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updated 244121

In Lecture 3 we have seen that so (3) acts on Elsa, Cl ) by unitary transformations, and

that every YELYS } E) can be written uniquely as a convergent series 4=SkEo4k

where Yr C- Hk (S2) is a spherical harmonic of degree K , the restriction to S2 of a

homogeneous polynomial function f on 1123 which is harmonic, i.e .

( II. t + II. If = O . ch)

Here Dpe = Eat F- + II is the Laplacian , a linear operator on the vector space
C- ( R' ) of smooth (real or complex-valued ) functions on IR ? We have defined also the

Laplacian Dss on smooth functions on S2
,
and we know Dszf= - ktttk ) f for folds ' )

.

That is
,
the spherical harmonics are eigenvectors of the Laplacian on S?

Now we return to the symmetries g C-SOG ) of the sphere and Hilbert space 14530 )

and seekto understand how these interact with the basis of spherical harmonics .

Since

5013) is not abelian we cannot hope to simultaneously diagonal ise all the g C- 5013 )

( if e. g. there were a dense orthonormal basis of spherical harmonics Yi for LHS ? E)

then it cannot be that Yip is an eigenvector forevery g C- 5013 )
,
since then

the actions of g, he would commute on LYS } E) hence on Cts ( S2, E) which is false ) .

But the next best thing is true : we will show that with

op
Z : so (3) > U ( L'( S2, Cl ) ) Cl - 2 )

denoting the representation 319 ) - Eg of Lemma L3 - I, the operator 319) is block diagonal
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Lemma L4-1 For all g c-
SO (3) we have 8 (9) ( Hk (S2) ) C- Hk ( S2) for all k > O .

Proof the following diagram commutes

f) og

Cts ( 1123, Q ) > Cts ( IRS
,

f) lsz f) Is z ( 2 - l)

x Y

Cts ( s ; e ) > Cts (s ;e )
f) og

and so to prove that
619) (f) E Hk (S2) for any ft HHS

') it suffices toprove

P og e Hk (3) for any PE the (3) (recall Hk (3) denotes the space of harmonic

polynomials of degree kin three variables ), since then if f- E Hk (S2) is the restriction

of PEHKC 3) we have

(2 - t )

6 (g) (f) = Pls - o g = ( Po g) Is a C- Hk(S2)
.

(2.2 )
.

Note that given any 3×3 real matrix A the morphism of E- algebras

① Lxyxa, Xss]⇒ Efx, xzixs] defined by YA (sci ) = Ej A ij Kj sends a

polynomial P =P (Xi, Xz, Xs) to

Tae ( P ) = PC Ej , Azjxj , Ej , Azjxj , Ej Asjxj . ) (2.3 )

and hence as a function on 1123 we have TA (P ) =P09 if the matrix ofg is A .

So to prove that
Po g C- Hk (3) whenever PEHK (3) it suffices to show that if

A- is an orthogonal matrix ATA - I and PEAK (3) then Dfa (P)
- O

.

But

Dfa (p ) = Ei ? , Exif. P (Ej Aaj xj , Ej Aj 's'

, G- Asj 9- )
( z . 4,

= E
. Fifa (IIT ) Asi t 7*(7×7) Azit 9*(3×7) Asi)
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= EE , Fil Eia HFTe) Aei ]

= E. Ei . . Exileat :# Aei

=

, ( E 'm⇒ Ya GI÷xe) AmiAei ]

= Emi
, Ee! ha÷xe) { Ei , Ami Ate }

= Emi , Ee! Ta ( I÷xe ) ( AAT )me

= Emi , eat 3¥ ) = eaten . 3¥. )

= Ya DP = O

as claimed .
It only remains to show Ft l P) is homogeneous ofdegree 3, but this is

straightforward . D

Exercise 1-4-1 Prove that there is no orthonormal dense basis of LYS2, Q) consisting of

simultaneous eigenvectors for the set { 819) }g e so 13) .

Deff A representation of agroup G on a complex vectorspace V is a morphism of

groupsp
: G→ Aute( V) where Aute (V ) denotes thegroup of a- linear

bijections from V to itself . A subrepresentation of V is a E- linear subspace WE V

such thatp (g) (W)
E W for all g EG .

In this case the map g I→pl 9) 1W

makes W a representation of G in its own right .

In this language the lemma says that Hk (S2) is a subrepresentation of L2(S2, Cl)

for all k> o . Note that Hk ( S2) is a finite -dimensional complex Hilbert space and

so (3Macts on Hk(S ') by unitary transformations .
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Exercise L4-2 Prove dim ①Hk ( S2) = 2kt1 .

Let us now return to the subject of the firsttwo lectures, and consider two observers at rest relative

to each other and with a common origin , at which we imagine isplaced a quantum system- say

a hydrogen atom - with Hilbert space N .

The wavefunctions YEH have a radial component
4=4140,9) but this can be treated separately , i - e . we can write T = Hr) 7 ( O, T) and

treat the angular dependence as a vector 7 (0,9) E LYS3 Q ) .

This can be found in any

introductory course on quantum mechanics, e - g .
(F, Chapter 19] . So we consider H=LYS 2

,
Q)

as the Hilbert space of stales .

As discussed in Lectures 1 and 2, the two observers O and O
'

may observe the

system to be in different states (i - e . rays 12,I
'Este ) but as they agree on

transition probabilities there is by Wigner 's theorem a unitary transformation
U : H→N such that if YER then U(Y) EZ

'

,
that is

, U translates slates as

seen by O into States as seen by O
'

(up to a phase factor) . Considering such

translations between triples 0, O
'

,
O
"
of observers (at rest and with common origin ) one argues

that these unitary transformations determine a projective unitary representation

op

p
: so (3) > U ( H) (4. i )

where in a projective representation p (9)fCh )
= e
""' "

p 19h ) instead ofpls)plb) =p 19h ),
see [W, 52.73 for details . Projective representations are important, both in mathematics and

physics, but for the moment we assumep is a representation in the normal sense .

We should not rush to conclude thatp =3 is the representation of so (3) on H=L
'

(S2, Q)

that we have constructed .

Forall we know there are other
, essentially different, representations on H

and it is the physicswhich decides which is
"correct " for our system . Nonetheless letus suppose

that 6 is in fact the representation translating between our pairs of observers : whatdoes the

block decomposition of Cl . 3) and Lemma L4-1 means in this context ?
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It means that if 0 observes the state of the system to be YE Hk (S2) for some k x O then

O
'

observes it to be 8 (g) (Y ) for some g C- 5013) which is by Lemma L4 - I also in HkIS4 .

Thus any pair of observers not only agree on transition probabilities butalso on the answer to

the question
"
state E Hk(S2) ?

"

forany K70 - the y esIno answers to this countable set

of predicates constitute a stream of bits on which all observers agree

Remark4-1 the Hamiltonian H = -Dsz acts as a constant on Hk ( S2 ) so by the Schrodinger
- ith kIktitty which differs onlyequation ikFtY = HY

= klkt 114 we have Yl t) = e

in phase fromY.

Hence the
"stream of bits " is stable over time and also invariantunder

small perturbations in the observer 's reference frame .
This information is

,
therefore

, by

the standard elaborated in Lecture I
,
neat

.

I do not know of anything more real than that .

What other questions have
"real

"

answers in this sense ? Are there integer or real valued quantities
associated to systems like the one considered above which are

"real
" ? Can we classify all

such questions and quantities ? The theory of Lie algebras provides the answers to these queries .

Generators of rotational symmetry

So far the factthat SO(3) is a space and notjust a set has notplayed any role .
Recall that

we give SO (3) a topology by identifying it with a space of matrices .

We have constructed in

Lecture 3 a path Rita in so (3) with parameter x for any unit vector ri in 1133

and as we continuously vary the group element along this path we can ask if the

corresponding unitary transformation on L2(S3 Cl ) also varies continuously, or even smoothly .

Exercise L4- 3 ( i ) Prove that Vii : IR→ SO (3) sending a to Ria is continuous .

Cii ) Prove that Tri factors uniquely through a continuous map Ta : S# SO (3)
.

Iii ) [ for MHS students ] prove that the function 5→ Ll so(3) ) sending

in to Ta is continuous where LY is the free loop space of Y (MHS, Example U2
- I ]

.
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To make sense of a continuously or smoothly varying point of U ( Els ? El ) we use that the

619 ) all have a block decomposition ( t - 3) and we will say a 1-parameter family of such

transformations is continuous orsmooth if each block varies in thatway .
Since these blocks

are just finite matrices we can easily what continuity and smoothness mean for blocks . First

howeverwe need to make some basic remarks aboutdifferentiating operators with parameters .

In the following V is a finite - dimensional Q-vector space and Enda (V) denotes the E-vector

space of linear operators on V.

Given an ordered basis 13 of V there is an isomorphism of vector spaces

Cp

Ende (V ) > Md (V) (Gi)
=

↳ (T ) = (T)}

sending an operator to its matrix, where D= dime (V) .

Deff Let UEIR
"

be open .

A function f : U→ Enda ( V) is smooth if the composite

f CB
d 2

U > End ① (V) > Md (E) ±
i Q (G -2)

is smooth
,
that is

,
if the entries of the matrix ( flu) ) Pp are smooth functions of u .

DEI In the above notation we denote by C- ( U, EndaH ) ) the set of all smooth

functions U→ Ende (V)
.

We say a function
U→ Aute (V) is smooth if it is smooth when composed with the inclusion

Auto ( V ) → Ende (V )
. Similarly if His a Hilbert space and WEIR

"

is open a function

w→ U (H) is smooth if it is smooth when composed with UCH) → Aute (H )

-
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DEI In the above notation we define for IE ie n a E- linear operator Fxi on C
- ( U, Endah) )

to be the following composite

Cp o C- I

( U, Ende (V) ) s C
- ( U , Md ( Q ) )

! ¥.

16 .
N )

c- ( U, EndeN ) ) a c- ( V, Md (Cl ) )
45

'

of)

where ITI acts on matrices of functions entry- wise, that is , if f- U→ Md (Cl)

is identified with a matrix ( fjklu) ) offunctions then the derivative is ( Exe ( fjk ) ) .

Exercise4-4 (a) Prove that f : U→ Endalt) is smooth with respect to some basis13
iff it is smooth with respect to any basis .

(b) Prove that the operator % x ; of (6.5. I ) is independent of the

basis 13 used to define it .

(c) Prove that C
- ( U, Ende ( V)) is a Cl - algebra where ( f-g) Lu) = flu ) o glu) .

(d) Prove that Fx
,
satisfies the Leibniz rule : that is

,
for f

, g e CTU , Endou) )

⇐ ( fg ) = ¥. (f) g t f II. ( g )
.

(e) Prove that if f : U→ Ende (V ) is smooth then so are the

functions U→ Cl given by ut tr ( flu) ) and u ,→ det l flu) )

( give definitions of these trace and determinant functions and show

they are independentof the choice of basis) .



⑦

Lemma 4-2 Forany in C- S2 and 1270 the function

IR→ Endo, ( HHS't )
x 1-7 3 ( RT ) ) Nhl S2)

is smooth .

Proof Recall that Pk = Be (3) denotes the space ofcomplex homogeneous polynomials of

degree 3 , Hk C- Pk the subspace of harmonic polynomials. Given g E SO (3)

let A be the matrix ofg and Ya be as in (2-3) .

Then we define a representation of s 013)

on the complex vectorspace Baby

s
SO (3)

OP
→ Auto ( Pk )

ca )

p ( g )
= TA

we checked that this restricts to a right action 6k
'

on Hk in the proof of Lemma L4-1, and

it is easy to see that the diagram

b 't
,
Aute ( Hk )

SO(3) OP ! E ( 7. 2)

3k ' Aute ( HkCST )

commutes
,
where the vertical arrow is induced by the isomorphism of vectorspaces

Hk ⇐ Nk (S2 ) of Lemma L3 - 7 and 6k is the representation induced by 3 of Cl - 2)

and Lemma4-1 .

It therefore suffices to prove at 6k
'

( RT ) is smooth
.

If 13
'

is a E- basis of Hk extended to a basis 13 of 7k then for g c- SO (3)
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y
'

4614
"
= ( l Hom! ; ) co . "

for some matrix Y .

So itsuffices to prove that at f
( RT ) is smooth . But if Ade Ms ( IR)

denotes the matrix of RI then we may take the monomials {XP),µ=k as our basis for Pk

( here BEIN
'

and XP = xp 'Kisses'
, Ipl=p, tpztps) and

p ( Ria ) (xp ) = Tax lxe )
= II. Liga a;]

Pi

= €h Co at
(8-2)

where the Cr are some polynomials in { Aif } , e i.j es .

To prove the function IR→ Antal Kil

sending a top ( Rita ) is smooth it therefore suffices to prove that any polynomial function

in the { Adij } is ijs 3 is smooth as a function of d .
But since sums

, products and scalar

multiples of smooth functions are smooth itsuffices to prove a ↳ A Tj E IR is a smooth
2-

function of X for IE i E3 .
But by definition it in = R y RYO - ¥ (ell then

2-

a

RZ y x y zRita =
y Ratz Ra RE - o R - y R

. '±+oe , do .in 18.3)

e i
i

i

×

L
'

I
.

Sy
Henie with S the standard basis of IR

'

Ad = trials = ( R :3 :( R'a.⇒ Iss! R :3:(Raziel :[ REI:
= L O O

( ! Ying
-

using )
"

is ."

for some L, L
' EM
, ( IR ) .

Thus A dig. is a linear combination of cost, sina, hence smooth . D



⑨

^
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-
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. ÷÷÷÷: I ::÷÷÷÷÷÷ ::... ..
Toreach 1270 and

'

n' C- S2 we have described a smooth path in the space of unitary transformations

of Hk (5) to itself, or more concretely in (2kt ' ) x ( 2kt ' ) matrices . This path is actually aloof
since if we increased by 21T then Riata = Rita

. By Exercise 23 - 6 every element of so (3)

is of the form Ria forsome (non -unique ) in , d , so if we can understand this loop we have

completely understood how 5013) acts on Hk (S2) and thus LTS } E ) .

To understand the path at 6 ( R loews 2) we study the related path atpl RI )

and its derivative .

We choose the Cl- basis 13 =L XP ) Ip, = k of monomials for % and

begin with the case ii. = ( 1,0, o ) of rotation Rita = RI about the x - axis. The general case

is no more difficult . In this case .

*

too :÷÷:)
and so by (8.2)

ads ( p (RT ) ) (xp) = Ia Taa ( xp ) ( a. z)

= ¥a[ xp '

( cos a xz - sin x x3)
P- ( sina art cos das ) P)

P3
= x

,
B '

. Pz . ( cos a xz - sindoes )F
- l

l - s in a xz - cost as] ( s in a seat cos Axs )

+ x ,
P '

. ( cos a xz - sin ax, ) A . Ps . ( s in a xztwsdxz )
P' ' '

( wsxxz - sin ax3 ]



⑥

=
-Bz x ,

P (cos xxz - sin 2×3 )
P- - t

( s in a xz t cos ax, )P
' t 't

t Ps x ,

B ( cos axe - sin axz ) htt ( sin axz t cos ax, ) B
- I

= Yaa ( ( az#z - 43¥ ] (XP ) )

we have proven

Lemma L4-3 As linear operators on 7k we have Tap (RI ) =p ( R
"do I 2125×3 - xz Is } .

Given a polynomial PE Pk this shows that as functions on 1123

¥a(p (RT ) ) ( P) = ( aEx, ( P) - xsFxdP ) ) o RE Clo . it

Now Iaf (R 's ) is by construction a smooth function IR→ Enda ( Pk) which we

may evaluate at a = 0 to yield an operator Fa (f ( RT ) ) la -- o on 7k, which by ( lo . It is

P 1-7 427×3 ( P ) - as Exact ) ( co - 2)

That is
,
as a- linear operators on Pk

⇐ (pl R 's ) ) I← o

= K¥3 - as Fx, Cio .3)

The appearance of the operator k¥3
- 252¥ as the infinitesimal version of the symmetry

p ( R 's ) of the Cl-vector space 7k is our first hint of Lie algebras . One way of reading 110.3) is

that for a small we have a good approximation (of operators )

p ( R 's ) x 1 t d
-42¥, - as ¥2 ) ko -4)
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Next we consider the general case where in C- S2 and with the notation of (8.3)

RZ y x y zRita =
y Ro . Ra RE - o R - y .

Chill

The relevant differential operator is now tz Fts
- ↳ It where ti

, tytz are the coordinates

with the same orientation as xyxz, x, but rotated to have
in as the x-axis -

a

2-

a

E¥+oe , a go.in
T
"

( Ritz -o RI]:
( 11.2)

i 3

I I ti = Laki ) --I Tinjxj
! j =L

x

t
i
.

'
y

Lemma4-4 As linear operators on Ba we have Iafl RE ) =p (RI ) of taft, - ↳ It }

Proof Sinay is a representation and IT satisfies the Leibniz rule (Ex 4-4)
-

East RI ) = ¥a( PCR} R'o -ER "aR¥ -ok; ) )

= dad p( RE -o RI)y( R''a )p( RE R'o - ¥ ) )

=p ( 12¥ -o RI, )¥aplR"a)p ( R } Rf -z )
Lemma 14-3

=p ( RE - o RI, )f(R"a) { xzIx , - as Exa }p( RI RI - E )

=p ( 122k¥ - o RI, )p( RE R'o¥p( RE -ok; ) ( xz¥ - "s II}p( R; Rf )

- I

=p ( R ! ) Yin { KIX
- 932¥ ) Yin



④

Now observe that on a monomial t
P

Tta o { KIT
,

- as Exa)of ( tf )

= Ftii ( az Ix , ( x P ) - x3 Ix, (xP) ) ( 12 . I )

= YTa ( Ps x2xP
'

x! 'x?'
- t
- pz x, x ,

theth
- '

x? 3 )

= p, ta t ,
B' tis'tf' " -pat , tf 'tfit's

"

= ( ta Ets - t s Ita ) ( tf )

since the tf form a E-basis for 9k we conclude that

Fay ( RE ) =p (RT ) o ( tz ¥, - t, II)

as claimed . D

You might notice that Lemma ht- 4 lookssimilar to a familiar differential equation
¥e floc) = THX) with initial condition f-101=1 and uniquesolution floc) = e

" "
.

Indeed it is a system of differential equations and has a unique solution for this reason,

by Picard 's theorem (MHS, Lecture IS ] .
We are therefore led to conclude that

the action p ( R
"L ) is a matrix exponential as stated in the theorem below .

With D= dime9k we give Enda (Pk ) the metric induced by the isomorphism
Ende( Pk) = Gd

'

of 16.1 ) for any basis 13 and the standard metric on Gd?

Given Y E Ende (Pk ) the series exp ( Y ) -

-

= Eino it
.

Ti
converges in this

metric .

Youmay have seen thisproved elsewhere, but it also follows from the

proof of the next theorem .
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Theorem L4-5 As operators on 13 we havep ( R
"

a ) = exp (alt z¥, - t, If ] ) .

Proof Let M denote the matrix of the operator tz Fts
- t32¥ with respectto some

ordered basis of Pk (we don't care which ) .

Then with X a dxd matrix of

unknown functions of a the ordinary differential equation

d
Fa X = X M C 13.1)

is actually a system of d- differential equations

¥a Xij (a) = I ed⇒ Xie (d) Mej .

( 13.2 )

If we add the initial condition that X (O) = Id then we may apply Picard 's

theorem in the form stated in [MHS ,
Ex 45- I ] (see Tutorial 8 of the 2020

class for a full solution ) to see thatthe initial value problem has a unique solution

on L- 8,8 ] E IR for some 8. As in (MHS, Example 45- I] this may be extended

to all of IR , that is, there is a unique soIN on IR and moreover it is the fixed

point of the iteration on matrices of functions

x
htt )

(x ) = I t f! X"'HIM D8 ( 13.33

starting with X
"'
= I

. It is easy to see that X
"'
= It aM

,

Xl" (a) = I t f! ( I t rM )Mdr
= I t aM t INM2 ( 13.4 )

and by induction X
" ' (d) = Eino htt d" M "

.

Hence the unique solution,

which is limn-soo X
"? is the convergent series exp (DM ) as claimed . Now by

Lemma L4-4 , pl RI ) is ate a solution of this IVP, hence by uniqueness pl RE ) = expKM ) .D
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Remand Hence for any polynomial P

pl R'a) ( P) =P t a ( tie, - tsE.it/P)tEa4tzFz-t3tFJ( p) t -
- -

Exercise 4-5 In the proof of theorem L4-5 prove that the hypotheses for Picard 's

theorem are satisfied
, following the approach in (MHS, Tutorial 820207 .

Exercise 24-6 What trigonometric identity explains the suspicious looking formula

I =p (Rita ) = exp ( zit [ tz It,
- t

, Ze) ) .

Exercise 4-7 Prove that if Pf Pk is harmonic then so is ( t22¥ - ↳ Its ] ( P)
where ti

, tuts are the coordinates associated as above to arbitrary in .

Exercise L4 - 8 Write formulas for 3 ( RE ) ,
6 ( RL )

,
3 ( RZ )

as operators on Hk ( S2), as matrix exponentials of differential

operators in spherical coordinates . By inventing your own spherical
coordinates write a general formula for 3 ( RE ) as an exponential .

*

Exercise 4-9 Find explicit formulas for trb (R
"
al
,
def6 ( Rita ) on Hk ( S2)

(of Ex L4- 4 Ce) )
.

Exercise L4 - 10 In Lecture 3 p 16.5 we defined what itmeans for a function f : U→ Cl
,

where U E S2 is open, to be smooth . Using this, givea definition for

what itmeans for a function f : U→ Ende ( V ) to be smooth ,

where UES
'
is open and V is a finite - dimensional E-vector space .

According to this definition prove that the function S
-

→ Enda ( Hk ISD)

sending in to 3 ( R
"a) I sense, is smooth

,
where d E IR is arbitrary

and fixed .
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In conclusion
,
we have for in C- S2 and d EIR a commutative diagram

E inc

Hk (S4 > Hk > 7k

HR"a ) p ( Rta )
( 15.1)

x x x

Nhl S2) 7 Nk > Pk
E inc

The operator t z Ftz - t3 Ftz on 12 restrict to Hh and thus to spherical harmonics,

and when viewed as an operator on Hk (S2) we have by theorem L4 - 5

6 ( Ria ) = exp ( x ( taft, - tf ] ) as-

z)

while the action 6 (R
"
a) (Y ) = To Ria is quite explicit on a spherical harmonic,

the form (15. 2) of the action is much more useful, since itpresents the unitary
transformation 3 (RI ) of Hk (S2) as the exponential of an infinitesimal

symmetry , namely the differential operator tz Fts
- t
s Fta

,
in the sense that

Z ( R
"L ) = I t x ( tz# - tf ] t 062) ( it

. 3)

With this in hand we are one step closer to
"

completely
"

understanding the representation
3 of SO (3) on L2 ( S2, Q ) .

To proceed further we will develop the abstract

theory of these infinitesimal symmetries .

Exercise L4 - Il Give orthonormal bases for Ho (S4
,
Hi (S2)

,
Nz (S2)

,
Hs (S2)

and compute the matrix of 8 (R
"

a) in each of these bases .



Exercise L4-12 With the notation of 111.2) prove

( i ) if
'

n' = ( O, I , O ) then t, = xz , tz
= -xi

, tz = Xz

Iii ) if
'

n' = (0,0, 1) then t , = Xs , tz = xs , t ,
=
- Xi .
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