Singular Learning Theory 14 : From analytic to algebraic

Watanabe claims in $[W]$ a deep role for algebraic geometry in statistical learning theory, which is at first quite surprising since the main function of interest $K(\omega)$ is analytic but only rarely a polynomial. So where do the polynomials come from?

Recall from $[W,\{7]$ that given a triple (p, q, φ) with Kullback-Leibler distance

$$
K(w)=\int q(x) \log \frac{q(x)}{p(x \mid w)} d x
$$

and zeta function

$$
\zeta(z)=\int K(w)^{z} \varphi(w) d w
$$

if the largest pole of ζ is $(-\lambda)$ then λ is called the learning weffient of (p, q, φ), and as long as φ does not vanish on W_{0} this agrees with the RLCT of $K\left[W, D^{n} 2.7\right]$, which recall is computed as the minimum of $\left(h_{j}+1\right) / k_{j}$ over all $1 \leq j \leq d$ and coordinate patches in the resolution that put $K(g(u))$ into normal crossing form $u^{2 k}$ with Jawbian $u^{h} d u$. From $[w$, Remark 7.2]

Def ${ }^{n}$ Two analytic functions $H(w), K(w)$ are equivalent if there exist $c_{1}, c_{2}>0$ with

$$
c_{1} H(w) \leqslant K(w) \leqslant c_{2} H(w) \quad \forall w \in W
$$

Lemma If H, K are equivalent they have the same learning coefficient. shows $K \leqslant C_{2} H$

$$
\text { /implies } \lambda_{K} \leqslant \lambda_{H}
$$

Proof (Sketch) We may assume H, K are simultaneously resolved, and then $K \leq c_{2} H$ means $K(g(u)) \leq c_{2} H(g(u))$ or $u^{2 k} \leq c_{2} f(u) u^{2 k^{\prime}}$ hence by $\left[w\right.$, Theorem 2.6] there is a real analytic function $g(u)$ with $u^{2 k}=c_{2} g(u) u^{2 k^{\prime}}$ and from the Taylor expansion $k_{j} \geqslant k_{j}^{\prime}$ for all j. Hence $\frac{h_{j}+1}{2 k_{j}^{\prime}} \geqslant \frac{h_{j}+1}{2 k_{j}}$.

Def n we write $H \sim K$ if H, K are equivalent analytic functions. It is easy to see that this is an equivalence relation. We sometimes write $H^{c_{1}, c_{2}} K$ for the situation in (1.0).

In Watanabe's book and papers $[A W, W 2]$ the following strategy is employed to compute the learning wefficient of a statistical model:
(1) Compute a Taylor series expansion (in x) of $f(x, \omega)=\log \frac{g(x)}{p(x \mid \omega)}$ and use it to construct a polynomial function $H(w)$ equivalent to $K(w)$.
(2) Perform resolution of singularities on H to determine its learning wefficient (and thus the learning wefficient of K).

In this note we focus on (1), following [W, Remark 7.6, p. 227].

Setup

We assume (p, q, φ) satisfy Fundamental Condition (I) of $\left[W, \operatorname{Def}^{n} 6.1\right]$ for some $s \geqslant 2$. In particular $F(x, w)=\log (q(x) / p(x, w))$ is represented by an absolutely wivergent powersevies in the neighborhood of an arbitrary $\omega^{*} \in W$

$$
\begin{equation*}
F(x, w)=\sum_{\alpha} a_{\alpha}(x)\left(w-w^{*}\right)^{\alpha} \tag{1.1}
\end{equation*}
$$

with $a_{\alpha}(x) \in L^{S}(X, q)$ (see $[W, S 5.2]$). Then in the neighborhood of ω^{*}

$$
\begin{align*}
K(w) & =\int q(x) F(x, w) d x \\
& =\sum_{\alpha}\left(w-w^{*}\right)^{\alpha} \int a_{\alpha}(x) q(x) d x \tag{1-2}
\end{align*}
$$

is an absolutely convergent series, so $K(\omega)$ is analytic.

Remark Adapting this to conditional distributions works as follows: fintly replace x by x, y and assume $p(x, y \mid w)=p(y / x, w) q(x), q(x, y)=q(y \mid x) q(x)$. Then

$$
\begin{align*}
F(x, y, w) & =\log (q(x, y) / p(x, y \mid w)) \tag{2-1}\\
& =\log (q(y \mid x) / p(y \mid x, w))
\end{align*}
$$

is represented by an absolutely convergent power series in the neighborhood of any $w^{*} \in W$

$$
\begin{equation*}
F(x, y, w)=\sum_{\alpha} a_{\alpha}(x, y)\left(w-w^{*}\right)^{\alpha} \tag{2.2}
\end{equation*}
$$

with $a_{\alpha}(x, y) \in L^{s}(X x y, q)$. Integrating over Y is continuous and linear (see e.g. [MHS, Lemma $L 17-1 / 2]$) and hence induces a continuous linear map $L^{s}(X \times y, q) \rightarrow L^{s}(X, q)$. Applying this to (7.2) yields

$$
\begin{align*}
T(x, w) & =\int q(y \mid x) F(x, y, w) d y \tag{2.3}\\
& =\sum_{\alpha}\left\{\int q(y \mid x) a_{\alpha}(x, y) d y\right\}\left(w-w^{*}\right)^{\alpha}
\end{align*}
$$

with $K(w)=\int J(x, w) q(x) d x$. Moreover $b_{\alpha}(x)=\int q(y \mid x) a_{\alpha}(x, y) d y \in L^{s}(x, q)$.

In this note We assume that we are in the special case where there exists $G(x, w)$ with

$$
\begin{equation*}
K(w)=\int q(x) G(x, w)^{2} d x=\|G(x, w)\|^{2} \tag{2.4}
\end{equation*}
$$

where the norm is in $L^{2}(x, 9)$ and we assume that $G(x, w)$ is represented by a polynomial $G(x, w)=\sum_{\alpha} a_{\alpha}(x) \omega^{\alpha}$ with $a_{\alpha}(x) \in L^{2}(x, 9)$, ie. $a_{\alpha}(x) \equiv 0$ for $|\alpha|$ sufficiently large.

We assume given a linearly indepenclent set $\left(e_{j}\right)_{j=1}^{\infty}$ in $L^{2}(X, q)$ such that
(A) The sequence $\left(\left\|e_{j}\right\|\right)_{j=1}^{\infty}$ is square-summable $\sum_{j=1}^{\infty}\left\|e_{j}\right\|^{2}<\infty$ and the induced bouncled linear map $l^{2}(\mathbb{R}) \longrightarrow L^{2}(x, q)$ is infective and has closed image (see (LIL]).
with absolutely convergent series $a_{\alpha}(x)=\sum_{j=1}^{\infty} c_{j, \alpha} e_{j}(x)$ for all α, with coefficients $c_{j, \alpha} \in \mathbb{R}$. Then with $f_{j}(w)=\sum_{\alpha} c_{j, \alpha} w^{\alpha}$ we have

$$
\begin{align*}
G(x, w) & =\sum_{\alpha} a_{\alpha}(x) \omega^{\alpha} \\
& =\sum_{j=1}^{\infty} \sum_{\alpha} c_{j}, \alpha \omega^{\alpha} e_{j}(x) \tag{3.1}\\
& =\sum_{j=1}^{\infty} f_{j}(w) e_{j}(x)
\end{align*}
$$

with polynomial coefficients $f_{j}(w)$.

Example In Remark 7.6 (p.225) Watanabe gives the following example of a statistical model $p(y \mid x, w) q(x)$ and tue distribution given by (we assume $q(x)$ is given)

$$
\begin{aligned}
& p(y \mid x, w)=\frac{1}{2} \exp \left(-\frac{1}{2}(y-f(x, w))^{2}\right) \\
& q(y \mid x)=\frac{1}{2} \exp \left(-\frac{1}{2}\left(y-f_{0}(x)\right)^{2}\right)
\end{aligned}
$$

so that $p(x, y \mid w)=p(y \mid x, w) q(x), q(x, y)=q(y \mid x) q(x)$ and

$$
\begin{aligned}
K(w) & =\frac{1}{2} \int\left(f(x, w)-f_{0}(x)\right)^{2} q(x) d x \\
& =\frac{1}{2}\left\|f(x, w)-f_{0}(x)\right\|^{2}
\end{aligned}
$$

so we take $G(x, w)=\frac{1}{\sqrt{2}}\left(f(x, w)-f_{0}(x)\right)$. It remains to be checked G satisfies the hypotheses.

Hypothesis (A) implies $T: l^{2}(\mathbb{F}) \longrightarrow L^{2}(x, q)$ is bounded and bounded below, so there exist $c_{1}, c_{2}>0$ such that for all $a=\left(a_{j}\right)_{j=1}^{\infty}$ in $l^{2}(\mathbb{F})$

$$
\begin{equation*}
C_{1}\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right) \leqslant\left\|\sum_{j=1}^{\infty} a_{j} e_{j}\right\|^{2} \leqslant C_{2}\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right) \tag{4.1}
\end{equation*}
$$

In particular, applying this to $\sum_{j=1}^{\infty} f_{j}(w) e_{j}(x)=G(x, w)$ we have

$$
\begin{equation*}
c_{1}\left(\sum_{j=1}^{\infty} f_{j}(\omega)^{2}\right) \leqslant K(\omega) \leqslant c_{2}\left(\sum_{j=1}^{\infty} f_{j}(\omega)^{2}\right) \tag{4.2}
\end{equation*}
$$

The upper bound

Let $I \subseteq \mathbb{R}[\omega]$ denote the ideal generated by the polynomials $\left\{f_{j}\right\}_{j=1}^{\infty}$. By the Hilbert basis theorem $I=\left(f_{1}, \ldots, f_{J}\right)$ for some integer J. Let $>$ denote the graded lex monomial orcler on $\mathbb{Z}_{\geqslant 0}^{n}$ where $\mathbb{R}[\omega]=\mathbb{R}\left[\omega_{1}, \ldots, \omega_{n}\right]$, see $[G G B, p, 17]$. We assume f_{1}, \ldots, f_{J} is a Gröbner basis of I (see [CLO] for background), and we introduce the following notation from $[G A B]$ clarity

$$
\begin{equation*}
D_{\alpha}=\left\{j \mid 1 \leqslant j \leqslant J \text { and } L T\left(f_{j}\right) \mid w^{\alpha}\right\} \quad \alpha \in \mathbb{Z}_{\geqslant 0}^{n} \tag{7-1}
\end{equation*}
$$

where LT denotes the leading term with respect to $>$. We write $d_{\alpha}=|D \alpha|$ and for $\alpha>\beta$ and an inclex $j \in D \alpha$ we write (fee $[G G B, p,(1)]$)

$$
\begin{equation*}
\tau_{\alpha, \beta, j}=\left(\frac{\omega^{\alpha}}{L T\left(f_{j}\right)} f_{j}\right)_{\beta} \in \mathbb{R} \tag{7.2}
\end{equation*}
$$

where $(-)_{\beta}$ denotes the coefficient of ω^{β}. Then for $\alpha>\beta$

$$
\begin{equation*}
\mathcal{T}_{\alpha, \beta}=\sum_{j \in D \alpha} \mathcal{J}_{\alpha, \beta, j} \tag{7.3}
\end{equation*}
$$

The proposition on $[G G B, p$, (14) $]$ shows that if $f \in I$ then (using a "generic" form of the division algorithm, called Algorithm II in $[G G B]$)

$$
\begin{align*}
& f= \sum_{m=1}^{\infty} \sum_{\alpha_{1}>\cdots>\alpha_{m}} \sum_{j \in D_{\alpha_{m}}} \frac{(-1)^{m+1}}{d_{\alpha_{1}} \cdots d_{\alpha_{m}}} \tag{7.4}\\
& f_{\alpha_{1}} \underbrace{J_{\alpha_{1}, \alpha_{2}} J_{\alpha_{2}, \alpha_{3}} \cdots J_{\alpha_{m-1}, \alpha_{m}}} \frac{\omega^{\alpha_{m}}}{\operatorname{LT}\left(f_{j}\right)} f_{j} \\
& \text { this is } 1 \text { it } m=1 \text {, and } f_{\alpha_{1}}=f_{\alpha_{m}} \\
& \text { ie. } m=1 \text { has } \sum_{\alpha} \text { and } \alpha_{1}=\alpha_{m}=\alpha .
\end{align*}
$$

where the summand is zero if $d_{\alpha ;}=0$ for any $1 \leq i \leq m$. This is a "sum over paths". We have used the obsewation on p. (2) of (9gb5) which allows as to avoid fixing a downward closed set 1 .

In particular this means we may write $f=\sum_{k=1}^{J} a^{k} f_{k}$ with polynomials a^{k} given by

$$
\begin{equation*}
a^{k}=\sum_{m=1}^{\infty} \sum_{\substack{\alpha_{1}>\cdots>\alpha_{m} \\ k \in D_{\alpha_{m}}}} \frac{(-1)^{m+1}}{d_{\alpha_{1}} \cdots d_{\alpha_{m}}} \underbrace{f_{\alpha_{1}} J_{\alpha_{1}, \alpha_{2}} J_{\alpha_{2}, \alpha_{3}} \ldots J_{\alpha_{m-1}, \alpha_{m}} \frac{\omega^{\alpha_{m}}}{L T\left(f_{k}\right)}}_{\text {all constants }} \tag{8.1}
\end{equation*}
$$

As above, for the $m=1$ term we have \sum_{α} and $f_{\alpha} \frac{\omega^{\alpha}}{L T\left(f_{k}\right)}$. Despite the "年" this sum is finite. We associate each summand to a path in the oriented graph which has $\mathbb{Z}_{\geqslant 0}^{n}$ as vertices and an edge $\beta \rightarrow \alpha$ if $T_{\alpha, \beta} \neq 0$,

Def n We call (8.2) the division graph of the Gröbner basis f_{1}, \ldots, f_{J}.

Note that, as opposed to the stanclard division algorithm, which "branches" "lepencling on f, (8.1) depends on f only via the coefficients $f \alpha$, and in this sense is "generic" in f. We can write this even more manifest by clefining for $\alpha>\beta$

$$
\begin{equation*}
K(\alpha, \beta)=\sum_{m=1}^{\infty} \sum_{\substack{\alpha_{1}>\cdots>\alpha_{m} \\ \alpha_{1}=\alpha_{1} \alpha_{m}=\beta}} \frac{(-1)^{m+1}}{d_{\alpha_{1}} \cdots d_{\alpha_{m}}} J_{\alpha_{1}, \alpha_{2}} J_{\alpha_{2}, \alpha_{3} \ldots} J_{\alpha_{m-1}, \alpha_{m}} \tag{8.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
a^{k}=\sum_{\alpha} \sum_{\substack{\beta \\ k \in D_{\beta}}} f_{\alpha} K(\alpha, \beta) \frac{w^{\beta}}{\operatorname{LT}\left(f_{k}\right)} \tag{8,4}
\end{equation*}
$$

Since $>$ is total we can think of \sum_{α} as a sum over \mathbb{N}, and think of (8.4) as a clot procluct of a sequence $\left(f_{\alpha}\right)_{\alpha}$ and $\left(\sum_{\beta \text { s.t. } k \in D_{\beta}}^{\alpha} K(\alpha, \beta)^{\omega \beta} / L_{T}\left(f_{R}\right)\right)_{\alpha}$. We set

$$
\begin{equation*}
\Omega_{\alpha}^{k}=\sum_{\substack{\beta<\alpha \\ k \in D_{\beta}}} K(\alpha, \beta) \frac{w \beta}{L T\left(f_{k}\right)} \tag{8,5}
\end{equation*}
$$

so that $\Omega_{\alpha}^{k} \in \mathbb{R}[\omega]$ and

$$
\begin{equation*}
a^{k}=\sum_{\alpha} f_{\alpha} \Omega_{\alpha}^{k} \tag{9,1}
\end{equation*}
$$

If we now have a sequence of polynomials $\left(F_{i}\right)_{i=1}^{\infty}$ in place of f then $F_{i}=\sum_{k=1}^{J} a_{i}^{k} f_{k}$ where $a_{i}^{k}=\sum_{\alpha}\left(F_{i}\right)_{\alpha} \Omega_{\alpha}^{k}$. Suppose we wish to construct an upper bound for $\sum_{i=1}^{\infty} F_{i}^{2}$ in terms of $\sum_{j=1}^{J} f_{j}^{2}$. Then we will want to use Cauchy-Schwartz as follows

$$
\begin{align*}
\sum_{i=1}^{N} F_{i}^{2} & =\sum_{i=1}^{N}\left(\sum_{k=1}^{J} a_{i}^{k} f_{k}\right)^{2} \tag{9.1}\\
& \leqslant \sum_{i=1}^{N}\left(\sum_{k=1}^{J}\left(a_{i}^{k}\right)^{2}\right)\left(\sum_{k=1}^{J} f_{k}^{2}\right) \\
& =\left(\sum_{j=1}^{J} f_{j}^{2}\right) \cdot \sum_{k=1}^{J} \sum_{i=1}^{N}\left(a_{i}^{k}\right)^{2}
\end{align*}
$$

so the existence of the upper bounded hinges on convergence of $\sum_{i=1}^{\infty}\left(a_{i}^{k}\right)^{2}$.

Remark If there is no path from β to α in the division graph then $K(\alpha, \beta)=0$.
Theorem Suppose in addition to Hypothesis (A) of p2.5 we additionally assume
(B) The sequence $\left(c_{j, \alpha}\right)_{j=1}^{\infty}$ is square-summable $\sum_{j=1}^{\infty}\left|c_{j, \alpha}\right|^{2}<\infty$ for all α (recall that $f_{j}=\sum_{\alpha} c_{j, \alpha} \omega^{\alpha}$). We write $\left\|f_{\alpha}\right\|=\left\{\sum_{j=1}^{\infty}\left|c_{j, \alpha}\right|^{2}\right\}^{1 / 2}$.
(c) $\sum_{\alpha}\left\|f_{\alpha}\right\|_{2}^{2}\left(\Omega_{\alpha}^{k}\right)^{2}<\infty$ for $1 \leqslant k \leqslant J$.

Then K is equivalent to $\sum_{j=1}^{J} f_{j}^{2}$.

Proof The lower bound follows from (4.2) so it suffices to show the upper bound Set $F_{i}=f_{J+i}$. Then by hypothesis (B), the sequence $\left(\left(F_{i}\right)_{\alpha}\right)_{i=1}^{\infty}$ is squave-summable for each $\alpha \in \mathbb{Z} \geqslant 0$. Hence by Cauchy-Schwartz, in the above notation

Contains mistake

$$
\begin{align*}
\sum_{i=1}^{N}\left(a_{i}^{k}\right)^{2} & =\sum_{i=1}^{N}\left(\sum_{\alpha}\left(F_{i}\right) \alpha \Omega_{\alpha}^{k}\right)^{2} \text { amor } \\
& \leqslant \sum_{i=1}^{N} \sum_{\alpha}\left(F_{i}\right)_{\alpha}^{2}\left(\Omega_{\alpha}^{k}\right)^{2} \tag{10.1}\\
& =\sum_{\alpha}\left(\sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}^{2}\right)\left(\Omega_{\alpha}^{k}\right)^{2}
\end{align*}
$$

The sum (9.1) is finite because f is polynomial, but in (9.2) we mount keep in mind that as N increases the number of α being summed over may also increase without bound. For each N let $\alpha_{N} \in \mathbb{Z}_{\geqslant 0}^{n}$ be sufficiently large in the monomial order that

$$
\begin{equation*}
\sum_{\alpha}\left(\sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}^{2}\right)\left(\Omega_{\alpha}^{k}\right)^{2}=\sum_{\alpha \leqslant \alpha_{N}} \sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}^{2}\left(\Omega_{\alpha}^{k}\right)^{2} \tag{10.2}
\end{equation*}
$$

Let $\left\|F_{\alpha}\right\|_{2}=\left\{\sum_{i=1}^{\infty}\left(F_{i}\right)_{\alpha}^{2}\right\}^{1 / 2}$ which we have assumed is finite. Then (10.2) gives

$$
\begin{equation*}
\sum_{i=1}^{N}\left(a_{i}^{k}\right)^{2} \leqslant \sum_{\alpha \leq \alpha_{N}}\left\|F_{\alpha}\right\|_{2}^{2}\left(\Omega_{\alpha}^{k}\right)^{2} \tag{10.3}
\end{equation*}
$$

Hypothesis (C) says the RHS is bounded above and hence the LHS converges. This is uniform convergence, so the limit is a continuous function $A^{k}(w)=\sum_{i=1}^{\infty}\left(a_{i}^{k}\right)(w)^{2}$. Since W is compact $A^{k}(w) \leq M^{k}$ for some constant M^{k}. By (4.2) there exists $C>0$ with

$$
\begin{align*}
K(w) & \leqslant C \sum_{j=1}^{\infty} f_{j}(w)^{2} \\
& =C \sum_{j=1}^{J} f_{j}(w)^{2}+C \sum_{i=1}^{\infty} F_{i}(w)^{2} \tag{10.4}\\
& \leqslant C \sum_{j=1}^{J} f_{j}(w)^{2}+C\left(\sum_{j=1}^{J} f_{j}^{2}\right) \cdot \sum_{k=1}^{J} A^{k}(w) \\
& \leqslant\left\{C+C\left(\sum_{k} M^{k}\right)\right\} \sum_{j=1}^{J} f_{j}(w)^{2}
\end{align*}
$$

as claimed.

$$
\begin{aligned}
\sum_{i=1}^{N}\left(a_{i}^{k}\right)^{2} & =\sum_{i=1}^{N}\left(\sum_{\alpha}\left(F_{i}\right) \alpha \Omega_{\alpha}^{k}\right)^{2} \text { those appeasing in } F_{i} \\
& \leqslant \sum_{i=1}^{N}\left(\sum_{\alpha}\left(F_{i}\right)_{\alpha}^{2}\right)\left(\sum_{\alpha}\left(\Omega_{\alpha}^{k}\right)^{2}\right) \quad \text { (10.1) } \\
& =\left(\sum_{\alpha}\left(\Omega_{\alpha}^{k}\right)^{2}\right) \sum_{\alpha} \sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}{ }^{2}
\end{aligned}
$$

$\hat{\imath}$ assuming this converges
The sum (9.1) is finite because f is polynomial, but in (9.2) we mount keep in mind that as N increases the number of α being summed over may also increase without bound. For each N let $\alpha_{N} \in \mathbb{Z}_{\geqslant 0}^{n}$ be sufficiently large in the monomial order that

$$
\begin{equation*}
\sum_{\alpha}\left(\sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}^{2}\right)\left(\Omega_{\alpha}^{k}\right)^{2}=\sum_{\alpha \leqslant \alpha_{N}} \sum_{i=1}^{N}\left(F_{i}\right)_{\alpha}^{2}\left(\Omega_{\alpha}^{k}\right)^{2} \tag{10.2}
\end{equation*}
$$

Let $\left\|F_{\alpha}\right\|_{2}=\left\{\sum_{i=1}^{\infty}\left(F_{i}\right)_{\alpha}^{2}\right\}^{1 / 2}$ which we have assumed is finite. Then (10.2) gives

$$
\begin{equation*}
\sum_{i=1}^{N}\left(a_{i}^{k}\right)^{2} \leqslant \sum_{\alpha \leqslant \alpha_{N}}\left\|F_{\alpha}\right\|_{2}^{2}\left(\Omega_{\alpha}^{k}\right)^{2} \tag{10.3}
\end{equation*}
$$

Hypothesis (C) says the RHS is boundedabove and hence the LHS converges. This is uniform convergence, so the limit is a continuous function $A^{k}(w)=\sum_{i=1}^{\infty}\left(a_{i}^{k}\right)(w)^{2}$. Since W is compact $A^{k}(w) \leqslant M^{k}$ for some constant M^{k}. By (4.2) there exists $C>0$ with

$$
\begin{align*}
K(w) & \leqslant C \sum_{j=1}^{\infty} f_{j}(w)^{2} \\
& =C \sum_{j=1}^{J} f_{j}(w)^{2}+C \sum_{i=1}^{\infty} F_{i}(w)^{2} \tag{10.4}\\
& \leqslant C \sum_{j=1}^{J} f_{j}(w)^{2}+C\left(\sum_{j=1}^{J} f_{j}^{2}\right) \cdot \sum_{k=1}^{J} A^{k}(w) \\
& \leqslant\left\{C+C\left(\sum_{k} M^{k}\right)\right\} \sum_{j=1}^{J} f_{j}(w)^{2}
\end{align*}
$$

as claimed.

Example In [W, Example 7.1] we have, up to a factor of $1 / 2$ we will ignore,

$$
\begin{equation*}
G(x, w)=\sum_{j=1}^{\infty} \frac{x^{j}}{j!}\left(a b^{j}+c d^{j}\right) \tag{11.1}
\end{equation*}
$$

where $\mathbb{R}[w]=\mathbb{R}[a, b, c, d]$. As is typical, there is some choice of how to allocate the factor $1 / j$! between $e_{j}(x)$ and $f_{j}(w)$. Let us choose $s_{j}, r_{j}>0$ such that $s_{j} r_{j}=1 / j$! and set $e_{j}(x)=S_{j} x^{j}, f_{j}(w)=r_{j}\left(a b^{j}+c d^{j}\right)$. The $\left\{e_{j}\right\}$ are linearly independent (under any reasonable choice of X, q) and Spencer's note shows that e.g. if $s ;=1 / \sqrt{j!}$ then $\sum_{j=1}^{\infty}\left\|e_{j}\right\|^{2}<\infty$ if $X=[-1,1]$ with $q(x)$ uniform, so (A) is satisfied. Hence we get the lower bound $c H \leqslant K$ of p. (6) with $H=\sum_{j=1}^{J} f_{j}^{2}$.

We concentrate our attention here on (B), (C). For the moment take $f_{j}=a b^{j}+c d^{j}$. A Gröbner basis for I is f_{1}, g_{2} where $g_{2}=c^{2} d^{2}$. Note that if we can upper bound K by a constant multiple of $f_{1}^{2}+g_{2}^{2}$ we can certainly upper bound it by a constant multiple of $f_{1}^{2}+f_{2}^{2}$ (by Cauchy-Schwart z) so we just now assume $f_{2}=g_{2}$ in the above. Note that for $|\alpha| \geqslant 5$ (to avoid f_{1}, f_{2})

$$
\left\|f_{\alpha}\right\|=\left\{\sum_{j=1}^{\infty}\left|c_{j, \alpha}\right|^{2}\right\}^{1 / 2}= \begin{cases}1 & \alpha=(1, j, 0,0) \text { or }(0,0,1, j) \\ 0 & \text { otherwise }\end{cases}
$$

Hence (B) holds and for (C) it suffices to show that

$$
\begin{equation*}
\sum_{\alpha \in \Lambda}\left(\Omega_{\alpha}^{k}\right)^{2}<\infty \quad \Lambda=\{(1, j, 0,0) \mid j \geqslant 4\} \cup\{(0,0,1, j) \mid j \geqslant 4\} \tag{11.2}
\end{equation*}
$$

For this we analyse the constants of (7.2) and paths of (8.2). For $\alpha>\beta$, if $L T\left(f_{1}\right) \mid w^{\alpha}$ and say $\alpha=\gamma+(1,1,0,0)$ then

$$
\begin{align*}
J_{\alpha, \beta, 1} & =\left(\frac{\omega^{\alpha}}{a b}(a b+c d)\right)_{\beta}=\left(\omega^{\alpha}+\omega^{\gamma} c d\right) \beta \tag{11.3}\\
& =\left(\omega^{\gamma} c d\right)_{\beta}=\delta(\beta=\gamma+(0,0,1,1)) \\
& =\delta(\beta=\alpha+(-1,-1,1,1))
\end{align*}
$$

If $L T\left(f_{2}\right) \mid \omega^{\alpha}$ say $\alpha=\gamma+(0,0,2,2)$ then for $\alpha>\beta$

$$
\begin{equation*}
\mathcal{J}_{\alpha, \beta, 2}=\left(\frac{w^{\alpha}}{c^{2} d^{2}}\left(c^{2} d^{2}\right)\right)_{\beta}=\left(w^{\alpha}\right)_{\beta}=0 \tag{12.1}
\end{equation*}
$$

Hence $\mathcal{T}_{\alpha, \beta}=\sum_{j \in D_{\alpha}} \mathcal{J}_{\alpha, \beta, j}$ is zeno if $a b \nmid \omega^{\alpha}$ and otherwise it is equal to $\delta(\beta=\alpha+(-1,-1,1,1))$. Thus the division graph (8.2) consists of edges from $\beta \in \mathbb{Z} \geqslant 0$ to $\beta+(1,1,-1,-1)$ whenever this makes sense, , e. belongs to $\mathbb{Z}_{\geqslant 0}^{n}$. Now

$$
\Omega_{\alpha}^{k}=\sum_{\substack{\beta<\alpha \\ k \in D \beta}} K(\alpha, \beta) \frac{w \beta}{L T\left(f_{k}\right)}
$$

and $\operatorname{LT}\left(f_{1}\right)\left|\omega^{\beta} \Longleftrightarrow \beta_{1} \geqslant 1, \beta_{2} \geqslant 1, \operatorname{LT}\left(f_{2}\right)\right| \omega^{\beta} \Longleftrightarrow \beta_{3} \geqslant 2, \beta_{4} \geqslant 2$. But $K(\alpha, \beta) \neq 0$ implies $\alpha=\beta+r \eta$ where $\eta=(1,1,-1,-1)$ and $r \geqslant 1$ is an integer. If $\alpha \in \Lambda$ then $\beta=\alpha-r \eta$ can only be in $\mathbb{Z}_{\geqslant 0}^{n}$ if $\alpha=(1, j, 0,0)$ for some $j \geqslant 4$ in which case the only possibility for β is $\alpha-\eta=(0, j-1,1,1)$. But $\operatorname{LT}\left(f_{1}\right) \nmid \omega^{\beta}, L T\left(f_{2}\right) \nmid \omega^{\beta}$ hence

$$
\begin{equation*}
\Omega_{\alpha}^{k}=0 \quad \forall k \quad \forall \alpha \in \Lambda \tag{12.2}
\end{equation*}
$$

proving (c). Hence by the Theorem

$$
\begin{align*}
K & \sim f_{1}^{2}+f_{2}^{2}=(a b+c d)^{2}+\left(a b^{2}+c d^{2}\right) \tag{12.3}\\
& \sim f_{1}^{2}+g_{2}^{2}=(a b+c d)^{2}+c^{4} d^{4}
\end{align*}
$$

References

[w] S.Watanabe "Algebraic geometry and statistical learning theory" 2009.
[AW] M. Aoyagi, S. Watanabe "Resolution of singularities and the generalization error with Bayesian estimation for layered neural networks" 2007
[wa] S. Watanabe "Algebraic geometrical methods for hierarchical learning machines" Neural networks 2001.
[BI] http://therisingsea.org/notes/mast90132/background1.pdf
[CLO] D. Cox, J. Little, D. O'shea "Ideals, Vanities and algorithms", evil springer.
[GGB] D. Murfet "Generic Gröbner bases".
[GAB2] D. Murtet "Generic Gwöbner bases 2"
[LIL] D. Murfet "Linear independence and Lipschitz"

Now

$$
\begin{equation*}
\left(\Omega_{\alpha}^{k}\right)^{2}=\sum_{\substack{\beta, \beta^{\prime}<\alpha \\ k \in D_{\beta} \cap D_{\beta^{\prime}}}} K(\alpha, \beta) K\left(\alpha, \beta^{\prime}\right) \frac{w^{\beta+\beta^{\prime}}}{L T\left(f_{k}\right)^{2}} \tag{12.1}
\end{equation*}
$$

entrywise not grevilex
Hence for $\gamma \in \mathbb{Z}_{\geqslant 0}^{n}$ (it we have $L T\left(f_{k}\right)=h \omega^{3}$ then $k \in D \beta$ iff. $\omega^{3} \mid w^{\beta}$ iff. $\beta-3 \stackrel{l}{\stackrel{l}{\geqslant}} 0$)

$$
\begin{align*}
\left(\Omega_{\alpha}^{k}\right)_{\gamma}^{2} & =\sum_{3 \leqslant \beta, \beta^{\prime}<\alpha} K(\alpha, \beta) K\left(\alpha, \beta^{\prime}\right)\left[\frac{\omega^{\beta+\beta^{\prime}}}{L T\left(f_{k}\right)^{2}}\right]_{\gamma} \\
= & \sum_{3 \leqslant \beta, \beta^{\prime}<\alpha} K(\alpha, \beta) K\left(\alpha, \beta^{\prime}\right) \cdot \frac{1}{h^{2}} \delta\left(\beta+\beta^{\prime}-23=\gamma\right) \\
= & \frac{1}{h^{2}} \sum \begin{aligned}
& \\
& \\
& \left.\beta+\beta^{\prime}=\gamma+2\right\}
\end{aligned} \tag{12.2}
\end{align*}
$$

Hence

$$
\begin{gather*}
\sum_{\alpha \in \Lambda}\left(\Omega_{\alpha}^{k}\right)_{\gamma}^{2}=\frac{1}{h^{2}} \sum_{\alpha \in \Lambda} \sum_{\left.\beta+\beta^{\prime}=\gamma+2\right\}} k(\alpha, \beta) k\left(\alpha, \beta^{\prime}\right) \tag{12.3}\\
\zeta \stackrel{e}{e} \beta, \beta^{\prime}
\end{gather*}
$$

Now

$$
d_{\alpha-i \eta}= \begin{cases}0 & a b \nmid \omega^{\alpha-i \eta} \text { and } c^{2} d^{2} \nmid \omega^{\alpha-i \eta} \tag{13.4}\\ 1 & a b \mid \omega^{\alpha-i \eta} \text { or } c^{2} d^{2} \mid \omega^{\alpha-i \eta} \\ 2 & a b \mid \omega^{\alpha-i \eta} \text { and } c^{2} d^{2} \mid \omega^{\alpha-i \eta}\end{cases}
$$

Hence $d_{\alpha}=1, d_{\alpha-\eta}=1$ so $K(\alpha, \alpha-\eta)=-1$. Now $\beta=\alpha-r \eta=(0, j-1,1,1)$ so $\operatorname{LT}\left(f_{k}\right) \mid \omega^{\beta}$ is impossible for $k \in\{1,2\}$. Hence

$$
\begin{equation*}
\sum_{\alpha \in \Lambda}\left(\Omega_{\alpha}^{k}\right)_{\gamma}^{2}=0 \tag{13.5}
\end{equation*}
$$

$$
\begin{array}{llllll}
\cdots & \alpha_{q+1} & \alpha_{4} & \cdots & \alpha_{3} & \alpha_{2}
\end{array} \alpha_{1}
$$

- $J_{a, b}=0$ for $\alpha_{a} \gg \alpha_{b}$
(价, $b \gg a$)
so paths between distant α 's involve many steps, hence if we can bound T^{\prime} ' <1 we can probably get convergence?
- assume $f_{1} \ldots, f_{J}$ ave monomial?

$$
\begin{aligned}
& \begin{aligned}
& f_{k}=a b^{k}+c d^{k} \\
& T_{\alpha, \beta, 1}=\left(\frac{x^{\alpha}}{L T\left(f_{1}\right)} f_{1}\right)_{\beta} L T\left(f_{j}\right) \mid x^{\alpha} \Leftrightarrow \alpha=(1,1,0,0)+\gamma \\
&=\left(x^{\gamma} f_{1}\right)_{\beta}=\left(x^{\gamma} a b+x^{\gamma} c d\right) \beta \alpha_{2} \geqslant 1 \\
&=\delta \alpha=\beta+\delta_{\beta=\gamma} \\
& j=1=\delta(\beta=\alpha+(-1,-1,1,1)) \\
&=\delta(\alpha=\beta+(1,1,-1,-1))
\end{aligned} \\
& \begin{aligned}
\operatorname{LT}\left(f_{2}\right) \mid x^{\alpha} \Leftrightarrow \alpha \geqslant 1, \alpha_{2} \geqslant 2
\end{aligned} \\
& \Leftrightarrow \alpha=(1,2,0,0)+\gamma
\end{aligned}
$$

In (12.3) we can rewrite the sum us being indexed by $r, r^{\prime} \geqslant 1$ such that $\beta=\alpha-r^{\eta}, \beta^{\prime}=\alpha-r^{\prime} \eta$ belong to $\mathbb{Z}_{\geqslant 0}^{n}$ and satisfy the required conditions. These are

$$
\begin{align*}
& 2 \alpha-\left(r+r^{\prime}\right) \eta=\gamma+2 \zeta \\
& \zeta+r \eta, \zeta+r^{\prime} \eta \leqslant \alpha
\end{align*}
$$

Hence α only contributes if 2α is on a path in the division graph starting at $\gamma+2 \zeta$. There are only finitely manysuch α, so $\sum_{\alpha}\left(\Omega_{\alpha}^{k}\right)_{\gamma}^{2}$ is a finite sum.

$$
\begin{aligned}
& \sum_{\alpha}\left(\Omega \Omega_{\alpha}^{k}\right)^{2} \leq \frac{1}{h^{2}} \sum_{\alpha} \sum_{\substack{r+r^{\prime}=t \\
2 \alpha=\gamma+2 \zeta+t \eta \\
r, r^{\prime} \geqslant 1}}\left|k(\alpha, \alpha-r \eta) k\left(\alpha, \alpha-r^{\prime} \eta\right)\right| \\
& \text { for some } t \geqslant 2 \\
& \leq \frac{1}{h^{2}} \sum_{\alpha} \sum_{r+r^{\prime}=t} 4 \cdot 2^{-\left(r+r^{\prime}\right)} \\
& 2 \alpha=\gamma+2 \zeta+t \eta \quad r, r^{\prime} \geqslant 1 \\
& \text { for some } t \geqslant 2 \\
& =\frac{4}{h^{2}} \sum_{\alpha}(t-1) 2^{-t} \\
& 2 \alpha=\gamma+2 \zeta+t \eta \\
& \text { foursome } t \geqslant 2 \\
& \leqslant \frac{4}{h^{2}} \sum_{t=2}^{M_{\gamma}^{k}}(t-1) 2^{-t}
\end{aligned}
$$

where $M_{\gamma}^{k}=\min \left\{(\gamma+2 \zeta)_{3},(\gamma+2 \zeta)_{4}\right\}$.

The upper bound

We now assume $\left(\left\|e_{j}\right\|\right)_{j=1}^{\infty} \in l^{2}(\mathbb{R})$ and let $C>0$ be such that $K(w)=C \sum_{j=1}^{\infty} f_{j}(w)^{2}$.
Let $A_{n}(w)=\sum_{j=n+1}^{\infty} f_{j}(w)^{2}$ which is analytic since $A_{n}(w)=K(w)-\sum_{j=1}^{n} f_{j}(w)^{2}$, and clearly $A_{n+1}(\omega) \leqslant A_{n}(\omega)$ for all $\omega \in W$.

Lemma For all $\omega \in W$ there exists N_{ω} such that $A_{n}(\omega) \leqslant \sum_{j=1}^{n} f_{j}(\omega)^{2}$ for all $n \geqslant N_{\omega}$

Proof If $\omega \in W_{0}$ this is vacuous, since both sidles are zew. If $\omega \notin W_{0}$ then $f_{j_{0}}(\omega) \neq 0$ for some $j 0$, and since $\lim _{n \rightarrow \infty} A_{n}(w)=0$ there exists N such that $A_{n}(\omega)<f_{j_{0}}(\omega)^{2}$ for all $n \geqslant N$. Set $N_{\omega}=\max \left\{N, j_{0}\right\}$ then for $n \geqslant N \omega$

$$
\sum_{j=1}^{n} f_{j}(w)^{2} \geqslant f_{j o}(w)^{2}>A_{n}(w)
$$

as claimed.

By the Lemma the following quantity is well-defined:

$$
M(w):=\inf \left\{N \mid N \geqslant 1, \quad A_{n}(w) \leqslant \sum_{j=1}^{n} f_{j}(w)^{2} \text { for all } n \geqslant N\right\}
$$

Note that $M(w)=1$ for all $w \in W_{0}$.

Lemma The function M is uppersemi-continuous: for every $w \in W$ there is an open neighborhood U of w such that $M(u) \leq M(w)$ for all $u \in U$.

Proof If $M=M(w)$ then $\sum_{j=1}^{n} f_{j}(w)^{2}-A_{n}(w) \geqslant 0$

Hence by [MHS, The L21-10]

$$
\begin{align*}
K(\omega) & =\frac{1}{2}\left\|f(x, w)-f_{0}(x)\right\|^{2} \\
& =\frac{1}{2} \sum_{j=1}^{\infty}\left|\left\langle f(x, \omega)-f_{0}(x), c_{j}(x)\right\rangle\right|^{2} \quad \quad \quad \text { Parseval) } \\
& =\frac{1}{2} \sum_{j=1}^{\infty}\left|\sum_{k=1}^{\infty} f_{k}(\omega)\left\langle e_{k}, c_{j}\right\rangle\right|^{2} \\
& =\frac{1}{2} \sum_{j=1}^{\infty} \lim _{m \rightarrow \infty}\left|\sum_{k=1}^{m} f_{k}(\omega)\left\langle e_{k}, c_{j}\right\rangle\right|^{2} \tag{4.1}\\
& \leqslant \frac{1}{2} \sum_{j=1}^{\infty} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m} f_{k}(\omega)^{2}\right)\left(\sum_{k=1}^{m}\left\langle e_{k}, c_{j}\right\rangle^{2}\right) \\
(?) & \frac{1}{2} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m} f_{k}(\omega)^{2}\right)\left(\sum_{k=1}^{m} \sum_{j=1}^{\infty}\left\langle e_{k}, c_{j}\right\rangle^{2}\right) \\
& =\frac{1}{2} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m} f_{k}(w)^{2}\right)\left(\sum_{k=1}^{m}\left\|e_{k}\right\|^{2}\right)
\end{align*}
$$

We can rescale the $e_{j}(x)$ to ensure that $\sum_{k=1}^{\infty}\left\|e_{k}\right\|^{2}$ converges (for example if

$$
\begin{aligned}
& e_{j}(x)=\frac{1}{(j-1)!} x^{j-1} \text { on } x=[-1,1]^{w i t h} q(x)=\frac{1}{2} \text { uniform, }\left\|e_{j}\right\|^{2}=\frac{1}{2}\left[\frac{1}{(j-1)!}\right]^{2} \int_{-1}^{1} x^{2 j-2} d x \\
&=\frac{1}{2}[1 /(j-1)!]^{2}\left[\frac{1}{2 j-1} x^{2 j-1}\right]_{-1}^{1}=[1 /(j-1)!]^{2} 1 / 2 j-1 \text { and } \\
& \frac{\left\|e_{j+1}\right\|^{2}}{\left\|e_{j}\right\|^{2}}=\frac{[1 / j!]^{2} 1 / 2 j+1}{\left[1 /\left.(j-1)!\right|^{2} / 2 j-1\right.}=\frac{1}{(j!)^{2}} \frac{1}{2 j+1}((j-1)!)^{2}(2 j-1)^{2} \\
&=\left(\frac{1}{j}\right)^{2} \frac{(2 j-1)^{2}}{2 j+1}=\frac{1}{2 j+1}\left(2-\frac{1}{j}\right)^{2}
\end{aligned}
$$

hence $\lim _{j \rightarrow \infty} \frac{\left\|e_{j}+1\right\|^{2}}{\left\|e_{j}\right\|^{2}}=0$ so the series $\sum_{k=1}^{\infty}\left\|e_{k}\right\|^{2}$ converges). Then

$$
\begin{equation*}
K(w) \leqslant \frac{1}{2} C \sum_{k=1}^{\infty} f_{k}(w)^{2} \quad C=\sum_{k=1}^{\infty}\left\|e_{k}\right\|^{2} \tag{4,2}
\end{equation*}
$$

Suppose $e_{j}(x)=\frac{1}{j!} x^{j}$ so that (2.3) is for any fixed j a globally convergent Taylor series expansion of the LHS at zero (we switch to $j \geqslant 0$). It is necessarily the case that this function is differentiable and that its derivative may be computed term-by-term, so

$$
\begin{align*}
\frac{d^{a}}{d x^{a}}\left(\sum_{j=0}^{\infty} f_{j}(w) e_{j}(x)\right) & =\sum_{j=0}^{\infty} f_{j}(w) \frac{d^{a}}{d x^{a}} e_{j}(x) \\
& =\sum_{j=0}^{\infty} f_{j}(w) e_{j-a}(x) \tag{5.1}\\
& =\sum_{j=a}^{\infty} f_{j+a}(w) e_{j}(x)
\end{align*}
$$

If $\omega \in W_{0}$ then the LHS is identically zew, hence so is the RHS, and evaluating at $x=0$ gives $f_{a}(\omega)=0$. This holds for any $a \geqslant 0$ and $w \in W$, so w is in the vanishing locus of the $\left(f_{j}\right)_{j \in J}$.

Hence under some mild hypotheses on $q(x)$ and with $e_{j}(x)=\frac{1}{j!} x j$ we have

$$
W_{0}=\left\{w \in W \mid f_{j}(w)=0 \text { for all } j \geqslant 0\right\}
$$

Let I be the ideal generated by $\left\{f_{j}\right\}_{j=0}^{\infty}$ in $\mathbb{R}[w]$, where w stands for a list of variables $\omega_{1}, \ldots, w_{d}$ for some d. By the Hilbert basis theorem we can find J such that $I=\left(f_{1}, \ldots, f_{J}\right)$. For any $j>J$ we have for some polynomials $a_{j}^{\prime}, \ldots, a_{j}^{J}$ an equation

$$
\begin{equation*}
f_{j}=\sum_{k=1}^{J} a_{j}^{k} f_{k} \tag{5.2}
\end{equation*}
$$

and hence by Cauchy-Schwartz

$$
\begin{align*}
f_{j}(\omega)^{2} & =\left(\sum_{k=1}^{J} a_{j}^{k}(w) f_{k}(w)\right)^{2} \tag{5.3}\\
& \leqslant\left(\sum_{k=1}^{J} a_{j}^{k}(w)^{2}\right)\left(\sum_{k=1}^{J} f_{k}(w)^{2}\right)
\end{align*}
$$

That is,

$$
\begin{equation*}
f_{j}^{2} \leqslant \sum_{k=1}^{J}\left(a_{j}^{k}\right)^{2} \sum_{k=1}^{J} f_{k}^{2} \tag{6.1}
\end{equation*}
$$

Hence with $H=\sum_{k=1}^{J} f_{k}^{2}$

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j}(\omega)^{2} \leqslant \sum_{k=1}^{J}\left(\sum_{j=1}^{m} a_{j}^{k}(\omega)^{2}\right) H(\omega) \tag{6,2}
\end{equation*}
$$

Assuming that $\sum_{j=1}^{\infty} a_{j}^{k}(\omega)^{2}$ converges for each k (I do not know how to show this) to a continuous function $A^{k}(\omega)$ on W

$$
\begin{equation*}
\sum_{j=1}^{\infty} f_{j}(w)^{2} \leqslant\left[\sum_{k=1}^{J} A^{k}(w)\right] H(w) \tag{6.3}
\end{equation*}
$$

Now set $\alpha^{k}=\sup \left\{A^{k}(\omega) \mid \omega \in W\right\}$, which is finite since W is compact and A^{k} is continuous. Then $\sum_{k=1}^{J} \alpha^{k}>0$ since if $\alpha^{k}=0$ for all k then $A^{k}(w)=0$ for all k and w, hence $a_{j}^{k}(w)=0$ for all j, k, w hence $f_{j}(w)=0$ for all j, w and so $K \equiv 0$. Except in this trivial case $D=\sum_{k=1}^{J} \alpha^{k}>O$ and

$$
\begin{equation*}
\sum_{j=1}^{j}=f_{j}(\omega)^{2} \leqslant D H(\omega) \tag{6.4}
\end{equation*}
$$

From this and (4.2) we have

$$
K \leqslant \frac{1}{2} C D H
$$

To prove that K is equivalent to H we still need to establish $C^{\prime} H \leq K$ for some $C^{\prime}>0$.

Equivalence via norm equivalence

Set $V_{n}=\operatorname{span}_{\mathbb{R}}\left\{e_{1}, \ldots, e_{n}\right\}=\operatorname{span}_{\mathbb{R}}\left\{c_{1}, \ldots, c_{n}\right\}$ as a subspace of $L^{2}(x, q)$.
Since the e_{j} ave linearly independent $V_{n} \cong \mathbb{R}^{n}$ and we can define a norm on V_{n} for $v=\sum_{j=1}^{n} a_{j} e_{j}$ by

$$
\|v\|_{2}=\left\{\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

We let $\|v\|$ denote the restriction of the L^{2}-norm to V_{n}. Any two norms on a finite -dimensional normed space are Lipschitz equivalent (see e.g. [B1]) so we can find $c_{1}(n), c_{2}(n)>0$ such that

$$
c_{1}(n)\|v\|_{2} \leqslant\|v\| \leqslant c_{2}(n)\|v\|_{2} \quad \forall v \in V_{n} \quad(5.0)
$$

in fact we may take

$$
\begin{align*}
& c_{1}(n)=\inf \left\{\|v\| \mid v \in V_{n},\|v\|_{2}=1\right\} \tag{5.1}\\
& c_{2}(n)=\sup \left\{\|v\| \mid v \in V_{n},\|v\|_{2}=1\right\}
\end{align*}
$$

Now set $s_{n}=\sum_{j=1}^{n} f_{j}(w) e_{j}(x), r_{n}=\sum_{j=1}^{n} g_{j}(w) c_{j}(x)$ so $r_{n}, s_{n} \in V_{n}$ and $\left\|s_{n}-r_{n}\right\| \rightarrow O$ as $n \rightarrow \infty$ since both series wnverge to $f(x, w)-f_{0}(x)$ in $L^{2}(x, q)$. We have

$$
\begin{align*}
\left\{\sum_{j=1}^{n} f_{j}(w)^{2}\right\}^{1 / 2} & =\left\|s_{n}\right\|_{2} \leqslant \frac{1}{c_{1}(n)}\left\|s_{n}\right\| \leqslant \frac{1}{c_{1}(n)}\left\|s_{n}-r_{n}+r_{n}\right\| \\
& \leqslant \frac{1}{c_{1}(n)}\left\|s_{n}-r_{n}\right\|+\frac{1}{c_{1}(n)}\left\|r_{n}\right\| \tag{5.2}\\
& =\frac{1}{c_{1}(n)}\left\|s_{n}-r_{n}\right\|+\frac{1}{c_{1}(n)}\left\{\sum_{j=1}^{n} g_{j}(w)^{2}\right\}^{1 / 2}
\end{align*}
$$

Hence

$$
\begin{equation*}
c_{1}(n)\left\{\sum_{j=1}^{n} f_{j}(w)^{2}\right\}^{1 / 2} \leqslant\left\|s_{n}-r_{n}\right\|+\left\{\sum_{j=1}^{n} g_{j}(u)^{2}\right\}^{1 / 2} \tag{6,1}
\end{equation*}
$$

Similarly

$$
\begin{align*}
\left\{\sum_{j=1}^{n} g_{j}(u)^{2}\right\}^{1 / 2} & =\left\|r_{n}\right\| \leqslant\left\|r_{n}-s_{n}\right\|+\left\|s_{n}\right\| \tag{6.2}\\
& \leqslant\left\|s_{n}-v_{n}\right\|+c_{2}(n)\left\|s_{n}\right\|_{2}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left\{\sum_{j=1}^{n} g_{j}(w)^{2}\right\}^{1 / 2} \leqslant\left\|s_{n}-r_{n}\right\|+c_{2}(n)\left\{\sum_{j=1}^{n} f_{j}(w)^{2}\right\}^{1 / 2} \tag{6.3}
\end{equation*}
$$

We cannot naively take $n \rightarrow \infty$ in (5.1),(5.2) because a prion $c_{1}(n)$ would converge to sew and $c_{2}(n)$ to ∞ as $n \rightarrow \infty$, rendering the inequality use less. Dealing with $\left\|s_{n}-r_{n}\right\|$ is awkward, so we can use $g_{j}^{n}(w)$ of p. (4) instead: from (5.0)

$$
\begin{equation*}
c_{1}(n)\left\{\sum_{j=1}^{n} f_{j}(w)^{2}\right\}^{1 / 2} \leqslant\left\{\sum_{j=1}^{n} g_{j}^{n}(w)^{2}\right\}^{1 / 2} \leqslant c_{2}(n)\left\{\sum_{j=1}^{n} f_{j}(w)^{2}\right\}^{1 / 2} \tag{6.4}
\end{equation*}
$$

That is, we have

Lemma If two sets $\left\{a_{1}, \ldots, a_{r}\right\},\left\{b_{1}, \ldots, b_{s}\right\}$ generate the same ileal in the ing of analytic functions on a compact set Ω then

$$
\begin{equation*}
\sum_{i=1}^{r} a_{i}^{2} \sim \sum_{j=1}^{s} b_{j}^{2} \tag{7.1}
\end{equation*}
$$

Proof By Cauchy-Schwartz, see Shaowei Lin's thesis Prop 4.3. Suppose $a_{i}=\sum_{j=1}^{s} h_{j} b_{j}$ then $a_{i}^{2} \leq\left(h_{1}^{2}+\cdots+h_{s}^{2}\right)\left(b_{1}^{2}+\cdots+b_{s}^{2}\right)$ and so with $C_{i}=\sup \left\{\sum_{j=1}^{s} h_{j}(w)^{2} \mid w \in W\right\}$ we have $a_{i}^{2} \leqslant C_{i} \sum_{j=1}^{s} b_{j}^{2}$ hence $\sum_{i=1}^{r} a_{i}^{2} \leqslant\left(\sum_{i} C_{i}\right)\left(\sum_{j} b_{j}^{2}\right)$. If $C_{i}=O$ for all i $\sum_{i=1}^{r} a_{i}^{2} \equiv 0$ hence $a_{i} \equiv 0$ for all $_{i}$ so also $b_{j} \equiv 0$ for $a l l l_{j}$, so (7.1) is vacuous.

By the Hilbert basis theorem we have that the ideal $I \subseteq \mathbb{R}[w]$ generated by the set $\left\{f_{j}\right\}_{j=1}^{\infty}$ can be generated by f_{1}, \ldots, f_{J} for some $J \geqslant 1$. Hence for $n \geqslant J$ we have by the Lemma that $\sum_{j=1}^{n} f_{j}^{2} \sim H$ where we set $H(w)=\sum_{j=1}^{J} f_{j}(w)^{2}$. Hence

$$
\begin{equation*}
\sum_{j=1}^{n} g_{j}^{n}(w)^{2} \stackrel{(6.5)}{\sim} \sum_{j=1}^{n} f_{j}(w)^{2} \sim H \tag{7.2}
\end{equation*}
$$

In particular for $n \geqslant J$

$$
\begin{align*}
& H(w) \leqslant \sum_{j=1}^{n} f_{j}(w)^{2} \leqslant \frac{1}{c_{1}(n)^{2}} \sum_{j=1}^{n} g_{j}^{n}(w)^{2} \tag{7.3}\\
& \sum_{j=1}^{n} g_{j}^{n}(w)^{2} \leqslant c_{2}(n)^{2} \sum_{j=1}^{n} f_{j}(w)^{2} \leqslant c_{2}(n)^{2} C H
\end{align*}
$$

where $C=\sum_{i=1}^{n} C_{i}$ where $f_{i}^{2} \leqslant C_{i} \sum_{j=1}^{J} f_{j}^{2}$. We can obviously take $C_{i}=1$ for $1 \leqslant i \leqslant J$ and for $i>J$ we have to write $f_{i}=\sum_{j=1}^{J} a_{i j} f_{j}$ and $C_{i}=\sup \left\{\sum_{j=1}^{J} a_{i j}^{2}(w) \mid w \in W\right\}$. In particular

$$
H(w) \leqslant c_{1}(J)^{-2} \sum_{j=1}
$$

The $g_{j}(w)$ involve potentially infinitely many $f_{k}(w)^{\prime}$ s, but we can let $g_{j}^{n}(w)$ denote the polynomial function of w with

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j}(u) e_{j}(x)=\sum_{j=1}^{n} g_{j}^{n}(w) c_{j}(x) \tag{4.1}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} g_{j}^{n}(w)_{c_{j}}(x)=G(x, w)$ we have

$$
\begin{align*}
K(w) & =\|G(x, w)\|^{2} \\
& =\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{n} g_{j}^{n}(w) c_{j}(x)\right\|^{2} \tag{4.2}\\
& =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} g_{j}^{n}(w)^{2}
\end{align*}
$$

Moreover since

$$
\begin{align*}
g_{j}^{n}(w) & =\left\langle\sum_{l=1}^{n} f_{l}(w) e_{l}(x), c_{j}(x)\right\rangle \tag{4.3}\\
& =\sum_{l=1}^{n} f_{l}(w)\left\langle e_{l}, c_{j}\right\rangle
\end{align*}
$$

we have $\lim _{n \rightarrow \infty} g_{j}^{n}(w)=g_{j}(w)$ for all j.

Note that since $\left\{e_{j}\right\}_{j=1}^{n},\left\{c_{j}\right\}_{j=1}^{n}$ are LI and span the same space there must be an invertible matrix $A^{(n)} \in M_{n}(\mathbb{C})$ with $A^{(n)} \underline{C}=\underline{e}$ where $\underline{e}=\left(e_{1}, \ldots, e_{n}\right)^{\top}, \underline{c}=\left(c_{1}, \ldots, c_{n}\right)^{\top}$.
Clearly $A_{l_{j}}^{(n)}=\left\langle e_{\ell}, c_{j}\right\rangle$. We write $R^{(n)}=\left(A^{(n)}\right)^{\top}$. From (4.3), $\underline{g}^{n}=R^{(n)} \underline{f}$.
Hence $\underline{f}=\left(R^{(n)}\right)^{-1} \underline{g}^{n}$ and hence

$$
\begin{equation*}
f_{j}(w)=\sum_{l=1}^{n}\left(R^{(n)}\right)_{j l}^{-1} g_{l}^{n}(w) \tag{4.4}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{j=1}^{n+1} f_{j}(u) e_{j}(x)=\sum_{j=1}^{n+1} g_{j}^{n+1}(w) c_{j}(x) \\
& -\sum_{j=1}^{n} f_{j}(n) e_{j}(x) \quad-\sum_{j=1}^{n} g_{j}^{n}(w) c_{j}(x) \\
& f_{n+1}(w) e_{n+1}(x)=\sum_{j=1}^{n}\left(g_{j}^{n+1}-g_{j}^{n}\right) c_{j}+g_{n+1}^{n+1}(w) c_{n+1}(x) \\
& \left\langle c_{j}, f_{n+1}(w) e_{n+1}(x)\right\rangle
\end{aligned}=g_{j}^{n+1}-g_{j}^{n} .
$$

Puper - Deals \mathbb{R}^{n}

- deppuneturbo
- always $\mathrm{K} \sim H$
- Chech gj's are not polynomial
- Chech higher diminput

$$
\begin{aligned}
& \sum_{j=1}^{\infty} g_{j}(w)^{2} \geqslant \sum_{j=1}^{\infty}\left\langle\sum_{k} f_{k} e_{k}, c_{j}\right\rangle \\
& v=\sum_{j=1}^{\infty} f_{j}(w) e_{j}(x)=\sum_{j=1}^{\infty} g_{j}(w) c_{j}(x) \\
&\|v\|^{2}=\sum_{j=1}^{\infty} g_{j}(w)^{2} \geqslant \sum_{k=1}^{\infty}\left|\left\langle v, c_{k}\right\rangle\right|^{2} \\
&=\sum_{k=1}^{\infty}\left|\left\langle\sum_{j=1}^{\infty} f_{j} e_{j}, c_{k}\right\rangle\right|^{2} \\
&=\sum_{k=1}^{\infty}\left|\sum_{j=1}^{k} f_{j}(w)\left\langle e_{j}, c_{k}\right\rangle\right|^{2} \\
&=\sum_{k=1}^{\infty}\left(g_{k}^{k}\right)^{2} \\
& \geqslant \sum_{k=1}^{J}\left(g_{k}^{k}\right)^{2}
\end{aligned}
$$

From (4.3) we obtain (using $\|-\|$ to denote the operator norm on $\beta(V), V=\mathbb{R}^{n}$ with $\|-\|_{2}$)

$$
\begin{equation*}
\sum_{j=1}^{n} g_{j}^{n}(w)^{2}=\|\underline{g}\|_{2}^{2} \leqslant\left\|R^{(n)}\right\|^{2}\|\underline{f}\|_{2}^{2}=\left\|R^{(n)}\right\|^{2} \sum_{j=1}^{n} f_{j}(w)^{2} \tag{5,1}
\end{equation*}
$$

and fou (4.4)

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j}(w)^{2}=\|\underline{f}\|_{2}^{2} \leqslant\left\|\left(R^{(n)}\right)^{-1}\right\|^{2}\|\underline{g}\|_{2}^{2}=\left\|\left(R^{(n)}\right)^{-1}\right\|^{2} \sum_{j=1}^{n} g_{j}^{n}(\omega)^{2} \tag{5.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|\left(R^{(n)}\right)^{-1}\right\|^{-2} \sum_{j=1}^{n} f_{j}(w)^{2} \leqslant \sum_{j=1}^{n} g_{j}^{n}(w)^{2} \leqslant\left\|R^{(n)}\right\|^{2} \sum_{j=1}^{n} f_{j}(w)^{2} \tag{-3}
\end{equation*}
$$

Suppose are can show $\lim _{n \rightarrow \infty}\left\|R^{(n)}\right\|=C<\infty$. Since $1=\left\|R^{(n)}\left(R^{(n)}\right)^{-1}\right\| \leqslant\left\|R^{(n)}\right\| \cdot\left\|\left(R^{(n)}\right)^{-1}\right\|$ we have $\left\|\left(R^{(n)}\right)^{-1}\right\|^{-1} \leqslant\left\|R^{(n)}\right\|$ so also $\lim _{n \rightarrow \infty}\left\|\left(R^{(n)}\right)^{-1}\right\|^{-1}<\infty$. So it wi\| follow from (5.3) that $\sum_{j=1}^{\infty} f_{j}(w)^{2}<\infty$ and \leftarrow provided $\lim _{n \rightarrow \infty}\left\|\left(R^{(n)}\right)^{-1}\right\|^{-1}>0$

$$
\begin{equation*}
K(w) \sim \sum_{j=1}^{\infty} f_{j}(w)^{2} \tag{6.5}
\end{equation*}
$$

Note that

$$
\begin{align*}
\left\|R^{(n)}\right\|^{2} & =\sup \left\{\left.\frac{\left\|R^{(n)} \underline{x}\right\|_{2}^{2}}{\|\underline{x}\|_{2}^{2}} \right\rvert\, \underline{x} \in \mathbb{R}^{n} \backslash\{0\}\right\} \\
& =\sup \left\{\sum_{l=1}^{n}\left(R^{(n)} \underline{x}\right)_{l}^{2} / \sum_{l=1}^{n} x_{l}^{2} \mid \underline{x} \neq 0\right\} \tag{5.5}\\
& =\sup \left\{\sum_{l=1}^{n}\left\{\sum_{j=1}^{n} R^{(n)} l_{j} x_{j}\right\}^{2} / \sum_{l=1}^{n} x_{l}^{2} \mid \underline{x} \neq 0\right\}
\end{align*}
$$

But $R_{l j}^{(n)} x_{j}=\left\langle e_{j}, c l\right\rangle x_{j}=\left\langle e_{j} x_{j}, c l\right\rangle$ so (by Parseval's identity)

$$
\begin{equation*}
\sum_{l=1}^{n}\left\{\sum_{j=1}^{n} R_{l_{j}}^{(n)} x_{j}\right\}^{2}=\left\|\sum_{j=1}^{n} x_{j} e_{j}\right\|^{2} \tag{5.6}
\end{equation*}
$$

Hence (5.5) gives

$$
\begin{equation*}
\left\|R^{(n)}\right\|^{2}=\sup \left\{\left\|\sum_{j=1}^{n} x_{j} e_{j}\right\|^{2} /\|\underline{x}\|_{2}^{2} \mid \underline{x} \neq 0\right\}=\left\|\mu_{n}\right\|^{2} \tag{6.1}
\end{equation*}
$$

where $\mu_{n}: \mathbb{R}^{n} \longrightarrow L^{2}(x, q)$ is the linear map $\mu_{n}\left(u_{i}\right)=e_{i}$ where u_{i} is the standard basir, and $\left\|\mu_{n}\right\|$ denotes the operator norm with respect to $\|-\|_{2}$ on \mathbb{R}^{n} and $\|-\|$ of $L^{2}(x, q)$. Hence $\left\|R^{(n)}\right\|=\left\|\mu_{n}\right\|$. It is clear that $\left(\left\|\mu_{n}\right\|\right)_{n=1}^{\infty}$ is an increasing function, so $\lim _{n \rightarrow \infty}\left\|R^{(n)}\right\|=\sup _{n}\left\|\mu_{n}\right\|$ and so it sufficesto show the set $\left\{\left\|\mu_{n}\right\| \mid n \geqslant 1\right\}$ is bounded.

Lemma There is a well-defined linear map $\mu: l^{2}(\mathbb{R}) \longrightarrow L^{2}(X, q)$ defined by $\mu(\underline{a})=\sum_{j=1}^{\infty} a_{j} e_{j}$. Moreover μ is bounded, and $\left\|\mu_{n}\right\| \leq\|\mu\|$ for all n.

Proof If $\underline{a} \in \ell^{2}(\mathbb{R})$ then $\sum_{j=1}^{\infty}\left\|a_{j} e_{j}\right\|=\sum_{j=1}^{\infty}\left|a_{j}\right|\left\|e_{j}\right\|$ converges by Holder's inequality, since $|\underline{a}| \in l^{2}(\mathbb{R})$ and $\left(\left\|e_{j}\right\|\right)_{j=1}^{\infty} \in l^{2}(\mathbb{R})$. Hence $\sum_{j=1}^{\infty} a_{j} e_{j}$ converges $[B \mid$, lemma $B \mid-4]$. We have

$$
\begin{aligned}
\|\mu(\underline{a})\| & =\left\|\lim _{n \rightarrow \infty} \sum_{j=1}^{n} a_{j} e_{j}\right\| \\
& \leqslant \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left|a_{j}\right|\left\|e_{j}\right\|
\end{aligned}
$$

It is clear $\left\|\mu_{n}\right\| \leq\|\mu\|$.

Holder

$$
\leqslant\|\underline{a}\|_{2}\|\underline{e}\|_{2}
$$

$$
\underline{e}=\left(\left\|e_{j}\right\|\right)_{j=1}^{\infty}
$$

Hence $\|\mu\| \leqslant\|\underline{e}\|_{2}$ and so μ is bounded. Since $\left\|\mu_{n}\right\|$ is a supremum over a subset of the set $\|\mu\|$ is the supremum of, $\left\|\mu_{n}\right\| \leqslant\|\mu\|$.

Lemma Suppose $\left(\left\|e_{j}\right\|\right)_{j=1}^{\infty} \in l^{2}(\mathbb{R})$. Then $K(\omega) \sim \sum_{j=1}^{\infty} f_{j}(\omega)^{2}$, and hence $W_{0}=\left\{\omega \in W \mid f_{j}(w)=0\right.$ for all $\left.j \geqslant 1\right\}$.

Proof Immediate form (5.4) and the previous le mm. \square

Details on lower bound

The matrix $A^{(n)}$ is lower triangular by constuction: $A_{e_{j}}^{(n)}=\left\langle e_{e}, c_{j}\right\rangle$ (see (3.2)). Recall that

$$
\begin{aligned}
& \widetilde{C}_{k}=e_{k}-\sum_{i=1}^{k-1} \frac{\left\langle e_{k}, \tilde{C_{i}}\right\rangle}{\left\langle\widetilde{c_{i}}, \tilde{C_{i}}\right\rangle} \tilde{C_{i}} \\
& \therefore \quad\left\|\widetilde{c}_{k}\right\|^{2}=\left\langle e k, e_{k}\right\rangle-2 \sum_{i=1}^{k-1} \frac{\left\langle e_{k_{1}} \tilde{c}_{i}\right\rangle^{2}}{\left\langle\tilde{c_{i}}, \tilde{c_{i}}\right\rangle}+\sum_{i=1}^{k-1} \frac{\left\langle e_{k}, \tilde{c}_{i}\right\rangle^{2}}{\left\langle\tilde{c_{i}}, \tilde{c}_{i}\right\rangle} \\
& =\left\|e_{k}\right\|^{2}-\sum_{i=1}^{k-1}\left\langle e_{k}, c_{i}\right\rangle^{2}=\left\|e_{k}\right\|^{2}-\left(\left\|e_{k}\right\|^{2}-\left\langle e_{k}, c_{k}\right\rangle^{2}\right) \\
& =\langle e k, C k\rangle^{2}
\end{aligned}
$$

By definition

$$
\begin{aligned}
c_{1} & =\frac{1}{\left\|e_{1}\right\|} e_{1} \\
c_{2} & =\frac{1}{\left\|\tilde{c}_{2}\right\|}\left(e_{2}-\left\langle e_{2}, c_{1}\right\rangle c_{1}\right) \\
c_{k} & =\frac{1}{\left\|\tilde{c_{k}}\right\|}\left(e_{k}-\sum_{i=1}^{k-1}\left\langle e_{k}, c_{i}\right\rangle c_{i}\right) \\
& =\frac{1}{\left|\left\langle e_{k}, c_{k}\right\rangle\right|} e_{k}-\sum_{i=1}^{k-1} \frac{\left\langle e k_{1} c_{i}\right\rangle}{\left|\left\langle e k, c_{k}\right\rangle\right|} c_{i}
\end{aligned}
$$

Since $\left(A^{(n)}\right)^{-1} e=c$ we see that $\left(A^{(n)}\right)^{-1}$ is lower triangular and has cliagonal entries $1 /\left\|\tilde{c}_{k}\right\|$.

- identify $\left(R^{(n)}\right)^{-1}$ with inverse μ^{-1}
- "bounded inverse theorem" $\Longrightarrow\left\|\mu^{-1}\right\|<\infty$

$$
\text { deduce }\left\|\left(R^{(n)}\right)^{-1}\right\| \leqslant\left\|\mu^{-1}\right\|
$$

- Replacing K by sum of squares is velated to "obvious positivity"

$$
\begin{aligned}
& \left\|\mu_{k}^{-1}\right\|=\sup \left\{\frac{}{\|a\|}\right. \\
& \mu^{-1}(c)=
\end{aligned}
$$

Gram-Schmidt

Applying Gram-Schmidt we may produce an orthonormal basis for the span of $\left\{e_{j}(x)\right\}_{j=1}^{\infty}$ in $L^{2}(x, q)$, call it $\left(c_{j}\right)_{j=1}^{\infty}$. Recall that

$$
\begin{align*}
& \widetilde{c}_{1}=e_{1} \\
& \widetilde{c}_{2}=e_{2}-\frac{\left\langle e_{2}, \tilde{c}_{1}\right\rangle}{\left\langle\tilde{c}_{1}, \tilde{c}_{1}\right\rangle} \widetilde{c}_{1} \tag{3.1}\\
& \vdots \\
& \widetilde{c}_{k}=e_{k}-\sum_{i=1}^{k-1} \frac{\left\langle e_{k}, \tilde{c}_{i}\right\rangle}{\left\langle\tau_{i}, \tilde{c}_{i}\right\rangle} \tilde{c}_{i}
\end{align*}
$$

and $c_{i}=\frac{1}{\left\|\widetilde{c_{i}}\right\|} \tilde{c_{i}}$ so that by construction $e_{j} \in \operatorname{span}\left(c_{1}, \ldots, c_{j}\right)$ for $j \geqslant 1$. Indeed we have $e_{k}=\tilde{c}_{k}+\sum_{i=1}^{k-1} \frac{\left\langle e_{k}, \widetilde{c}_{i}\right\rangle}{\left\langle\widetilde{c_{i}}, \widetilde{c}_{i}\right\rangle} \tilde{c_{i}}$. Hence

$$
\left\langle e_{k}, c_{j}\right\rangle=\frac{1}{\left\|\tilde{c}_{j}\right\|}\left\langle e k, \tilde{c}_{j}\right\rangle= \begin{cases}0 & j>k \tag{3.2}\\ \left\|\tilde{c}_{k}\right\| & j=k \\ \left\langle e_{k}, \widetilde{c}_{j}\right\rangle /\left\|\tilde{c}_{j}\right\| & j<k\end{cases}
$$

The coefficients of $G(x, w)$ in this new basis are (note the $g_{j}(w)$ need not be polynomial)

$$
\begin{align*}
g_{j}(w):=\left\langle G(x, w), c_{j}(x)\right\rangle & =\sum_{k=1}^{\infty}\left\langle f_{k}(w) e_{k}(x), c_{j}(x)\right\rangle \tag{3.3}\\
& =\sum_{k=1}^{\infty} f_{k}(w)\left\langle e_{k}, c_{j}\right\rangle
\end{align*}
$$

and we have

$$
\begin{align*}
G(x, w) & =\sum_{j=1}^{\infty} g_{j}(w) c_{j}(x) \tag{3.4}\\
K(w) & =\sum_{j=1}^{\infty} g_{j}(w)^{2}
\end{align*}
$$

