHS is identically zero, hence so is the RHS, and evaluating
at ✗ = 0 gives f-

a (w) = 0 . This holds for any a> 0 andWEW, so

w is in the vanishing locus of the (fj )jc→ .

Hence undersome mild hypotheses on qlx) and with ejlx) = xi we have

Wo = { WEW I fj (w) = 0 for all j> 0 }

Let I be the ideal generated by { fj }jÉp in Rlw]
,
where w stands for

a list of variables wy . .
-

, wd for some d. By the Hilbert basis theorem we

can find J such that I = (fy . -
.

,
f- s) . For any j > J we have for some

polynomials a'j , .
. -

, AT an equation

fj = [KI , atjfp (5-2)

and hence by Cauchy - Schwartz

fj (w)
'

= ( EÉ , ajklw) fklw) )
"

( 5.3)

⇐ ( IKE , ajklwl ) ( EE ,
fk (wt )



%

That is
,

f
,

? ← [ (akj )
'

EÉ ,
fi 16.1 )

Hence with H = EE ,
fi

Sj= , fj (w)'s EE ,
( Ej! , akjlwl

' ) Hlw) (6-2)

Assuming that [j%a¥ 142 converges for each k (I do not know how to show this) to a
continuous function A-

"
(w) on W

[j? , fj (w )'s [ EÉ ,
Aklw ) ] Hlw) ( 6. 3)

Now set xk= sup { AND I WEW }
,
which is finite since W is compact and A

"
is continuous . Then

IÉ ,
ah > 0 since if ✗

k
= 0 forall k then Aklw) = 0 for all b- and w, hence

ah
,
- ( w ) = 0 forall j , k, w hence fj (w ) = 0 for all j , w and so 1<=-0 . Except

in this trivial case D= EKÉ ,
✗k > 0 and

§?⇒f; Iw) 2 s D Hlw) / (6-4)

From this and 14.2) we have

K E ICD H

To
prove that

K is equivalent to H we still need to establish C'HE K forsome c
'
> 0 .



⑤

Equivalence via norm equivalence

set Vn = spanpfey . -

, en } = spank { Cy . - -

,
Cn } as a subspace of LYX, E) .

Since the g- are linearly independent Vn⇒R
"

and we can define a norm on Vn

for y = Ej_ , ajej by

11×11
.

= {[JI , I g. f)
"2

We let 11×11 denote the restriction of the E-norm to Vn . Any two norms on a finite-dimensional

normed space are Lipschitz equivalent (see e. g. [
BI] ) so we can find a (n) , Czln) > 0

such that

Cdn) 11×112<-11×11 £ Czln) 11×112 Hire Vn 15.0)

in factwe may take

c. ( n ) = in f- { I/ v11 / v c- Vn , 11×112=1 }
(5. 1)

calm = sup { 11×11 / re Vn, 11×112=1 } .

Now set sn = EJI , fj (w ) ejlx) , rn = , 9J (w ) g- (x) so rn
,
sn C- Vn

and Usn - rn 11 → 0 as n→ 00 since both series converge to flx, w )
- to (a) in

LYX , 9) .

We have

{€ , fjlw5)
"
= Hsn 1k£ In , Hsn 11 a- En , Hsn - rntrn 11

c- ⇒ Isn- rnllt ¥11 rn 11 15.2)

= ¥11 sn - rn 11 +¥, { EJI , g- (wtf
"



⑥

Hence

c. (n ) / Ej! , filum
"
's Hsn - rnll + { EJI , g- cut]

"'
16.1 )

similarly

{⇐ gjluifk-llrnllellrn-snlltllsr.lt
(6-2)

E Hsn - rnlltczln) / lsnllz

Hence

{ Ej?= , gjlwi}
"
's Hsn- rnlltczln){Ej=,f;lwP }

"'
16.31

We cannot naively taken→ • in (511,15-2) because a priori Glu) world converge
tozewandczcnltoaasn → 0, rendering the inequality useless . Dealing with
Hsn - rnll is awkward

,
so we can use gjlw) of p - ④ instead : from 15.0 )

aln) / Ej?,fj(wtf "<_ { §⇒9jlw)2 }
"
's calm){Ej=,fjlwT}

""
16.4)

that is
,
we have

91h1?Cdn)2

§? ,fj / w)' - [j= , 9J /w)
"

16.51
.



⑦

Lemma_ If two sets { ay .
- -

, ar} , { by - i -

i
bs ) generate the same ideal in the ring of

analytic functions on a compact sets then

I
,

a? ~ Ej= ,
b
,
? (7-1)

Proof By Cauchy- Schwartz , see ShaoWei Lin's thesis Prop 4.3 . Suppose ai
= §?= , hjbj

then a.is (hit - - - this)( bit - - - tbs ) and so with C = sup { EJE , hjlw)
-

I wew}
i

we have ai
'

e c€j⇒bj? hence [ E ,
ait (Eiti )(Ejbj

'

) .

If F- 0 for all i

EÉ ,
ai
'
= 0 hence ai = 0 for all i so also bj = 0 for all j , so (7^1) is vacuous . ☐

By the Hilbert basis theorem we have that the ideal I c- RIH generated by the

set { fj }g?= ,
can be generated by fi, . . ,fJ for some J> I

- Hence torn> J we have

by the Lemma that §?=
, fj
'

~ H where we set H (w) = EJE , fjlw )? Hence

(6-5)

[JI , gj
"

( w )
'

~ E
n

g. = , fj (w )
"
- H G.2)

In particular for n> J

Hlw) ⇐ EJE , fjlw)
'

e ¥2 [JI , gj Iwf
( 7.3)

n

Ej= , 9J (w)
'

I Czln)
'

, fjlw)'s czlnTCH

where C = E- , Ci where f? E Ci €-1 fj? We can obviously take G- = 1 for

Kit J and for i > J we have to write fi = §?= , aijfj and G-= sup { Ej a ( w) / we W )
.

In particular

Hlw) s at)
"

Ej =\



④

The gjlw ) involve potentially infinitely many fklw) 's, butwe can let gj ( w ) denote
the polynomial function of w with

§."=
, fjlwlejlx ) = §= , 951W) g- (x) (4. 1)

since limn→ • Ej? , 9J6) g- ( x) = Glxiw) we have

Klw) = 11 Glx, w) 112

=
lim HEE , gjhlwcj G) IT 14.4
n→ •

= Iim Ej= , 9J (w)'
n→ oo

Moreover since

gj
"

(w) = ( [F- ifelwleelx) , cjlx ) ) (4. 3)

= Iii , felwl Lee, Cj>

we have limn→ a 9J(w) = g- (w) for allj .

Note that since { ej }j= ,
,
{ Cj }j_ , are

LI and span the same space there must
be an invertible

matrix AM c- Mn (E) with A "> c- = e- where e- = (ey . . -

,
en )T

,
c- = Ca, . .

.

, Cn )?

Clearly A = Lee
, Cj>.

Wewrite R
" '
= ( A1" )? From 14.3)

, 9-
"

= R'"I .

Hence f- = ( RM )
- '

9-
"

and hence

n

fj (w) = [ e= , ( RM) e9e"lw) 14.4)



Intl
j= , fjlwlejlx ) = § gjiiyg.pe)

- Ej , f- lute,-1×1 - Ej! , 9 ,
? (a) g- ( x )

fn+ , (w) entity = EJI , ( 9J
"

-9J ) g- + gi (a) Cnn Ix )

< Cj , fnti (a) en+11×1>
= gj

"
- g
,

?

fntilwkcj , entire> = g.
" + '

- g
?

Pape • Deals IN

• deepvnetwvhs
• always k~H

•

Cheats 9J 's are not polynomial

• Ched higher dim input

§ ? ,
9 ; 1423 [j= ,

< Enfken
, Cj>

✓ = Ej -9 fjlwejlx ) = Ej-59,- Iw ) g- (x )

11×112=5.59; cut 7- IKE ,

kx.cn> I

= EE , / < Ej fjej , Ck> 12

= %? I £jk= , fjlukej , ck> 12

= In:(GET

J

> Era (9kt



⑤

From 14.3) we obtain (using 11-11 to denote the operator norm on 131111, 11=112
"
with 11-112)

EJI , gj ( w )
'

= 11 9- His 11 R'" till f- HE = 11 R'
"
112Ej , fjlw)' (5. 1)

and from 14.4)

[JI , fjlwl' = It f- His 11421451511 9- HE = IKR " 't
- ' III.ji , 9,742 15.4

Hence

IKR"'T'll
-2

EJI , f,- (w)
'
⇐ §? ,

9,4W)'s HR "' 11¥ , fjlw)
'

15-3 )

suppose we can show limn→ • HR
" 'll = C < •

.
Since 1=11 R'

" ' ( R "'t
- '

11<-11121"'ll -111 Ring
- '

11

we have 11 ( RM )
- '

II
- '

e Il R"' II so also limn→ all ( R
"' )

- ' II
- '
< •

. So it will

follow from 15.3) that I,É , fjlw)2<0 and ← provided limn→ • I / (RM )
- '

II
"
> 0

"

1<14 - §? , g. (up
keep - )

(5-4)

Note that

HR"'tF- sup {
"

I ⇒ c- 112410} }
( 5. 5)

= sup /
Ee:'(R'

"
±)i/zi=

, .ci I ± -1-0 }

= sup /
Ei⇒ / Egil R'

"

ej "j}Yqn=
,ai / *to]

But R'¥. xj
= Lej , ce> xj = < ejxj , ce> so ( by Parseral 's identity)

ÉIEJI , R '

"ejxj}
'

= 11 EJI , xjej IT is:b )
f- I



⑥

Hence G.5) gives

HR"' It = sup { 11 EJI , xjej IT/ 11×-11,2 I ± -1-0 } = Ann IT 16.1)

whereun
: Pi→ LYX

, E) is the linear mapUn ( ni )
= ei where Ui is the standard basis,

and 11mn11 denotes the operator norm with respectto 11 -1k on IR
"

and 11-11 of LYX, E) .

Hence HR
"'

11=11941 .

It is clear that ( HMH ) E- i is an increasing function, so

limn→all R" 'll = snap 11µV and so it suffices to show the set { 11mn11 In> I } is bounded.

Lemma_ There is a well-defined linearmapµ
: til IR)→ LYX , E) defined by

M( a- ) = Ej= , ajej . Moreoverµ is bounded
,
and Hun 11£ HMU for all n .

/

Proof If a- C- 19112) then EjÉ It ajej 11 = EJE , lajlllej 11 converges by
Holder 's inequality , since I a-/ C- lick ) and ( 11 g- 11 )j= , c- LTR ) .

Hence

E- i ajej converges [ 131 , lemma 131-4] - We have \
Hypothesis (A)

I/Met 11 = 11 limn→ • EJI , ajej 11

It is clear 11mn11 ⇐ 11m11 . ☐
⇐ III. Ej= , lajlllej 11

Holder

a- It a- 111 e- 112 e- = (119-11)%1

Hence 11911£ 11 e- Hz and son is bounded . Since 11µm It is a supremum over

a subset of the set 11m11 is the supremum of, 11mn11 £11M 11 . ☐

00

Lemma_ Suppose (119-11)%-1 c- ETR) . Then Klw) ~ Ej⇒ fjlw)? and
hence Wo = {WE W / fjlw) = 0 for all jz I }

.

Proof Immediate fwm (5.4) and the previous lemma - ☐



!

Details on lower bound

the matrix A
"'

is lower triangular by construction : Amy.

= see
, Cj> ( see 13.21 )

.

Recall that

Eh = ek - E

- 72 K - 1 Lek, E-72

.
: III. IT = <einen> - 2EÉi%÷÷ + E-⇒ ⇒

= HeKIT - £? < ek.ci>
2

= Heh If - ( Henk - Lek , cn5)

= Lek , Ck>
2

By definition

C
,
= ⇐ e ,

Cz = ¥1 ( ez - < ez, a >G)

as = ¥w( en - E
,

'

< ek.ci> a.)

=É ,
en - Iii a.

since (A "')
"

e- = c- we see that 1A
" ')
"

is lower triangular and has diagonal entries 411%11 .

Readas① It N

( ITN )
- l =I-NtN2_N3k



• identity (R
"'t

- '
with inverseµ

-
'

•
" bounded inverse theorem

"⇒ 11M
- ' II Coo

deduce IKR "'T 'll c- 11N
- ' II

• Replacing K by sum of squares is related to
"

obvious positivity
"

µ
-

in 11 = surf y.it

f-
'

(4 =



③
Gram -Schmidt

Applying Gram - Schmidt we may produce an orthonormal basis for the span of
{ g- 1×13--9 in LTX, 8), call it (g)F- i. Recall that

E
,
= el

Ez = ez - I 13.1 )

i.

Ek = eh - [
k- ' <er,

i=i>É

and ci-lc-T.IE so that by construction g. c- Spanky . . -

.ci/forjz1.Indeedwehaveek--cI+Ei-E'

E. Hence

<ekicj > = 1¥, < en,g > = {
° I > K

Itch 11 j=k 13.2)

( Ekiti>1µg . µ j< K

The coefficients of Glx,w) in this new basis are (note the gjlw) need not be polynomial )

gjlw) : -_ ( Gaw) , g. (x) > = [ ( fklwleklx ) , g- (x) >
12=1

( 3. 3)
00

= [ fklw ) (ek , Cj>
12=1

and we have

•

Glx, w ) = [ gjlw) g- (x ) (3-4)
g- =\

Klw) = E-
j= , 9J /w)

'


