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Lecture 6 - Lie Groups and Lie Algebras 2614121

updated 2116121

We have defined a group representation for 1270

3 : so (3)
°P > End① ( Nhtsa) )

(1.0)

6112% ) (f) = fo RI = exp ( 22
"
)(f)

where 2$ is a differential operator, the infinitesimalgeneratorof rotations around the axis ÑES ?

If we let Aute ( HKISZ) ) denote the automorphisms of Ntds4, that is, the invertible

linear transformations
,
then 6 is a group homomorphism

SO (3)"→ Au§(Hats4) .

We have spent much of our time understanding the codomain : spherical harmonics and

their operators .

In particular we have seen that every 8 ( Rita ) is unitary and that the

generator 7
"

is skew self-adjoint (Lemma LS -5) .

We now turn our attention to the domain
,

where we will discover similar structure .

Lemma 16-1 As linear operators on IR ? we have for a c-R

O O O

RI = exp ( ✗ ( o o -f) ) a. 1)
0 1

Proof set 1-= (°o°,
°

.

° ° - 1)
.
The exponential is the limit in Ms HR) with respect to

the Frobenius norm (Remark 131 - 1) of the sequence of partial sums

an = I, t XT t £512 + - - - + ✗
"

T
"

+ ¥g Inti -12h
+1

(1-2)
n 1- n 1-

= {
i=o ( ai ) !

✗
"
T
"

t [
⇐ ☐ (zit , , !

✗
2 it '

-12 it
I

-

For all n we have an
= (&

° °

bn ) where bn is ( 1. 2) with T replaced by the

2×2 matrix 5=(9-6) .

Since limits in Ms ( IR ) with respect to the Frobenius norm

arejust limits in 1129 thinking ofmatrices as vectors, we see that exp (at)
= ( :

° °

o exp (as) ) .



②

Since 52 = - Iz we have

n

bn = [
i⇒ ¥.

✗
"
S
"

+
⇒
,z¥, ✗

zit 's zit I

-

(2-1)

= o¥
.

C- 1)
"

✗
"
Iz + In 1-

i=o (ziti ] ! C-1)
i
✗Zitlg

and since we recognise these as the partial sums of the Taylor series expansion of us, sin

limbn = ( cost - sins

n -300

w, g ) - (2-2)
sins

as claimed . ☐

DEI we define

° ° '

E- ( it :)8- = ( : : :) .
F- ( o o o ) .

0 I 0 - I 0 O O O O

By the same argument RL
=

exp (✗8D , RT = exp ( ✗ JZ). Note that R2 is unitary

( it preserves the dotproduct) and 8
"

is skew symmetric Ct
") -1=-87 as it has to be

by Ex L5-3, LS -4.

Let ñ have spherical angles QY as per our usual notation (L 3 p - ⑧) , so that

2-

✗

in
Rx Y z

Ra = RJ Ro? a R :-O R - y R
'
e ,

<⇐¥D,→ñ- ¥+0

g-

"

✗

<

!
>
y



③

Then using F-✗ 131-3 and Lemma Lb
- 1- wecompute

R
"

✗
= RJ Ro? expense)R±

.se?oREg=exp(xREgRfe--z5'R?z-oRZ-g ) ( 3. 1)

= exp / ✗ (Tri )
-

'S 'T
"

)

where Tñ=R¥ -ORES as in L4p - ④ - Explicitly

Tñ=µs(
¥-0) 0 sink-0) costs ) -since) 0

0 I 0 µ
- since-0) o •y±o,

"" f" costs g)
0 0

= cosy sing 0

(
sino ) 0 °""

- sing cosy °

,
) ""

O l 0 ✗
- WSO 0 Sino o o

=

(
sinowsfsinos.int wso

- siny cosy 0

-wsowsy - wsosiny since
]

This matrix is orthogonal (teeExLF4liii) ) so ( Tri) -1=(1-5)? Hence

( Tri)-18
"

-1
"
=

( sinowsy-sing-wsowsgoooyfsinowsfsinos.int
WSO

sinosiny wsy - wsosiny/ ( o o - l
- sing cosy 0

wso 0 since 0 I 0
-wsowsy - wsosiny sino

)
( 3.3)
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=

0 - wsows'S sin 'S sinocosl sinding WSO

( o -wsosini -ws9|( -sing cosy 0

0 since o-wsowsy-wsosinysi.no
)

= 0 - wsows'T - wsosin'T sinosinl

(www.ytwsocopy o -sina.gg/-sinOsinY
sinclcost 0

=

(
0 - Wso sintering

y
)
=

(
° - M3 hz

Wso 0 - sinllcoshf nz 0 - ni )
- sinosinl sin OWSY - na n , O

= n , 8"thz8Ytnz8Z

where Ñ=( niinzins) . We have proven

Lemma 16-2 Given Ñ=(nuns,ns)E we have

RI=exp( ✗ [ his "tnz8Y+nsft] )

where Ñ=n , 87h28
> tnsfttiscalledthe infinitesimal generator of rotations around 'ñ .

The matrices 87818 Zareabasisforthesubspaceofskew symmetric matrices

so (3) =/ ✗ c- Ms / IR) / XT= - X ) ( 4. 1)

Def Where convenient we write 8%8%8
"

for 83838 ?



⑤

Remark Note that if n= (Mina,B) c- IN is nonzero and ñ =⇐ n then

explore ?⇒ his
" ) = exp ( ✗ 1141 iñi 8

" ) = Riri is:| )21141

Lemma Lb -3 There is a surjective map

exp C-) : so (3) > SO (3) ( 5.2)

Proof By Ex L3 -6 every g c- SO (3) is of the form RI for some
'

n' c- 52 and ✗ c- [0,21T) .

So the claim follows from Lemma Lb -2 - ☐

We have now shown that every
rotation Rña

,
a unitary operatoron the read inner product space IR?

is the exponential of a skew self-adjoint matrix ✗ 8 ? We may therefore rewrite 11.0) as

3 : so (3) > Auto ( Nhtsa) )
( 5. 3)

6 ( exp ( ✗ sñ) ) = exploit )

this strongly suggests that the content of this representation lies in the relationship between
the infinitesimal generators 8%2 from which 3 is obtained by exponentiation .

Theorem 16-4 Let D8 be the linear transformation so (3) > Ende ( HKISY )

between real vectorspaces defined by D8 ( 8
" ) = 7 "

.

Then the diagram

below commutes

3

so (3) > Ante ( HRW )
n ^ ( 5. 4)

exp exp

so (3) > End ,c( Hk /S4)
D8



⑥

Before proving the theorem we observe the relation between 2
"
and the 25737£

.

Lemma LG-5 Given in = ( hi , na, n s ) c- 52

7
"
= nil

"

t nie +nit

Proof By def
" (LS p④) we have 2

"
= tz¥ - ↳¥ where ti = §- É T g- .

From

this we deduce xi = §?=
, ( Tri ) tj and hence by the chain rule

¥ = §?= , ¥ . 3¥.

16.1 )

= §.:( F)
"

ji ¥.

Hence

ta ¥ - t}÷ = ( EJÉT g.) (§?=
, ( Tri) ÷;)

- ( Ej.IT?;xj)(Ej--ilT ") ¥;)
Tii orthogonal

= Ej?k= ,
TÉ
;
Tri
3k
"
j ¥1k ( 6. 2)

- [j.nu -1¥ . Tish " k ¥

= Ej?k= , TÉjTÉk[ xj In - xk¥×j ]

But the term in the bracket vanishes if j=k , and so only the pairs (J, K) in the set

{ ( 1,2 ), (1,3) , 12,3 ) , ( 2, 1) , 13,1 ) , ( 3,2) } contribute :



⑦

= E. ( T TIN - T
"
T
"

2k Sj ) ( ×j¥k -2k¥ . ]
jak

= ( TI
,
-1% - TI

,
-1% ) 2

"

Cj,k)=(2,3 )

- ( TITI, - TITI, ) 21 Cj ,k)= 11,3 )
(H)

/
note this !

+ ( TITI - TITI, ) ZZ Cj ,k)=( 1,2)

We recognise the terms in round brackets as determinants ofminors of Tri, which we

may compute by (3. 2)

= sinOwsYZ
"

-1 sinosin 97 't cos02£
= n ,

Z't nil tnsZZ
- ☐

Proof of theorem 16-4 By Lemma Lb-5we have for ÑESZ that

DHS
"

) = DUE ?⇒ni8 " )
= & ,

hi Dolf '" ) (7-2)

= E ?=,niZ×i= zñ

Thediagram /5.4) commutes on OE 5013) since, using that Zisagwup homomorphism

2. ( exp /o) ) = 3( Is)= 1-
zeklsz)

= exp ( O ) =exp( D8 (o) )
.

If YE so /3) is nonzero, itcan be written as 4=28 for some ÑESZ and ✗ER .

Then we have

Lemma LG - L ThmL4-5 (7-2)

Kexp ( Y) ) = 3112% ) = explain ) = exp ( ✗ Dzlsñ ) )
= exp(D3( ✗ sñ ) ) = exp ( DGCY ) ) . ☐



⑧

From theorem LG-4 we learn that the representation 3 of so (3) can be viewed as the

exponential of a linear map D8 : so (3)→ Ende ( Hk15) )
.

What kind of mathematical

object is this, and to whatdegree can we inferuseful information about 3 from D8 ?

To answer these questions we develop some general theory .

We note that theorem 26-4

is about one-parameter families of invertible operators { exp ( TX) }teIR and so our

first goal to characterise such families abstractly .

One -parameter subgroups

Let F- be either R or Q and letglln, F) denote the IF- vector space of nxn matrices over
F- (previously denoted Mn (F)) .

Let alln
, F) denote the group of invertible nxn matrices .

By Theorem 131-11 applied to the Banach space V
= IF

"

(with say the 11-112 norm ) we have

the exponential map

exp : gun , F) > GL ( n, F) (8. 1)

Lemma LG -6 Given ✗ c- glln , F) the function

IR > glln , IF )
( 8. 2)

t→ expltx)

is smooth and

d
It exp ItX ) = ✗ exp / TX ) = exp (TX) X .

C 8. 3)

Proof we are asserting thata function R→ IF
"
is differentiable

,
i - e -
thatall its

component real-valued functions are differentiable (with Ei= IRM) .
This and (8. 3) were both proven in theproof of theorem 14-5using Picard 's theorem

-

From (8-3) we infer by induction thatall higher derivatives exist as well - ☐



⑨

Renard In particular for ✗ c- glln , F) we have by Theorem 131-11 Ii)

¥ expltx) /
⇐☐

= [ ✗ exp It ✗ I] /
+⇒

= ✗ 19.1 )

dn

By induction it is easy to see that Itn exp ( TX)
= ✗

"

exp ( tx)

DEI We say a smooth function ✗It)
: IR→ 91 In ,F) vanishes to order K at 1- = a

if Ftii Xlt ) /⇐ a is the zero matrix for 0£ isK .

☒ The commutator of ✗HE geln , F) is [✗it] = XY - YX
.

We say ✗ ,
Y commie

if XY = YX i. e. [× , -17=0 .

If ✗ ,
Y commute then exp ( TX ) explty) = exp (1-1×1-41) by theorem 131-11 Iii) . In

general this is false, and while the full formula for exp / TX) explty) is quite complicated
(the Baker - Campbell - Hausdorff formula ) the low order terms in t are easy to compute :

Lemma 16-7 For X
,
YE gun , F)

exp ( TX ) exp ( TY ) = exp (1-1×+4) + [✗it] ) + Rzlt) (9-2)

where Rzlt ) is a smooth function oft vanishing to order 2 att = 0 .

Proof We have

exp /TX ) exp /TY) = ( It txt ÉX + Alt) ) - (It TY + ¥72T Bit))
for some matrix-valued functions AIH , Blt) smooth and vanishing to order 2 at 1--0

(since e.g. Alt) = exp / TX ) - I - TX
- ✗

2

and so Alt ) is smooth and

%EACH = X'expltx ) - ✗
2
which vanishes at 1- = 0

. Similarly for Blt) ) .



④

Expanding gives

expltxlexplty) = It TY t Y
-

+ BIT)

+ t ✗ + thy + Its ✗ Y 't t ✗ Bit)

+ Ez ✗ ' + Its ✗ 'Ytqt4×242+1=-12×2 B It)
-
-
-

tA-t+t.A-l-Y+I-t-t://AIHBIH-T.tt/XtY)ttE(Y2t2XYt
✗2) t P It)

where P It) is smooth and vanishes to order 2 at 1- = 0 . On the other hand

exp (1-1×+4) + E- [✗it] ) = It t( ✗ +Y ) t [×
,
Y] + 1×+41

-

+ Q It)

= It 1- ( ✗ + Y) + ¥ ( Ft XY + YX + Y't XY - YX ) + Q (f)

= It tlxt Y ) t É( ✗2+2×41-42 ) + alt)

where Qlt) is smooth and vanishes to order 2at 1- = 0 . Setting Rzlt)
= QLH - P (f)

we are done . ☐

DEI A one-parameter subgroup of a4h , F) is a continuous function f- IR→ all n , F) such that

f- ( s + t ) = f-(s) f- ( t) Fs, 1- c- IR

Exercise 16-1 Prove that the image of a one -parameter subgroup f : IR→ a4h, F) is

in fact an abelian subgroup of Gun, F), and that f-10) = I .



①

Lemma Lb-8 Let f : IR→ Gun , F) bea one-parameter subgroup . Then f- is differentiable .

- a

Proof since f- is continuous it is (entry - wise ) integrable , so for a> 0 we have to f-A)dteglln , F) .

We claim that if a is sufficiently small thismatrix is invertible .

The function det : 91 In , F) → IF

is continuous so 94h,F) c- 911h, F) is an opensubset with respect to the Frobenius norm 11-11.

Since I c- Gun, /F) we can find c- > 0 such that 11 X - Ill< c- implies ✗ is invertible .

"" """ " """" "" """ "" """""" """"

whenever It 1<8 . Thus I f-(f)
ij
- Iij / < % forall Ki

,jen, and so

[ I fltlij - Iij / dt < c- a/n

Hence if a < 8

I/ tafoafltldt - I 11 = 11%141-11-1 - I ) at 11

= ta { Eiy. If?( fltlij - Ii;) att } (11-1)

< ta { n?z }
"'
= €

So tafoafltldt is invertible and hence so is [fltldt . But then for SEIR

foaflttsjdt = f-(s))? fltldt 111.21

f? f-It + s)dt = Sss
"

f-(Hdt iii. 3)

The second integral maybe written as (since a> o)
Hldt + /

""
fltldt for

p

some fixed p with s< pasta and this shows foaflttsldt is differentiable in s

( by the Fundamentaltheorem of calculus , keeping in mind thattoprove differentiability at

s we need only values in (s-8, Sff ) so a fixed p may be found ) .



①

But by III.2) this shows g (s ) = Hs)/o
"

fltldt is a differentiable function of s,

and hence so too is

f-(s ) = 91s ) [foafltldt ]
"

as claimed . ☐

Remark By Lemma Lb -6 for any ✗ c- glln, F) we have a one-parameter subgroup f-(t) = exp /TX) .

Given a one -parameter subgroup f : IR→ Gun, F) is by Lemma LG-8 a smooth

function and hence we may define ✗
-

- = HH /
+⇒

c- 911%11=1. We now claim

these are mutually inverse maps .

Lemma Lb-9 There is a bijection

I

glln, F) > { f : IR→ Gun, F) I f is a one -parameter subgroup}

where 4- and its inverse Io are given by

ILXKT) = expltx )

Io (f) = ¥tflH /t=o
.

Proof Given ✗ c-glln, F) let f-(f) = exp ItX ) .
This is continuous by lemma LG -6, takes values

in Gun, F) by theorem 131-11 Civ) . By Theorem 131-11 Cii) we have

fltts ) = exp( TX tsx)
= exp / TX ) exp Is✗) = f-(Hft)

so f- is a one-parameter subgroup . By Lemma 16-8 the function ☒ is well-defined
,
and

it remains to show that ☒4- = 7- and 4- F- = 1 .



①

By lemma LG -6 (or more precisely itsproof) we have that t /→ exp/TX ) is the unique

solution of the differential equation

¥41T ) = ✗ Ylt)
.

43-1 )

Hence

IoI( x) = #( IA) ) /⇐ o

= o¥( expltx ) ) / t=o 113.2)
= ( ✗expltx) ) /t=o
= X

.

To show 4- F-(f) = fit suffices to show that E- flt) = Xflt) where ✗ = F- (f) . But

¥tf(H /⇐ a =
Iim Hath )

- f-(a)
n → o= (recall this all happens entry-wise)

= Iim Hh) f-(a) - f- (a)
n→ o h

= Iim flhh-1-f.la)
h → 0

( 13.3 )
= ( Iim Hh ) - ft) ] g-(a)h→ o h

d
= Itflt) / t=of(a)

= ✗ f- (a)

That is
,
f-It is a solution of 113.1 ) . Hence by uniqueness IE(f)

= f. ☐



④

Def
" If f : IR→ Gun,F) is a one -parameter subgroup and ✗ the unique matrix
such that f-It) = expltx ) forall te IR we call ✗ the infinitesimal generator
of the one-parameter subgroup .

Example 16-1 For in c-5 we have 8£ c- so (3) c- 9113, IR) and the corresponding
one -parameter subgroup is by Lemma LG -2

f-( t ) = exp Its
") = RI 44.1)

this function f : IR→ a 43, IR) is continuous (a continuous map from IR is

called a path see [MHS, 42] ) and induces a continuous map f : IR→ SO (3)
.

The union over all ñ of these paths is all of 50 (3) by Ex L3 -6 .

Example 16-2 For
'

n' c-5and 1270 we have 2
"
E gl (212+1,0) , by Lsp . ④ and

Ex L4 -2 (or atleast the matrix of Zñ is in 9112kt, E) . As nothing we

will say depends on the basis, we may assume one has been chosen, and

conflate 2
" with this matrix )

.

The corresponding one-parameter family is

by theorem L4 -5

f- ( t) = exp ( t2
" ) = 3 ( RI )

.

114.2)

Remark L 6- 3 If f : IR→ Gun ,F) is a one -parameter subgroup then by lemma 16-8 f- is

differentiable (when we say a functionf- into Gun, F) is continuous, differentiable,
d-
,
smooth etc . we mean the function to f- has thisproperly where l : ahh, F)→ 911mF)

is the inclusion
,
and we identify 911411F) with IF

"
'

)
.

But Lemma Lb-9 improves

this : since E- f-(f) = Xflt) we see that f is in fact smooth ( lemma LG-6).



④

Remark 16-4 Let f-- IR→ R be a smooth function
. By Taylor 's theorem (using the Lagrange

form of the remainder) for any a EIR we have for 1271 an integer

f-(a) = f-(a) + f
'

(a) (x - a) t - -
- t f"¥¥ ( x- a)" t Rk(ape) ( 15.1 )

as functions on IR
,
where the remainder Rkca , x) is equal to (x- a)

""

for some

b between x and a (depending on ×). In Lsp .
③ we learned a different way to think about this

:

if we evaluate the Taylor series expansion ( 15.11 at xta we have

K

i⇒
0¥ f "" (a) + Rkfa , at a) 115.2)f-Get a) = E

If we now swap the role of x , a

k

flat a) = [
ai

i⇒
T.fi "(x) t rk(ape) (15-3)

where rn Cape)=fYI?a "" for some b between a and xta .

That is
,

we consider the IR-vectorspace C-( IR ) of all smooth functions, which is an IR-algebra,

on which we have a linear operator IX. Then 115.3 ) says

K

flat a) =/E. a÷3÷. / (f) + rklapc ) . 115.4 )
i=o

Thinking now of an nxn matrix of smooth functions X : IR-7911h , IR) (so

we have ✗ It) = ( fij (H ) ⇐ i.jen where the fij '

- IR→ # are smooth ) if

this vanishes to order Kat 1- = 0 (as defined on p . 9) then by 115.1 )

1 112+1 ) ( 15. 5)
✗ ( t ) = ¥1

. ( fij ( bij ) ) iy.tk
"

-

nxn matrix
r

for some bij between t and 0 (see Rudin
"

Principles of mathematical analysis " )
.



④

Matrix Lie groups and Lie algebras
(finally?)

Recall that IF is R or Q
,
and the general lineargroup GL (

n
, F) is the group of invertible

nxn matrices over F. the setof all such matrices is denoted Mn (F) . This vectorspace is

a normed space with the Frobenius norm
11 - IIF , and the associated metric is such that a sequence

( Xm )m•= , of matrices converges to ✗ if and only if for all ij the entries (Xm ) g-→ Xij as m→ • .

The subset attn , IF) C- Mn (F) becomes a metric space with the induced metric .

Since

det : Mn (E) → ¢ is continuous and 94N ,
F) = det

- '

(e) {0} ) this an oped subsetof Mn (F)

(so if A is invertible there exists E > 0 with { B I 11 B- All < E } c- a Lln , IF) )
.

DEI A matrix Lie group is a subgroup G of Gun, G) which is closed in a4h, G) .

That is
, a matrix Lie group is a closed subgroup of 94h, E) .

Here am'some conditions equivalent to a c- attn , e) being closed in the subspace topology
on GL (n, e) :

• if ✗ EGLIN , e) IG there exists E > 0
Mn (a)

such that for all BE Gun , e) with

11 B-✗ IKE we have Bel G .

Mn (e)
• if (Am)?m= , is a sequence in G converging to

A c- attn, e) then A c- a
.

Remark16-5 It is possible for sequences in Gto converge to non - invertible matrices

(think of the sequence ( Tn In 1m¥ with a
= attn , E) ) and on

such sequences there is no constraint imposed by a being a matrix subgroup .

Example LG-3 Gun , G) is a matrix Lie group, and so is aUni IR ) since IR is closed in Q.



①

Remark 16-6 Any matrix Lie group G is a metric space (and thus topological space ) with the

metric induced from 94N, E)
.

Exercise LG-2 Ii ) Prove that any subgroup H of a matrix Lie group G which is closed

in the subspace topology on G is also closed in GLIM 9)
,

and is thus itself

a matrix Lie group .

Iii ) If G , H are matrix Lie groups so is an H .

Example Lb -4 The following subgroups of all n, E) are closed and thus matrix Lie groups :

(1) sun, F) = { ✗ Eaten, F) I det (X) = 1} called the special linear group
This is closed since def is continuous and sun,F) = def

- '

( { I} )
.

(2) Oln ) = { ✗ c- Mn ( IR) I XTX = In } the orthogonal group .

f)
+

meaning transpose

It is easy tosee this is a subgroup of 94h , IR) (since 1- = deff XTX ) = detl ✗5

an orthogonal matrix is invertible) and if Am C- Oln ) form> I converges to

a matrix A then since the transpose and multiplication are continuous

ATA = (Linz Am )T( lim Am )
m→ •

=µiI•lAm5KhiI•Am ) an)

= Iim ( Am5AM = 1
m-1 •

so A c- 0 (a)

(3) So (n) = Ocn ) A SL ( n , R) is the special orthogonal group
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(4) U (n ) = { ✗ c- Mn (E) I ✗*✗ = In } where ✗* is the conjugatetranspose .

By the same argumentas in 1171) this is a matrix Liegroup, the unitary group

(s) su In) = V14 A SLIM, E) the special unitary group .

(6) { In} EGLIN, e) is the trivial tie group .

Wewillsee more examples but these will do fornow .
We note that for us the embedding

of a into GL In, d) is part of the data of a matrix Lie group .

DEI A one-parameter subgroup of a matrix Lie group G is a continuous function f- IR→ G such that

f- ( s + t ) = f-(s) f- It) for all s, TER .

If G is a matrix Lie group and L : a→ 9491C) is the inclusion then we have an injective map

{ f- : IR→ G I f- is a one-parameter subgroup }

\ to f) (18-1)
×

{ f : IR→ attn , e) I f- is a one-parameter subgroup }

whose image is precisely the set of f : IR→ Gun , E) with fltl c-G for all te IR . But we know

by Lemma LG-9 that the exponential map establishes a bijection between get n , e) (the

space of infinitesimalgenerators ) and the setof one-parameter subgroups of G. The diagram
above leads us to wonder which infinitesimal symmetries exponentials to symmetries in G ?

( ← - - - - -- - → { f : IR→ at f- is a one-parameter subgroup }

( I 8.2)| to f)1.
×

I

getn, E) > { f : IR→ attn , e) I f- is a one-parameter subgroup }
exp
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Def
"

Let G be a matrix Lie group .

The Lie algebra Lie (G) of a is

Lie(a) = { ✗ c- gun , e) I exp ItX) c- a for all 1- c- IR } 119.11

Typically Lie algebras are denoted with lowercase
"fraktur " letters g , h, . . .

For themoment this isjust a set and itremains unclearwhat additional structure on this set

is induced by
"

taking the logarithm
"

of the group structure of G.

Remark 16-7 lil If GE Have matrix Liegroups with Lie algebras g , k resp . then get .

Iii ) If 9 , Hare matrix Lie groups then
Lie (an H ) = Lie (G) A Lie ( H )

.

Example Lb-5 Ii) Clearly Lie ( GLIN, E) ) = gelntc ), Lie ( { In }) = { 0 } .

Iii ) Lie ( Gun , IR) ) = 91 In , IR) . By Bl p .④ we have

glln.IR) c- Lie ( attn, IR ) ) .

If ✗ is a complex matrix with

exp / TX) real forall 1- c- IR then by Lemma LG -9, ✗ = ¥ exp /TX)/to
must be real

.

Ciii ) By Ex 131-5 for ✗ c- glln , e)

det( exp (TX) ) = exp ( ttrlx )) ( 19.21

Hence detlexplt✗1) = 1- for all 1-c-Rif and only if tr(X) = 0 .
This proves

that slln, IR) := Lie ( sun, IR )) and slln , e) = Lie ( sun, e) ) are

given for IF c- { 112,1C} by

sun, F) = { ✗ c- glln.FI/trlX)-- 0 }
.

(19-3)



⑧

liv) with an) = Lie (Oln ) ) we have by Ex Ls -3 , L 5-4

☐ (n) = { ✗ c- gun , IR) I ☒= - ×} (20-1)

That is
,

☐ (n) is the set of skew -symmetric real matrices .

(v ) with soln) : = Lie (Solh) ) we have by Remark Lb -7 Iii)

so In ) = Lie ( Oln ) n sun, IR ) )
= Lie (Oln ) ) A Lie /sun, IR ) ) Cao - 2)

= ☐ (n ) nslln.IR)

= { Xeglln, IR ) I Xt= - X and tlx) = 0}
= { ✗ c- glln.IR ) I ✗

+
= - X )

since an anti-symmetricmatrix necessarily has zero diagonal entries and thus

zero trace
.

So 50Cn )
,
0 (n ) have the same Lie algebra , typically denoted 501h)

lie . we will not write ☐ (n ) ever again ) . This has to do with theglobal topologicalstructure

of these groups, which is
"missed " by passing to infinitesimals at 1--0. We 'll return to

this later . Note that if n =3 then (20-2) agrees with 14.1 ).

lxi ) with uln)== Lie ( Vln ) ) we have by Lemma 25-4

✗ Euln )→ exp ( TX ) is unitary forall ✗ c- IR ( 20.3 )

É - i ✗ is self-adjoint as an operator
⇒ fix)*= - i ✗ as a matrix (* being conjugate transpose)

←→ i ✗
*
=
- IX as a matrix

←→ -✗ =X*

Thus uln) = { ✗ c- glln, E) I ✗
*
= - X} is the setof anti-self-adjoint matrices .



②

lvii ) we have

suln ) := Lie ( SU (n ) )

= Lie ( Vln) ) A Lie (Sun, E) ) (21.1 )

= ninth sun , e)

= { ✗ eglln , e) I ✗
*
= - X

,
trlx) = 0 }

Note that the condition of vanishing trace is no longer vacuous, as e.g. (
i ) c- all ) 1 sull ) .

Regarding the structure of lie algebras , the most obvious feature in Example 26-5 is that

all the Lie algebra examples are real vector spaces (some are complex vector spaces) .

Lemma LG -10 Let a be a matrix Lie group with Lie algebra g. Then g is a real vector

subspace of glln, G) , that is

(a) it X
,
Y C- g then ✗ 1- YE 9 .

(b) it ✗ c- g and I c- IR then 7✗ c-g.

Proof (b) is immediate from the definition .

For (a) weneed the Lieproduct formula ( theorem Bl -16)

according to which for X, Y c- glln, G) and t c- IR

expltlxty ) ) = Iim ( exp ( ¥i ) exp (Ed) )M 121.2)
m→ 00

This limit is with respectto the metric associated theoperator norm on Pich) =911m e),
butsince all norms on Pti) are Lipschitz equivalent 1Lemma Bl - 1)

,
(21-2) holds

with respectto any norm you like on matrices , including the Frobenius norm (so that the

RHS converges entry-wise to the LHS) . But if X
,
Y c-g then exp ( En X ), exp (E- Y) c- G

forall t c- IR and integers m, and since G is a subgroup [ expltmx)exp (Ent) ]m C- G
.

Since expltlxt Y) ) is invertible and his closed
,
the limit in 121.2) also belongs to G-☐



④

Def
" A matrix Lie group is called complex if g

= Lie(a) is a complex subspace of gl In, e) ,

equivalently i ✗ c- g whenever ✗ c- g.

Example 16-6 (it If G C- Gun, IR ) then 9 ⇐ 9h1m IR) so G is complex iff . it is the trivial Lie group.

Iii ) Sun , e) is complex .

Ciii) If ✗
*
= - ✗ then tix)* = - i ✗ * = iX so if ✗c- so In ) and i ✗ c- so In)

then ✗ = 0
, so Ulnl, so In) are not complex for n> 1, despite the

Lie algebras having complex entries .

Beyond being real subspaces of geln , e) there is one additional piece of structure on a Lie algebra that

remains for us to discover. At least formatrix Lie groups thatdo notcontain
"
nontrivial loops

"

(we willsee what this means later) it is a remarkable fact that this one additionalpiece of structure,

the Lie bracket
,
allows us to capture everything about the representation theory of the liegroup

using just the infinitesimal information in the Lie algebra . Taylor series win !



⑤

The origin of the Lie bracket

Recall that in our quest to understand the natural representation of so (3) on its ? e) the fact that

so (3) is notabelian was the first obstacle (see p . ① L4) or, put differently, if SO (3) were abelian

we could simultaneously diagonalise all the operators 619) and so the structure of the representation
would be quite trivial . Since so (3) isnt abelian, the representation 6 at least stands a chance

of being interesting. Let us now return to this commentandmake a careful study of some pairs

g,
he so (3) with ghthg or what is the same g h g-

' hi
'

t e, where e is the identity .

Using the notation of p .② set

g = exp( tF) = RI (23-1)

h = exp ( s 89 ) = R?

We wish to compare the twoways around the following diagram

RI

IN > 1123

( 23 .2)n#?
"

R 's R 's
✗ Y

pi > 1123
RI

Wecan visualise RI , R ! by picking a- C-5 and noting that at RI fit for a c- 10, t] is a

continuous path joining 4- to RII
,
and similarly for RTs (we assume sit small in the pictures)

✗
^

REI
(23 .3)•

1 •

Y
•

• it
•

IRI"
✗

L
> L

>

y
I



④

These "flow lines " or orbits of RÉ
,

R 's obviously intersect in a kind of patchwork, which we visualise

below on the intersection of 52with the region a → 0, y 70,2-70

2-

I

pply R} for some s

""":* .

(24-1)

y

The diagram (23-2) invites us to consider the following kind of path on the sphere

(24 . 2)

RIRI is •

¥121s RIt R ? RI a
RITR 'sRI 4-

Does this path
"
dose " to a loop, atleast for

" infinitesimal " rectangles on the sphere >

.

Let us first do a rough calculation using 123.1 ) and keeping only second order

terms ins
,
t :

(24 . 3)

RI a = at t sit + oct4

R? RI a- = it + ts
"

a- + 01 C-2) + s 8 'd + st 898
"

y + 01s 2)

RE RY RI it = a + t 8
"

a- + s 8
"
at St 818

"

a- to (F) to (5)

- [ t 8"a + Eff"Tatts 8
"
8Yet st 'S"898

"

a ]



⑤

=

a- + tats 8 'at St 898
"

a- to (F) to (5)

- ta - sts's'

= a- + s 8% + st ( 898 " - 8" 84 ) a + 0 (F) to (sa)

(25.1 )

R Is R It RIRI a- = at + st ( V8
"

- 8×84 ) us to(f) ☐ (sa)

-¥ + s48721 + it ( 84s't
"
- 898×84 ) a ]

= a + st( 898×-8
" 89 ) a- + 0 (F) to (S2)

the "error
" term st ( f ' 8

"
- 8

"8) 4- to (F) to (5) certainly goes to zero as s, t → 0

but this was obvious anyway since R Is
RI c- R ? RI is continuous in s, t . What we want to

know is if "flowing
"

a- around an infinitesimal rectangle returns us back to 4- which means

we need to scale by the area St, i. e. compute

z÷t( RISKIER ? RI it ] /
+⇒⇒

= ( 848×-8 "8 ' )a car .4

= 184,8 " ] is

where E -7 is the matrix commutator . But [ 878×1 =
- [8%81] and

0 0 0

°o° ) -1: : :X: : :)is :sn= to -11; ; ;0 I 0
- I o o 0 I 0

125. 3)

° o o ) = JZ=L : : :| -1: : :I 0 0

So R Is R It R } RF I = I - St 8£ I for s , t small . The error is a rotation around the z-axis !



④

Or said differently
, transporting 4- aroundthe

"

rectangle
"
is approximately REsta , rotating 4-

by an angle of -St around the z-axis :

2-

^

I
"

""

-

-

-

-

•

\RYRIE '

'

-iii.±ii÷÷RITR ? RI I =
RZ-stu.cl! ' →

y

The upshot is : thediagram 123.21 fails to commute (ghthg or ghg-
'hi ' + e) and the

failure is measured by the commutator [8 ! f
" ]

.

Lemma Lo-11 We have [8787--83 [ SY, 82-1 = 8 ? [ 878
"

] = 8 ? and in general

[ §
,

sñ ] = gñxñ (26 . 2)

where Ñ
,
in c- 5 and f) ✗f) denotes the cross product .

Proof we check the first claims about 8387 ft by directcalculation .

For 126.2 ) note that the

cross product is bilinear so
'

n' ✗ in = Eiy?= , nimj (eixej ) .

On the other hand

the commutator is also bilinear in each variable so [ 8%8*7 = Eij = , nimj [ 8
"

,
8% ]

which is Ii?j=, nimj 8€
✗ £

by the first set of claims . ☐



④

Generalising (26.1 ) then we have the following approximation of the error

in ñ in ñ
R
-s Rt Rs Rtu a Rñ×ñ- st 4- (27-1)

between the two ways around the (
not necessarily commutative ! ) diagram

RI
IN > IRS

RÑS RÑ (27.2)
,

5

×

IN > 1123
R
"

t

the same thing occurs in the general case :

Exercise Lb-3 Have a nutritious snack .

Exercise 16-4 Let ✗
,
Y c- glln , E) .

Then

(a) [ Y
,
X ] = z÷t( exp (→4) expftx )exp(sY) expltx) ) /

⇐⇐ o.

(b) exp C- TY) expftx) exp It4) exp / TX) = exp ( Ely, ×] to Its))

Note that (b) can be read as saying that [YX] provides the
"correction factor

"
to commutativity

expltY) exp(TX ) = exp ( TX ) explty ) exp( t[×, Y] to (1-7)

This infinitesimal measure ofthe failure to commuteof two one-parametersubgroups { exp /TX ) }+c- IR

and { expat }sea of a matrix Lie group G equips the Lie algebra g of G with additional

structure beyond thatof a real vector space :



④

DEI A real Lie algebra is an R -vector space g together with a function gxg→ g denoted

(X,Y)l→ [✗it] (called the "bracket") with the following properties

(1) [ ✗ ✗ +MY, 2] = ✗ IX.2) till 42] F X
, -1,2 C- 9 , V-7.ME/RlBilinearity )

(2) [ × , Y] = - [ Y, X] YX, Yeg ( skew symmetry )

(3) [ × , [4,2 ] ] t [ Y, [3×7] + [2, [ ✗it]] = 0 HX, Y, 2 Eg (Jacobi identity )

If g is a real Liealgebra and keg is an R-vector subspace we call tea real Lie subalgebra

if whenever X, YEK then also [×, Y ] c- K . Then this bracketmakes Kamal Lie algebra .

We will often drop
"real

"

and simply speak of Lie algebras .

Remark 16-8 ( it (1) & (2) imply [2, -] : 9→ 9 is also linear
,
so E-IT is bilinear

.

Iii) (2) implies [14×7--0 for all ✗ c- 9 .

liii ) 911h , G) is areal Lie algebra for n> 1
,
with [× , Y] = XY - YX .

If

g. c- 911h , d) is any IR -vectorsubspace with the property that X, YE 9

implies [X, 4) c- g then 9 is also a real Lie algebra with the same bracket .

Civ ) End# (V) is areal Lie algebra with [✗it] = XY -Y ✗ forany F-vector space V.

Sometimes we write 91111, F) for End# (V) viewed as a Lie algebra .

Theorem LG -12 Let G be a matrix Lie group with
Lie algebra g. Then

Ii ) If AEG and Xeg then AXA
- '

c- g.

Iii) If ✗it c- g then XY - Y ✗ c- g.

Thing is a Lie subalgebraof 91 In, e) .

Proof Ii ) We have expl TAXA
"

) = A exp ( TX )A-
'
EG by Ex Bl - 3 , fortc- IR, AEG, ✗ c-g.

Iii) By lil we have exp ( EX ) Yexpl- TX) c- 9 for any X, Y C- g , and by the Leibniz rule

1 Ex 4-4 ) o¥( exp (TX) Yexpl- TX ) ) /c-⇒ = XY- YX that is

explhx) Yexpfhx) - Y
lim

n
= XY - Y ✗ . (28-1)

h→ 0



④

The LHS is a limit in gl In, G) of a sequence of matrices in 9, which is by Lemma LG -10

a real subspace and hence closed ( since RKER
"

for Ken is cutout by linear equations,

and is thus closed since those functions are continuous) . Hence the RHS also belongs tog. ☐

The Lie functor

we have now associated to any matrix Lie group G its real Lie algebra Lie (G) .

Next

we prove that this construction is functional Gee Background 2 for a primeron categories

andfunctors )
.

In particular this means we can
" take the logarithm " of any continuous

representation ofa matrix Lie group, giving the generalisation of theorem Lb -4 which

motivated our study of one-parametersubgroups in the firstplace .

DEI Let G, H be matrix Lie groups . A homomorphism of matrix Lie groups
Io : a→ H

is a continuous function which is also a group homomorphism, that is, F- (e)
= e

and F- ( g g
' ) = F- (9) ☒ (9

' ) forall g , g ' c- G.

DEI the category Liearp has matrix Lie groups as objects and homomorphisms of

matrix Lie groups as morphisms .

DEI Given real Lie algebras g , k a homomorphism Y: g→ his an IR - linear map

satisfying [9×184] = 71 [×, Y] ) for all ✗ ,
Ye g.

DEI the category Lie Alg IR has real Lie algebras as objects and homomorphisms of real

Lie algebras as morphisms.

As we willprove next lecture,
6 : SO (3)→ GL ( HHS4) is a morphism of matrix Lie groups and

D8 of theorem L6-4 is amorphism of Lie algebras so (3)→ 91 ( Hk Is4) and the theorem

establishes thatthe latter is the image under a functor Lie : Liearp→ LieAg IR of the former .



③

Theorem Lb -13 Let G
,
H be matrix Liegroups with respective Lie algebras 9,

K
.

If Io : G→ His a homomorphism then there exists a unique

IR-linear map 9
: g→ k making the diagram

F-

a > H
A ^

exp exp
(30,1 )

g >try

commute . Moreover

(1) 91A ✗A- ' ) = F- (A) XX) ECA5
'

for all AEG, ✗ c-9

(a) 9 ( [ X, Y ] ) = [ YX, TY ] for all X, Y C- 9 .

(3) 91×1 = ¥-011 exp ( TX ) ) / t=o forall ✗ c- 9 .

Proof Since Io is a continuous group homomorphism t
→ F- ( e ✗Pl TX)) is a one-parameter

subgroup of H, for any ✗c- g. By Lemma Lb -9 there is a unique YEK with

F- ( exp ( TX ) ) = exp ( TY ) * c-c- IR 130 . 2)

and moreover Y
= ¥tI°(explt✗1) It __o .

We set 91×1=4 and check it

has the required properties . Firstly
,
to show Y is R- linear : if s c- IR then it is

clear from 130.2) that Us ✗ ) = STIX) . Given X, Y c- g

exp ( t 91×+4 ) ) = exp ( 91 tlxty) ) )
= F- ( exp (1-1×+4) ) )

By the Lie productformula ( theorem 131-16 ) and the factthat F- is a continuous

homomorphism we can write this as



④

= F- ( hi.gg/explEn)exp( ¥51m )

= Lingo F- ( ( exp 1T¥ ) explE.IT )
(31-1)

= LIII ( Iolexpl 1) Iolexp ( Eu ) ) ]m

=

lim
m→ •

[ exp ( t ) exp (¥7 ) ]m

=

exp ( t (91×1+914) ) )

By Lemma Lo-9 we must therefore have 91×+41=71×11-8141 since these two matrices

determine the same one-parameter subgroup . Hence Y is IR - linear.

To prove (1)
note that

exp / TYCAXA
-4) = F- ( exp / TAXA

"

) )

F-✗ 131-3

= ☒ ( A exp / TX )A-
')

( 31 . 2)

= F-(A) F- ( expltx ) ) ElA-
' )

= EIA) expltylx) ) 7-11--1)

Hence YIAXA
- '

I = ¥ exp / TYIAXA") ) /t=o = ☒ (A) YH ) ☒ (A)
- ! Finally for

(2) note that by 128.1 ) for ✗ , Y c- 9

[ × , Y] = ¥ exp / TX) Yexpttx) / t=o 131.3 )

/ im
explhx) Yexpfhx) - y

=

h→ o h



③

Now since Y is a linear transformation between finite-dimensional vector spaces it is continuous, so

exp (tx) Yexpftx ) - Y
y91 [ ×, -13 ) = Y ( Iim

1- → o h

=
Iim 1-

9 ( expltyyexpttx ) - Y)
1-→ o

t

=
Iim ¥ ( 9 ( exp ( TX ) Yexpl - TX) ) - YY ) 132.1)
C-→ o

by (1)

= Iim f- ( Iolexpltx) ) TY El exp (txt ' ) ) - YY )
1-→ o

= Iim E-( exp ( tsx) yy expl - tsx ) ) - YY )
+→ o

= ¥ ( expltyx ) PY expl - t TX) ) /⇐ o

(28-1)

= [ YX, YY] . ☐

Corollary Lb -14 There is a functor Lie : Liearp→ LieAlg IR sending a matrix Lie group
to its Lie algebra and a homomorphism of Lie groups Io

: a→ It to the

homomorphism of Lie algebras Lie ( Io ) : Lie (a)→ Lie (H ) defined by

Lie (E) ( X ) = ¥ F-(exp ( TX )) / t=o (32-2)

Proof the fact that Lie (E) is well-defined and a homomorphism of Lie algebras follows from

theorem Lb -14 . Clearly if F- = Ia then Lie (E)
= 1-

Lie(a) . Suppose F- '
- a→ H

,

I : H→ K are homomorphisms ofmatrix Lie groups .

Then Lie(E)
,
Lie(1) are

by theorem Lb -14 unique making the respective squares in the following diagram commute :
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F- 4-

a > H > K

^ ^ ^

exp exp exp
133.1 )

Lie(a) > Lieut ) > Lie (K)
Lie (E) Lie1¥)

But then outer diagram commutes, expo ( Lie (1) ☐ Lie ( Io ) ) = (4-1--0) • exp so by uniqueness

we have Lie / 1) • Lie (B) = Lie (4-0--01) as claimed . ☐

DEI A finite-dimensional complex representation of a matrix Lie group G is a finite-dimensional

complex vector space V togetherwith a function 9×11→ V written ( g,v)1→ g. v

satisfying the following axioms

( Rt) g. ( hov ) = (9h) .v for all 9,
heG

,
EV

(R2 ) e. V = V for all VEY

1123) the function 2g :X→ V , 2g ( v) = g. V is ① - linear for all g c- A

424) for any basis 13 of V the function a→ Gun , G) sending

g.
to [✗g)¥ is continuous

,
where n = dim (4) 1-

we allow n=o,
alto, e) ={e},

thus for any basis 13 the map g1→ [✗g)$ is amorphism of matrix Lie groups a→ aunt) .
A homomorphism 9:11→ W of representations is a 6-linearmap which satisfies

Y( g. v ) = g. Ylv) for all gc-G.VE V.

The category of (complex, finite-dimensional) representationsof G is denoted rep (a) .



⑦

DEI A finite-dimensional -complex representation of a real Lie algebrag is a finite-dimensional

complex vector space V together with a function 9×11→ V written (XY) 1-7 X . ×

satisfying the following axioms :

( Sl) [✗it] . V = ✗
.
14.x ) - Y . ( X - V ) for all X, Y C- g ,

YEV

(S2) ( XXTMY) . v = ✗ IX. v ) 1-At 4.x ) for all X, Y c- 9 , YouEIR , v c-V.

(S3) the function ✗
×
:X→ V

,
✗ ✗ ( v ) = X . v is G- linear for all ✗ c-g .

Thus for any basis § the map ✗↳ [✗× ]} is amorphism of Lie algebras g→ 91 In, E) .

1A homomorphism 9:11→ W of representations is a 6-linearmap satisfying
n=dimV

9(X .

x ) = ✗
. Ylv) for all ✗ c- 9

,
✗ c- V.

The category of (complex, finite-dimensional) representationsof g is denoted rep (g) .

Lemma 16-15 Given a matrix Lie groupG with Lie algebra g there is a functor

T : rep(a) > rep (g) 134.11

sending a representation V of G to a representation of g on the same vector space ,
where for ✗ c- g we define

✗
•
v = ¥( expltx) . × )|t=o 134.4

Proof choose a basis 13 of V and encode the representation of Gon V by amorphism
Io : a → Gun, e)

,
F-(g) = [✗g)¥ of Lie groups . This induces by Corollary Lb -14

amorphism § = Lie (E) : 9 → 91 In, E) of Lie algebras, given by 0/1×1 = ¥ F-( expltx)) / to .

Now F-( exp / txt ) = [✗ expltx) )} where ✗glv ) = g. v. By definition the representation
of g determined by § is IX. ily = PIX) [ftp. Hence
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Hence

IX. v ]p = ¥tI( expltx) ) / +⇒ [ its

= ¥( [✗ expitx# tip )lt=o
( 35.1)

= ¥-1 [ dexpitxsl" ) ]p)|t=o

= ¥t( [ exp (TX) . " ]p)|t=o

as claimed . This shows that Tis well-defined on objects. Given amorphism 9:11→ W of

representations of awe claim -1191=9 is ale amorphism of representations of g lie . Tis the

identity on morphisms) .

To see this note that T is continuous and IR - linear so

UX .
x ) = y( 1in e×Plt¥ )

+→ o

=
Iim YC exp ( tx ) . x ) - yay
+ → o t ( 35.2)

=

Iim expltx ) .TW - yay

+→ o t

= ✗ . 914)

as claimed . ☐

Unfortunately we will not have time to prove the following fundamental result, which justifies the

study of Lie algebras and their representations (see [H, theorem 3.7])
: But

you should know
it .

Theorem If his connected and simply-connected then T: rep (a) > rep (9) is

an equivalence of categories .



③

Exercise Lb-5 Suppose that G is a matrix Lie group every elementofwhich can be written as

a productof the form exp ( X , ) . -
-

exp ( Xn) forsome Xy . .
-

, Xntg = Lie (a)

( this is true if a is connected
,
i. e. every g,

h c-G are connected bya continuous

path in a) .
Prove that the functor T is full , that is, for any pair of

representations V, W of G if a linear map Y :X → W is a morphism of

g- representations itis also a morphism of a representations.
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