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Lecture 7 - Representation theory of Lie algebras
1615121

updated 1816121

We have associated to each matrix Lie group Gib Lie algebra g andproven that there

is a functor Lie : rep (a) > rep (9) sending a representation of Gon a finite -dimensional

complex vector space V to a representation of g on the same space .

We now turn to examples of

such representations, beginning of course with a = SO(3) , 9 = so (3) and V= HK /S2) for some KZO .

There is a slight technicality : recall that 8 : so(3)%→ Auto ( HHS 4) is actually
a representation of the group 5013)°P, which is inconvenient ifwe wish to view ourmatrix

Lie groups as subgroups of 94h , E) .

So we now identity SO (3) ⇒Of 3)
%
as follows :

Lemma Ll-1 For a c- Gun, e) a matrix Liegwup the function i : G→ a

defined by c-(A) =A-
'

is continuous .

Proof this follows from Cramer 's rule ( Lemma Ll-2) as explained in the proof of
Lemma Ll -1 . ☐

Recall from Lecture 4 the representation 8 of so(3) on spherical harmonics .

Lemma 17-2 Thefunction 3 : SO (3) > Auto (KKK) ) is continuous fork>, 0
.

Proof Recall thatour conventions, introduced in Lecture 4, is that a function like 8

is continuous if for some (hence every) ordered e-basis 3) of Hk /5) that
the map g c-

SO (3)→ [619 ) ]} c- all2kt , E) is continuous .

As explained in the proof of Lemma 14-2 it suffices to prove that

p : so (3) > Auto (Aa ) a- 1)

p (g)
= YA

is continuous
,
where A is thematrix ofg in the

standard basis
, and by L4 (2.3)



②

% ( P ) = P( Ej= , Aaj xj , §?= , Azjxj , E?= , Asj >g)

Ifwe choose the basis 13--1×91×1=12 of degree k monomials 24=291×5413×3 for Pk
then [Pls ) # has entries which are polynomial functions of the entries in the matrix A

free L4p .⑧) and hence p :S013)→ Auto /Aa) is continuous . ☐

Lemma LT-3 For 1270 the function

so (3) > GL ( 2121-1, e) ( 2. 1)

A → [PIA - 'HE

is amorphism of matrix Lie groups, and thus determines a representation
of so(3) on HHS

') given by A. f- = toA-
'

,
for any ordered basis 6 of HHS4 .

Proof the function (2-1) is the composite

C-5
'

6 F] }
so (3) > so (3)

"
> Auto (Ntds) ) > 64212+1,0)

of continuous group homomorphisms, and is thus a continuous group homomorphism

(we are using Lemma 4- 1
,
Lemma 4-2) . ☐

DEI we write 3- for the continuousgroup homomorphism
so (3) > Auto ( HkHT)

given by 6-
= 2001-1-1

,
that is

,
6- ( RI ) (f) = f- 0 RE

-
✗
,
and we do not

distinguish this from the representation (2-1) of so (3) as a matrix Lie group

(although technically the latter involves the additional data of a choice of basis ) .

When we refer to Hkls4 as a representation of so (3) as a matrix Lie group, G- iswhat we mean .

By Lemma Lb -15 there is a corresponding representation of so(3) on HKCSY .

This isalmost the

content of theorem 16-4
, except for the difference between 8 and 3- (irritating) .



③

Lemma LT -4 Under the functor Lie : rep/5013) )→ rep/so(3)) the representation of

5013) on Hk (5) corresponding the representation 8- of so(3) is

D8
-

5013) > Ende(HHS4)
(3. 1)

Sri I > - Z
"

or written as an action
,

Sii
. f- = - Z

"

(f) for ñes ? f- c- HK /S2)
.

Proof By definition

8. f = ¥-1 exp Its
") . f) /c-⇒ = E-( 8 ( expltsñ)

-

1) (ft ) /t=o

= ¥(z( expftsñ ) ) (f) ) / +⇒
Thm Lb -4

= ¥( exp ( - Ezñ ) (f) ) / +⇒ = -2
"
(f) . ☐

We learn from Lemma 17-4 that (3. 1) is a homomorphism of lie algebras (previously we only
knew it was IR - linear) which means in light of Lemma LG-11 that for ñ, in c-5

zñxñ = - pz - ( grini)
= - Do- ( [ si

,
jñ ] )

= - [ D8 - ( sñ) , D8
- '

( Sñ )] (3. 2)

= - [ - Ti
,
-7
" ]

=
- [ zñ , zñ ]

= [zñ , 7
"
]

.

This could of course be checked directly , but don't lookagift horse in the mouth, as they say .

So we have finally made HKISY into a representation of the real Lie algebra so (3) . Now what ?
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Questions that remain to be answered

① what is the structure of the representation 6 of so(3) on [(5, e) ? As we commented

at the beginning of Lecture 4, using the Laplacian we know this representation decomposes

into subrepresentations of so (3) on each HKI54, but to thispoint we know nothing
about these subrepresentations. Ourmotivation for proceeding to study infinitesimal

generators of symmetries in Lecture 6 was the claim that these generators, which we now

know form a real Lie algebra by theorem L6-12, are the key to understanding the

structure of these subrepresentations . We must now makegood on this claim .

② which representation of SO (3) on Els ? E) is chosen by Nature ? starting in Lectures 1,2

and continuing in p .④ 4 , p - ① L5 we have placed the idea of
" observers of a quantum

system with state space N
= Els? E) related by unitary transformations ofH

which constitute a representation of SO (3)
"

at the center of this subject . This state space

might describe, for example, the angularpart of the wavefunction of someparticle .

On
p .④ of 24 we emphasised that while Wigner 's theorem tells us thatfor any such

particle there is some (possibly projective ! ) representation of so(3) on LTS ? Q),

the theorem on its own cannot tell us which one Nature has
"chosen " (i. e. that

correspondsto actualmeasurements of thatkind ofparticle). We now proceed to

dig into this question, by revising the topic of angularmomentum from L5.
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structure of the representation

we consider so(3) acting on Hk IS2) forall 1270, as in 13.1)
.

To understand these

representationswe will make use ofa tick we have exploited several times already : study

instead the complex-vector space Be
= Be (3) of degree K homogeneous polynomials in x=x,,

y =xz, 2-
=✗3
,
which has a simple basis {XP }µ=k ofmonomials XP = xp

' xzP-xs.rs >

indexed by tuples P = (pi, Pa,Ps ) c- IN
>
with IP/ = E?⇒ Pi equal to K ( here 0 C- IN ) .

The subspace Hk
= { PE 7kt AP= 0 } of harmonicpolynomials is isomorphic to HHS2)

by Lemma L3 -7.
We start our investigations with Pk rather than Hk (5) because it is

quite involved to constructa basis of the latter (althoughwewill do so] .

DEI Letg be a real Lie algebra and V a complex finite-dimensional representation ofg.
A E-vector subspace WEV is a subrepresentation if X.ve W for all ✗c-9, ✗ c-W .

Recall that 7
"
is defined as a E- linear operator on Pk on p . ④ L5.

Lemma 4-5 The complex vector space % is a representation of so(3) with action

E. P = - Zñ ( P ) for PE 12 .

The subspace Hk is a subrepresentation and

the map Flk→ HK (S2) sending P to P/sa is an isomorphism of

representations of so (3) .

Proof In theproof of Lemma 27-2 we have already checked g↳pl9- 1) is a representation
of the matrix Lie group

SO (3) on PK
,
and by the same calculation as in the proof of

Lemma 4-4 the induced representation of 5013) is the given one .

It follows from

Ex 14-7 that HKEPK is a subrepresentation, and the final claim is clear . ☐

Recall that Pk is a Hilbertspace with pairing
< P

,
Q>E- [ 2 (Q ) F) const by

Lemma is -2
,
where for Q = E µ , = k

caXt
,
2 (Q ) = Eatk ca

"% ✗ ii. . . 2 ✗ In
,

and F denotes the polynomial with all coefficient conjugated .
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Lemma 17-6 The G-linear operator 2
"
: Pk→ Pk is skew self-adjoint with respect

to the pairing <-, -7k .

Proof A linearcombination of skew self-adjoint operators (with real coefficients) is skew

self-adjoint, so as Zñ
= Ei nil

"

it suffices to show 7
"

,

7 ? 2£ are skewself-adjoint
But for itj we have for BQ c-Pk by Lemma L 3-3

( P
, xi÷jQ >a = ( Tx:P , ÷jQ)k- i

(6-1)

= ( xj¥:P, Q ) k

From this it easily follows that 2
" "

is skew self-adjoint for Ki a-
3
. ☐

Compare this to Lemma 15-5. Since in
"
is self-adjoint on % we have by the spectral theorem

(Lemma L5-2) that all eigenvalues of 2
"
are pure imaginary , and there is an orthogonal

basis of 12 consisting of eigenvectorsof 2 ?

Example LT-1 % = ¢-1 is not interesting as all 2$ act as zero .

On 7 with respect to the basis

{ x, y , z} we have

[27--4%-2-5] = µ
°

, ,

°

of = - S "O l

[7 " ] = [ z ¥ - x3z]= µ
° "

O o o ) = - f Y
l 0 0

174 = [ x :-, - y2.) = µ ! :| = - SZ
O O O

Now 8
"
acts on 7 via -2 ? so this says that 8 acts on 7=-10 as itself !



⑦

That is
,
the elementsof so (3) just happen to themselves be matrices (for an abstract real Lie algebra

we can make no such statement) and therefore can be viewed as linear operators on IR ? In the

standard terminology , % is the trivial representation of so (3) and 7 is the defining

representation .

Note that Ho =%
,
2h =P, so No (5) is the trivial representation and

2h04 is the defining representation .

DEI Letg be a real Lie algebra .

The trivial representation of g, denoted 1, is the vector

space ①
with X - V = 0 for all ✗c-9, VEE .

DEI Let g be a real Lie algebra of glln, E) . The defining representation of g is the

vector space 1C
"

with X.
V = Xv (matrix multiplication ) for ✗ c- 9

,
✗ C- Ich

.

To be a bit pedantic , 7 is only isomorphic to the defining representation ( that is , it is isomorphic
to the defining representation as an object of rep (g) ) , since assets P, =/ 1C ?

Exercise 4-1 Given a matrix Lie group G construct the complex finite -dimensional G-representation

V with Lie (V) the defining representation of 9 .

Example 17-2 Next we consider the representation % . The basis of monomials is

{ I, xy ,
xz

, y ? yz , z2 } (7. 1)

so this is a six -dimensional E-vector space . Writing down the matrices of

29272£ in this basis seems like a chore . The subspace Hz C- Pz is the

set of linear combinations axztbxy + cxztdyZteyztfz
'
in the

kernel of 2 = 2¥21-¥2 1-2¥
,
that is

0 = 2 ( axztbxy + cxztdytdteyz + f-F) = 2 a + 2d + 2f (7-2)
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Sob
,
c
,
e are free parameters and atdtf = 0 .

This gives dime Hz
= 5=221-1

which is consistentwith F-✗ L4-2 . By Theorem 23-4 we have a directsum decomposition

% = Nz -0 11×1143 (8. 1)

where in this case 110412% is the linear span of 11×112
= Esty 4- Z

'
( that isjustwhat

this notation means ) . Note that for ( i.j , K ) c- { ( 42131,1213 , 1) , 13,1 , 2) } we have

Yi = xj In - xk%×j and

7
"

:( ✗E) = 0 , 2
"

(xj ) = -Zxjxk , 7
"

( XE ) = Zxjxk ( 8. 2)

Hence 7%(11×112)=0 which shows 114T¥ is not just a G-vector subspace it is a

subrepresentation and moreover it is ( isomorphic to) the trivial representation .
Let us

now turn our attention to Hz .

A general elementof 2h can be written as

axztbxy + cxzt (- a -f)YZ+ eyz tf Z
'

(8. 3)

= a (x2- y 2) + bxy + cxz + eyz + f-(2-2-5)

so our basis of Hz is { x2- Yi ✗ Y , ✗ Z , YZ , 2- 2- YZ } . We can of course compute all

the 7
"

in this basis, but it isn'tclear whatthiswill accomplish .

Recall that since the 2
" i

are skewself-adjointwe can find an orthogonal basis of eigenvectors for any one of the Z
""

(but not all at once) .

This will atleast diagonalise one of the operators , and then we can worry
aboutthe other two . It is arbitrary whichoperatorwe choose to diagonalise, but the convention

is to choose 7 ? We compute ( recall It = xFy - y%)

ZZ (x2- ya) = - 4 xy , ZZ( xy ) = x2 - y ? 2£(xz) = - y 2- (8.4)

2£ ( yz ) = xz ZZ (E- y) = -Zxy



⑨

We observe that spane{ x2- y? xy , 2-2-92} and Spano { xziyz} are ZI invariant

subspaces, on which Zt can be depicted as

-2

2- 2- y2 → xy ✗
2- y2
¥ can)

xz I yz
T

A vector cxz + yz is an eigenvector with eigenvalue 7 of 7 it and only if

-

cyz + xz = 7 cxzt Xyz <⇒ ✗ c= 1 , ✗ = - C

⇒ c2= - I
,
I = - C

←→ Cc , > ) c- { Ci, - it , C- i, it }

This produces eigenvectors ixztyz , - ixztyz with respective eigenvalues
- i
,
i
,
and

these vectors span Spano {xt, YZ } . They are orthogonal by Lemma 25-2 /b) .

A vector alx' -5) tbxy + f- (2-192) is an eigenvector with eigenvalue ✗ of 72-511 .

-4axy + b(x2_y4 -Zfxy = ✗ a Citya) +7bxyt If / 2- 2-ya)

⇒ 7a=b ,
Tb = -215-+2a) , ✗ f- = 0

This gives an eigenvector
- ICH-F) + (2-2-92) with eigenvalue 7=0, and if 7=10 then

{
←→ 7a=b

,
2b = -4A

7--10
⇒ Ha = -4A , b=7a

f-= 0

( : - a ,b -1-0 ) ⇒ 72=-4
,
ka = ✗

This produces eigenvectors (x2- y
') + Zixy , (x2- YY - Zixy of eigenvalues Zi, -Zi respectively .



④

We have thus constructed an orthogonal basis of eigenvectors of 2£ for 2h :

12> := (x2- y
') + Zixy 22-12> = Zi 127

11 > = - ixztyz 72-11) = i 117

110.1 )
/ o) : = - I(x2_y2) + (Eliya) 72-107 = 0

1-1) := ixztyz 72-1-17 = -il -1)

1-2) -

- = (x2- ya) - Zixy 22-1-2) := -zit -27
.

The notation reflects that the 2- - componentofthe angular momentum Lz = - IZZ has eigenvalue
me { -2, -1,0 , 1,2} on 1m>.

That is
,
Lz / m> = mlm>

.

In particular we have computed
that the spectrum of ZZ on Hz is { im / MEI and -2 Em £2 }

.

Note 1mF = 1-m>
.

Now let us return to the operators 7724 and try to understand how they behave with respect to the

above basis : recall 2
"
= y Iz - 2- Fy , Y

'
= 2-÷ -✗¥

2×12> = Zzy - Zixz = 2117

2×117 = - ixy + y
'
-2-2 = - to> - { 12>

7 " / o) = Zyz - YZ + Zyz = 3yz = 3117 + £1 -17 110.2)

2×1-1> = iyxty2-2-2 = -107 - £1 -27

7×1-2> = zyz + zixz = 21 - 1)

Well that isn't so ugly .
We see that with some coefficients 2

"

maps 1m> to Intl>
:

i -É>

1-1> to> It>In> ( 10.3)

←÷ ←÷



④

Let's continue and do the same for 79 :

21127 = Zzx +Ziyz = 2 i 117

2911> = -iz- tix -xy
= ilx? 2-2) -xy = - i lo> + Ii 127

7910> = - zx - xz =-3xz =
- Zi 117 + É il -1) (11-1)

291-1> = iz-2-ix2-xy-ilz-2-x4-xy-i.to> - { it-27

791-27 = 2 zx - ziyz = -Zi I -17

Notethat for any complex polynomial P,T
= 2
" (F) so the final two equations

in III. 1) can be deduced from the first two via 7 't - m> = 7
' ( In> ) = Ftm . The diagram is

-zi Zi - Zi zi

1-2T
>

I -1>
-

to>
→

117
-

127 111.2)
-- --

i -i Ii-Ii

In presenting Nz as a representation of so (3) we getto choose (a) a basisof Hz butalso (b) a basis

of so (3) . So farwe have made a choice to prioritise ZZ (and thus JZ) in order to fix our choice

of basis {1-27,1-17,107,117,127} of Hz, but if we wish we can adopt some linear combinations

✗ 8
"

t p
- 84
,
88
"

tu s
'
in place of 8? 8

'
to augment 8

't

in forming a basisof 5013)

(so we need ( FL ) to be invertible) .

This will be useful if the matrices of 22
✗

+ PZ ! 22×+971
are particularly simple in the basis { Im> }→ ⇐mez .

Inspecting 110.37 , III. 2) we see that there are sign asymmetries in the latter (e-g. in the lines

emanating from 107) but not the former, which invites us to achieve the following cancellations :

(74 - in × ) 127 = 2 i 117 - Zi 117 = 0 ( 11.3)

( 24 - i 7×111> = - i to> + Ii 127 +ito> + ÉK> = it>

179 - i 7×1107 = - Zi 117 + Zil -17 - ÉI 17 - ÉY -1-7 = -3 i 117

174 - i7×11-1> = i. to> - tail-2> + i10> + ÉI -27 = Zito>

174 - i7×11-27 = -2 it -17 - zit - 1) = -4 i I - I >



④

Taking conjugates yields

179 + it) I -27=0

( 74 t i7× ) I -17 = - it -27

( YY + iZ× ) to> = 3 it -17 112.1)

(79 + i 7×1117 = - Zito>

174 + i 7×1127 = 4 ill>

If we set Lt : = ZY - in
×

,
L
-

= -79 - iZ× then
'
-

signs are chosento make Lt, L -

adjointto one another, see below]

-4i zi Lt → i i

1-2>
→

I -1>
→

to>
→

I 1)
→

12> -42.2)
- - - -

i - 3i zi
- 4 i

L
-

In the space of E-linear operators on Hz of course span a {7%7}
=

spano {Lt , L- } and clearly
the structure of Hz is more visible in the latter basis than the former. We call Lt a raising operator

(since it increases the eigenvalue of Lz) and L- a towering operator . Together Lt, L -

are known as ladder operators due to the
" ladderof states

"

in (12-2) . Since

i
z
'
= z ( L + + L- )

,
79 = £1 Lt - L- ) (12-3)

the presentation of the action of so(3) on Hz via the eigenbasis { Im
> }
-zemez of 7£ and

the ladderoperators Lt, L - completely characterises the structureof this representation .
There are

some fine points to return to (e. g. we might like to choose a normalisation which gets rid of the odd 43,4 in 112.21
,

and it is strange that nothing in so (3) acts as Lt on Hz since we can't lift the complex linear combination,

i. e. -8
"
t is

" ¢-5013))
,
but for now let us give an application of this characterisation of Hz

in termsof ladder operators .
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DEI Let g be a real Lie algebra and Y a complex finite-dimensional representation. We say V

is irreducible if it is nonzero and has no subrepresentations other than 0 and V. If 111=0 is

not irreducible it iscalled reducible

of course the trivial representation is irreducible, and we have seen that the representation % is

reducible since itcontains 2h as a proper subrepresentation .

Exercise 4-2 Prove directly from Example 17 -1 that 7 is an irreducible representation of so (3) .

Lemma ti-7 The representation Hz of 5013) is irreducible .

Proof suppose 4 C- Hz is a E-vector subspace which is closed under the action of 50131. Equivalently,
it is closed under Lt

,
L-
,
Lz

.

If V40 we can choose a nonzero vector v EV
,
and write

2

v = Em⇒ am 1m> for some 9m EIC . Set M = in f- {m I am -1-0 }
.

Then

✗ = am /M> t anti 1Mt I> t - - - t az /27 and so

(4)
2- M

v = Man 127 ( 13.1)

for some nonzeroME 1C . Hence 127 c- V.

But then ( L-5127 c- V for all n>, 0 , from

which we deduce 1m> EV for all -2 C- ME 2
,
and hence V = Hz

. ☐

We have now discovered three essentially distinct representations of so (3) : No= % = 1
,
the trivial representation

( dimension is 1)
,
H

, =P, = ¢3 the defining representation, and now we know He cannot be written

as a direct sum of these since it is irreducible
,
so this is a genuinely new representation (unlike k which

is just %
= Ha ⑦ 2h ) of dimension 5 . this leads to the following questions :

Question 1 Can every representation of so (3) be decomposed as a directsum of irreducible representations ?

Question 2 Are the Hk all irreducible ? Are there any other irreducible representations ?
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Ladder operators

Our studyof Hz was very
"hands on" in the sense thatwe found an explicit basis of eigenvectors

for ZZ and observed how 2524 behave on this basis, leading us to introduce the ladder

operators .

Let us now givea more abstract explanation for why the ladder operators behave the way

they do, which focuses on theircommutation relations .

Def
"

For any 1270 we define the raising operator 4-
= 7

"
- it and lowering operator

L
-

= -7 - it on Hk
. Collectively these are known as ladder operators .

Remark 17 - I Recall from p -④ that Lñ = - it is the self-adjoint angularmomentum operator
in physics . It is easily checked that Lt

= Lx + ily , L - = Lx - ily , which are the usual

expressions for the raising and lowering operators youwill find in any quantum mechanics text .

As far as I know it was Dirac who first introduced ladderoperators, in his famous textbook
"

Principles of Quantum mechanics
"

in 1930 .

Recall from 13. 2) thatsince D8
-

is a representation of so(3) we have (as operators on any HK)
I

[yñ
,

zñ ] = - zñ×ñ ti×j=k , j×k=i, kxi =j ,
, , g. , ,

a xb = - bxa

and in particular [7%7]
= -7£

,
[7374=7 "

,
[22-17]=-71

.

Hence

[ Lx
,
Ly ] = - [2%21]--7 = ilz , and similarly [ Ly , Lz ] = ilx, [Lz, ↳c) = ily .

Writing L , = Lx, ↳ = Ly, ↳
= Lz it is typical in physics towrite

[Li, Lj ] = i C- ijk Lk 114.2)

where C-ijk is the Levi- Cevita symbol which is +1 if Ciijik) is an even permutation of (1/43)

and -1 if it is an oddpermutation .



⑤

We compute that

[ Lz
,
L± ] = [ Lz, ↳ ± ily ]

= [ Lz
,
Lx ] ± i [ Lz, Ly ]

= ily F E Lx 115.1 )

= ily ± Lx

= ± L±

[Lt, L -] = [ Lx + ily , ↳c- ily ]
=
- i [ Lx, Ly ] + i [Ly, Lx] 45

. 2)

= Lz + Lz = 2 Lz

Lemma ti-8 If ✗ c-Hk is an eigenvector of Lz with eigenvalue DEIR then if
LIV is nonzero it is an eigenvector of Lz with eigenvalue 71=1 .

Proof We have by 115.1)

Lz L±v = ( [Lz, L± ] + L±Lz ) v
= ± L±v + I L±V

= (7+-1) Ltv
. ☐

This reproduces in part the diagram 112 - 2) forth
.
But to precisely capture what is going on

in that diagram we would need to show the spectrum of Lt is {-4-1,011,2} .

Itwould follow

thateach eigenspace is one-dimensional, since we know apriori that dimeHz
= 5

. ofcourse

we would prefer to extend the argument and prove that the spectrum of Lt on Hk is

{- k, - ktl, - - -

,
0
,

- - -

,
k- 1
,
k } .



④

Exercise 4-3 Prove that Lt is adjoint to Las operators on the Hilbert space Hk

equipped with the pairing <
-

, -7k .

Exercise 17-4 Provethat the function Pk→ Pk sending P = [ cxxt to
121=12

its conjugate F
= {It is an IR - linear transformation and that
191=12

Ii ) 2ñ (F) = for ñ c-5

Iii) Lñ (F) = - LÑIPT

liii ) L± (F) = -1-+117

Let Zllz) denote the spectrum of Lz acting on Hk, that is, its setof eigenvalues .

We

make the following observations about this set :

• 3 (Lz ) C- IR since Lz is self-adjoint (Lemma 15-2 (at)
• 6 ( Lz ) contains at most 2kt/ elements ( Lemma 15-2 ( b ) ) ( 16.1 )

• if ✗ c- 6 (Lz ) then -7 c- 6 (Lz ) ( F- ✗ L? -4 Iii) )

since 6 (Lz) is a finite setof real numbers it contains a largest element 7m
"

.

Let ×

be an eigenvectorfor thismaximal eigenvalue .

If Ltv were nonzero it would by

Lemma 17-8 be an eigenvector of eigenvalue 7m
"

+1
,
which is a contradiction .

Hence Lt-11=0 .

It is natural to wonder about L - v (especially given our strategy

in the proof of Lemma 4-7) .
Note that by ( 15.2 ) we have

[Lt
,
L -] x = 24-4 = 27m" x (16-2)

but also

[Lt, L - ] v = ↳ L
-

v
- L

-
↳ 11 = ↳L- V (16-3)



①

Hence 27m
"

v = Lt L - Y.
Now it is possible that 7m

"
= 0 ( e- g. for k=0 this holds)

but if ✗ma×=0 then Lz = 0 on Hk . We'll worry about this in a moment .
For now

observe that if 7m
"
> 0 then v = ¥ma× Lt L - V and so in particular L- V

is nonzero and thus by Lemma 17-8 it is an eigenvector of eigenvalue Xm
"
- 1

.

We can keep applying L - to construct eigenvectors ( L-Tv = ( 7m
"
- n )v

,

atleast while these vectors remain nonzero .

If we set

Vx = { v c-Hk / Lzv = Tv } clad

This shows thatat least a part of Hk looks like (12-2)

Lt

-
-
.

→
→

Hyman, - , llymax (17-2)
g-

¥ma×
- z-

L-

But how do we know that { 7m
"
- n / NEIN } exhausts the spectrum ? By the spectral

theorem we know Hk ± ②✗ V7 but this on its own is not enough .

We need one

more ingredient to complete our analysis of the structure of Hk as an so (3) representation .

Return of the Laplacian

Let us study this operator Lt L- more closely

4- L - = ( ↳ + ily ) (↳- ily )
= LI - ilxly + ily text LF
= ↳it Lf + i [ Ly , ↳ ]

(17-3)

= Lit Luft il - il z )
= LI + Lj + Lz

that sure seems like it might be related somehow to the Laplacian . -
.



⑧

Exercise LT-5 Let xi
,
¥. respectively denote the G-linear operators on Pk of multiplication by ,

and the derivative with respect to, the variable Ki. Prove that

←
1 it i=j and zero otherwise

[ Fj , ✗ i] = fij k-i.jo 3 .
118.11

Lemma 17-9 The E- linear operator bitty + LI on Hk is equal to
-Dsz

,

the Laplacian on S3 as it acts by multiplication with KCKH) .

Pref We compute that for ( iij , K) c- 1111737 , (2/311,13112) } as operator on Pk

(7%5 = [ xja-xk-xk3-g.TL >g-¥, - xk ÷;]

= g-22¥ - xj÷kxk¥. -1k¥.

✗j 3T¥ take }÷j- (18-2)

=

og
? LIF t ate TÉ - xj÷kxk¥.

- xk¥j 7- ¥,

= g
? }÷ txk 3¥ - xj ( I + xkI×k)÷j - xk( I -17¥; )I×k

=

og
? 3¥ txk }÷j - xjÉ×j - Xk k

- 2xjxk÷j¥xk

Hence
, writing D= EE , Ixia , 11×112=8?= ,

x?

E.E. In"T=xi(÷. +¥:) + xil÷i+÷:) + a:(÷, + ÷:)

2-
(18.3 )- 2£ ?= , Xi¥.

- [ xi×j÷i zxj
itj

= 11×1145 - E ?= , xi.FI?-2E?=,xiIxi-Ei-+jxig-Fxi?-xj
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Let f- be a smooth function on IR? Then using the usual spherical coordinates of <3

r ¥ = E ?= , r¥×i%÷ = xi 3¥. Hail

If we agree to write r¥ for E-É ti¥. on Pk
,
then for f c- 12

r÷r÷ (f) = I ?= , r%(xi¥;)

= Ej⇒ xj ¥ . ( xi 3¥ )

= EE ,
E
,
?=

, xjlfij 3¥. txi ¥÷×;] (19-2)

= 2 ?⇒xi¥×i + Ei?j= , xixj É÷xj
= EE

,
xi it + EiÉxi¥×i + E. ⇒jxixi ¥¥g.

and so as operators on 7k

,
12%5 = 11×112D - r Irr Jr - r Zr (19-3)

= 11×1143 - r Ir ( It r÷)

Hence
,
since Li = - i2

"

, we have

E.E ,
L? = - E ?= , 12*5=-11×114> + r¥( It r%)

. 119.4 )

Restricting to Hk we have E ?⇒ Li
= r÷( It r%) as claimed

,
and it iseasy

to see that r¥ acts by multiplication with K on Hk
,
since



②

r¥(xd ) = xi¥(xFxEx% )
= x

, ( ✗ , XF '
- '

xizxs" + die ,4xI '
- '

xis

+ 43×91>(12×3×3-1)
= (d , tdztds )x✗ = 121K£

. ☐

Remark 4-2 Recall from Ex 23-13 that for a smooth function on IR
's

r2Dµf=¥(r2¥r ) + Asaf
.

(zoa )

But ¥( rz 3¥ ) = 2r¥r + rz are = [ 2r¥r 1- rz¥÷] f

while

rf-rtro-rrJ-r-r3-rtrlltr3-73-r-rf-rtr3-rtr-3.fr
= 2r% + r2¥

Hence Asaf = FDR} f- - r¥( It r¥)f = - E ?= , LE (f) .

Returning now to the representation of so /3) on Hk and specifically (17-3) we have
as operators on Hk

Lt L - = ↳it Lj + Lz
= LI t Luft LE - LE + Lz (20-5)

= klktl ) + Lz ( 1- Lz )

But of course this ad> as a constant on each eigenspace of Lz .
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Theorem LT -10 For each 1270 the so (3) representation Hk is irreducible . The spectrum

of Lz acting on Hk is {- K
,
-12+1

,
. . -

,
0
,
- - -

,
k - 1

,
k }

,
and if we

denote by 1m> some chosen eigenvectorwith eigenvalue m for - ks me K

then the structure of Hk is given by :

Ii) { Im> }Ñ= - k is an orthogonal basis for Hk

Iii ) L+1127=0 , L - l -127=0

Liii) for - Kem < K 4- Im> =µlmtD for some µ -1-0 .

( ix ) for - k<MEK L-1m> =Ulm -17 for some µ -1-0 .

Proof since Hk is a nonzero finite-dimensional complex vectorspace Lz has some

eigenvalue, and they are all real as discussed above .

Let 7m
"
be the largest

eigenvalue (possibly 7mA
✗
= 0)

,
and Van eigenvector . Now by 116.21, 116.3)

2Xma× y = Lt L - V (21-1)

but by 120.5)

( + L - y = [ klktl ) + Lz ( 1-Lz ) ] Y ( 21 . 2)

= [ klktl ) + Ima✗ ( I - ✗ma" ) ] ×

Hence

( 2Xma× - klkti ) - Imax ( I -7m
" ) )v = 0 . 121.3 )

Now if ✗
ma ✗
= 0 then Lz acts as zero on Hk so by ( 15.1) also 4- =L- = 0,

but by 120.5) this means klkt 1) 11=0 in Hk for all v c- Hk , and since dimeter = 2kt /

so Hk -1-0 this implies 12=0 .
That is

,
Dma

✗
= 0 iff

.

12=0
, in which case all the

claims are vacuously true . So we now assume Imax> 0 .
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If ✗
Max
> 0 then by 121.3)

2Xma× - klkti ) - Imax ( 1- 7mm ) = 0

( 22 . 1)

←→ talk + 1) = ✗may ✗
Max

+ 1)

The function b- ttlttl) has positive derivative fort > 0 and is therefore monotonic, so

we deduce that 7m
"
= K

.

Let 1k> denote some eigenvector for Lz with eigenvalue K .

Of course the strategy now is to repeat the proof of Lemma LT-7, namely we act on 1k>

with lowering operators and argue thatthis is everything. Suppose that for some
- Kam a- K

we have shown that me 3 (Lz) , that is, m is an eigenvalue of Lz .

Let u be an eigenvector

for this eigenvalue .

If L
-V -1-0 then it is an eigenvector with eigenvalue m - 1 ( lemma 4- 8)

.

But we need somehow to argue L - y -1-0
. But by 120.5)

Lt L - V = ( klktl ) t Lz ( 1- Lz ) ) v
= ( klktl ) + my - m ) ) V.

If L-11=0 then since 41=0
,
KCKH ) = mlm - 1)

. The function 1- It) = tlt - 1) - klktl )

vanishes for t = -K and E = ktl and is nonzero otherwise
,
so since - k < ME K

we have f- 1m ) -1-0 and so L - V -1-0 is an eigenvector with eigenvalue m - l as desired
.

By induction we have shown that {
- K
,
-KH , - -

-so, - - -ik-1 , K} c- 61 Lz ) and we may
let 11m) }In=k denote eigenvectors Lzlm> = mlm> .

Since eigenvectors fordistinct

eigenvalues are linearly independent (lemma 4--2), it V
= span a { Im> }É= -k then

dime 11=2121-1 . Since Hk has thesame dimension (Ex 4-2)
,
we must have

Hk=V and 8 (Lz ) = -{-14 .
-

-

,
k}
, proving lil .

By lemma 17-8 if Lt /k> were nonzew we wouldhave ktl c- 6 (Lz ) . This is false so Lt 1k>
=0

and similarly L - I -127=0, proving Iii) .



④

For - them <K we know by Lemma 4-8 that Lt /m> is an eigenvectorwith eigenvalue
Mtl

, and thus is orthogonal to In> torn =/MH.
Since the { In> ]nk= - k form an

orthogonal basis it follows that 4- Im> ✗ 1MtD, proving Ciii) . TheproofofCiv) is similar.

It only remains to prove that Hk is irreducible .

The proof is the same as lemma 17-7.

Suppose VEHK is nonzero and closed under Lz, L± .

If 01=11 EV is v = [É= - team /m>

and M = in f-{ m I am -1-0 } then (4)
" -

my =Mlk> for someµ-1-0 and hence

1k> c- V. Applying powers of L- we deduce 1m> c- V forall
- KEMEK hence V= Hk . ☐

Remark 4-3 Recall [ Lz, L± ] = ±L±, [Lt, L-7=2Lz . Suppose

for -Kem< K that 4- Im > =µÑ+i /mtl) and for - k < me k
L
- l m> =him - , Im - D. Then for - Kam < K

L + L - Im> = Lt ( M-m.im -D)
= Min- in! Im>

(23 . 1)

L
-

L + Im> =L- ( µ+m+ ,
ImtD)

= µ_mµtm+ , 1m>

Hence from this and L - Lt I -K> = 2kt -127
,
L + L- 1k> = 2121k>

,

Min- 1µm -µ -mµtm+ ,
= 2m

µIkµIk+ ,
= 2k 123.2)

ME ,µ I = 2k

Wemightas well assume the Im> have been chosen to be orthonormal

(up to now we have not made any use of this ) .



④

Mtkti Mtm Mtm + , Mtk

1-k>
→

1-ktl> - .
- 1m - i>
→

Im>
→

lmti - -
- 1k- I>

→

1k>
a- c- a- a-

Min Ñm-1 Ñm MI- I (24-1)

☐ = 2k @ = 9 +2m
@ = 2k

Note that if we scale the action of Lt by T -1-0 and L - by ¥ then the commutation

relations [Lz
,
L±]=±L±

,
[Lt

,
L -7=2 LZ are unchanged

,
so wehave no chance

of determining them '=m purely from the fact that Hk is a representation of so (3) .
However

,

we know beyond this that Lt is adjoint to L- (F- ✗ 4-3) , using which we obtain form < k

M+mHM+m+ ,
= 4L +1m> , 4- Im>>

= ( L - Lt 1m>
,
lm> ) 124.2)

= (µ+m+iµ_m Im> , lm>>
= MII Ññ

Hence

MÑ =¥ (24.3)

From 124.3 ) for m=k-1 and (23-2) we obtain

2k -- Mk- ink = MIMI = In:p

Hence 1µL I = Fk . Suppose µ+k=Ekei°! Then by 123.21µL ,
= Fk e- ill?

Then by (23-2)

µI-zµ+k - I =µL→µtk t 21k - 1) = 21kt K- 1) = 4k -2

Hence by 124.37, 1µL - i F- 4k -2 and so 1M£ - i / = ¥-2 .

In general , we can

prove by induction that for meh



⑤

K

lµtmf= 2 Ej=mj

= 2 [ IF
'

( jtm -1 ) ]

= 2 [ ( m - 1) ( K - MH ) t [
"" "

125.1 )j= , j ]

= 21m - 1) ( k-mtl ) + ( K - m + 2) ( K-MH )

= ( 2m -2 1- K - m 1- 2) ( k -mtl ) = ( Ktm ) ( K -MH )

If we writeMtm =/ (Ktm ) (k - Mt 1) ei°m thenÑm - i
= Ftm

.

This

determines all the coefficients Mtm ,µ_m in 124.1 ) up to these phase factors 0m .

But

these phases are simply theremaining degrees of freedom we have in choosing our basis

{ Im> }mÉk once we insist each basis vector has norm 1, in the sense that if we now

change to thebasis 1m>
'
= eipmlm> then for m< k

4- Im>
'
= e IPML +1m>

= e iPmµ+m+ , /Mtl) (25-2)

= eipm / (Ktm ) ( K- m + 1) ei0m" /mti >
= e
il 0mn -pm" +pm )/ (Ktm ) ( K- m + 1) Intl}

We can solve the equations pm = Pmn -0mn recursively for decreasing m, starting with

pr=0 , so pk - I =
- Ok

, Pk -2 =pk - i
- Ok -1 = -Ok-Ok-1 , and soon, such that in

our new orthonormal basisall the phase factors have been eliminated .

Thus
,
in conclusion

,

we may choose our orthonormal basis of eigenvectors { 1m? }mk= - k such that

L
+ Im> =/ ( K - m ) (Ktm + 1) Inti - Kem < k

(25. 3)
L
- Im> =/ ( Ktm ) ( K - m + 1) Im - I> -kcmek



④

Summary

theorem 17-10 combined with Remark 4-3 constitute a complete analysis of Hk as an so (3)

representation, and thus also HK (S2) as an 5013) representation . Since

✗

[( S2, e) = ② Hk (5) 126.1)
12710

in the sense explained in Theorem 13-12 ( the right hand side being a completion of Hilbert

spaces, or what amounts to the same thing , every f-c-LYS ? G) can be uniquely written

as a convergent series f
= Ek>iofk

,
fk C- Hk (5) ) we have now completed

the analysis of Els ? E) as an so (3) representation begun in Lecture 3
.
While this is

"

just
"

a single example, historically the entire representation theory of Lie algebras (and

much else ) grew outofthis example .

In the following we recapitulate what we have

found, highlighting those aspects which general ise to other Liegroups :

• The structure of LYS ? E) was organised by fourself-adjoint operators : the spherical

Laplacian Ds 2 and the three components ↳↳, Lz of the angularmomentum,

or equivalently ( butless symmetrically ) Lz together with the ladder operators
L± = Lx ± ily .

In fact by lemma LT-9 we need only the angularmomentum

operators since

- Dsa = Lie 1- Lj t LI (26-2)

and these are given by ↳
= - IT

, Ly = -it, Lz = -it where Sñ c- so(3)

acts on Els? E) by the operator -2$ .

• The spherical harmonics HKISZ) of degree k are the - klktl ) eigenspace of Dsz ,

so the decomposition 126.1 ) is the eigenspace decomposition of 24s? E) determined

by the Laplacian .



④

• For each 1270 we can further decompose HKISY into eigenspaces of Lz .

We can by

theorem 17-10 and Remark 17-3 choose an orthonormal basis { 1k, m> } 'mÉ - k of HK /S2)
such that 4- 1k , k> =L -1k, -127=0 and

Dsa / Kim > = - klkti ) 1k, m) - ksmsk

Lz / K, m ) = mlk, m) - KEMsk (27.1 )

L +1 Kim> =/ ( K - m ) (Ktm + 1) 1k, mtl> - Kem < K

L
- l Kim> =/ ( Ktm ) ( K - m + 1) 1k, m - I> -kcmek

• The representation HKISZ) of so /3) is irreducible ( theorem 27-10) .

• The vectors { 1km> I 1270, - KEMEK } are an orthonormal basis of 1453¢)
(seethe proof of theorem ↳ -12) so every YELYS? G) has a unique representation
as a convergent series

k

Y = ②I akin / Kim> (27-2)
12=0 m= - K

where Akim = < Him>it > is computed by an integral over 82 as defined in 13 p -②

( it is admittedly awkward to half-adopt the physics notation : physicist would write 147 and

< Kim 14> rather than the abomination < 14m>, 47 .

But we 'll live )
.

These are the

Fourier coefficients of ✗ (cf. [MHS, Example Lal -3 ] ) .

• Since 5013) satisfies the hypothesis of Ex LG-5 the functor

T : rep ( so (3) ) > rep / so (3) ) ( 27.3)

of Lemma Lb -15 is fully faithful : that is, forevery pair of 5013) -representations
V
,
W

, a
E-linear map Y:X

→ W is amorphism of 5013) -representations if.

it is amorphism of so (3)- representations .



④

Remark 4-4 We know that P→ Pls- gives an isomorphism of 30(3) representations
Hk→ Nkl5) but we have not attempted to compare the inner product
2-, -7k on Hk to the integral pairing on Hk IS ') of Lecture 3

,
because

we do not need to .

We know Lz, Lt are self-adjoint operators on ✗tell 2)

with respect to the integral pairing ( lemma 15-5) so everything in Remark 17-3

appliesjust as well to Hk 154 with this pairing as itdoes to Hk with ↳
→k .

Exercise LT-6 Ii ) Prove that the Laplacian D: Pk→ Be -2 is a morphism of so (3) representations

( here D= Ei-572 ✗E)
.

Iii) Prove thatmultiplication by 11×112=8--1%2 is a morphism of so (3) representations

11×112 : 12-2→ 7k
.

Liii ) We showed in the proof of theorem 13-4 that the sequence of
so (3) - representations (i is the inclusion )

i ☐

0→ Hk→ 7h Be
- a
→ 0

← - -

f-
-

g

is exact : that is
,
i is injective, D is surjective and Hk

= Ker (D)
. Prove

that this sequence is split exact, meaning that there are morphisms f, g

of so (3) representations such that foi = Inn, Dog
= 112→ and

i of + goD= 1pm
.

Remark LT-5 The operator LI+Luft LE is the Casimir invariant of so(3) .

For a general

Lie algebra (undersome conditions) the eigenspace decomposition with respect
to the Casimir invariantplays a similar role to the eigenspace decomposition

with respectto the Laplacian of LYS? e) .

Exercise 4-7 Using [MHS, Lemma 121-11] give a description of LYS ? IR ) as a

representation of 5013 ) paralleling the above summary .
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What is Real?

The spaces
51and 52 do not appearatfirstto be complicated objects. However, it is by no means

trivial to truly understand the spaces of continuous real-valued functions cts(S1, IR), cts(S3 IR) .

For reasons thatwe are familiar with Gio being easier to dealwith than sin lol, cos10)

separately) even ifwe ultimately care about real-valued functions it is convenient to work

with complex-valued functions .

It turns out that the fundamental degrees of freedom

in such a function are nonlocal and wave -like , in the sense that themost natural
"directions

"

in which to perturb a function Y correspond to the eigenbasis {eino }nez of the Laplacian

☐§
= 7202 in the case of S1 and the eigenbasis { 1Kim > }kzo, -kemek of Dsa

in the case of s? That is, the natural variations in a function are variations of its Fourier components
(see [MHS, LH p - 180 ] forsome discussion of this for S1 )

.

Thus Elst, ICI , LYS? e) are the natural structures in which to study functions on s
'

,
S
'

lar introduced in [MHS, 48 ] these Hilbert spaces possess exactly enough structure to talk

about convergent series such as Fourier decompositions).

In L1 and L2 wemadethe argument, following standard physics
" lore "
,
that real things have

symmetries .

In less vague terms, and accepting the basic postulates ofquantum mechanics,

the Hilbert space of statesofany physical system must be a representation (eitherunitary or

antiunitary, andpossibly projective) of whatever Lie group governs the setof equivalent
observers. In relativistic quantum mechanics this is the Poincaregroup, but we have focused

on the subgroup so(3) , and thus observers at rest relative to one another .

In this case the

Hilbert space H
= LYS?E) is a reasonable model of (partof) the state ofmany interesting

systems, such as electrons in small atoms (seep . ④ of (4) .

We argued on p . ④ L4 that if one observer sees the system in an eigenstate of Dsa, say
YEAH5)

,
so that it has total angularmomentum quantum number klktl ) ( the eigenvalue of the

self-adjoint operator bitty + LÉ ) then eveuyequivalentobserver also sees a state in HKISY .
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Observers donot necessarily agree on the quantum numberm, 1- e. the eigen basis of Lz, because

their Lz's may be different
! Let ñ c-5 and take ñ as the x-axis of a second observer 0

'

(we call the firstobserver 0 ) with coordinate system ti, tz, t} . Then if O
'

chooses an eigenbasis

for Hk IS2) consisting of eigenvectors of Lt , = - c- [ ti¥ - t2¥ , ] then these will

not in general be an eigenbasis for Lz . However one can show

↳it Ljtlz = Lt, t Lt, t Lt, (30-1)

so that both observers disagree on the operator of total angular momentum, and hence it

eigenvectors and eigenvalues (this being the aforementioned agreement on the decomposition

of Els? e) into the Hk 154 's)
.

In this sense the Casimir invariant 130.1) is read .
The general

definition of a " real quantity
"

fora system with Hilbertspace
H acted on via unitary transformations

by a Lie gwup a with Lie algebra g is an elementof the center of the universal enveloping algebra V19) .

These are polynomial expressions in the elements of g ( such as 130.1)) which commutewith all the

actions of elements of g on any representation . For so (3) this center is spanned by 130 . 1)
.

Exercise 4-8 Let G be a matrix Lie group which is connected (see
F- ✗ L6-5)

.

Youmay assume

that this implies every element of a can be written in the form exp (XD
- - -

exp ( Xn )

torsome Xy . .
-

, Xn C- g. Let X be a finite -dimensional complex representation of a,

where H is a Hilbert space and each g c-Gach by a unitary transformation on H .

Let 0,0
'
be two observers related by a group element go:O so that if 0 observes

a state ✗ c- H then 0
'
observes got, o •

YE H .

Let { Xi}ie± be an IR -basis for 9 and C a polynomial in the Xi, which we

may view as a
E-linear operator on H by interpreting it as a sum of products

of the operators ✗ i. f) using the action of 9 ( i.e .
34kt XE sends YEN

to 3×1 . ( Xz . 4) + Xz . 1×2.4 ) )
. Suppose [C) Xi] = 0 for all ic-I as

operators on H .
Prove that go-to C go :O = C hence

,
both observers agree

on the eigenvectors and eigenvalues of C, and these are hence
"real "

.
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Exercise 17-9 Prove that for 1270 there is an isomorphism of so (3) - representations

a

Pk I ② Hk - Zi
i = 0

where 12=2at b
,
a
,
b c- IN and b < 2 .


