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Lecture 2 - Wigner 's Theorem 413121
updated 15/3/21

In the fist lecture we explained how observers equivalent to a fixed observer can be viewed

as elements of a Lie group and how the
"
conversion

" between measurements of different

observers takes the form of an action of that Liegroup on the space ofpossible measurements .

We gave the example of the Poincaregroup G and measurements xEIR
"
of classical events

,

where the action a HR
"
→ R 't was just matrix multiplication .

This is hardly deep,
but when we replace the space ofmeasurements 1134of classical events with the Hilbert space

H of a quantum system a theory ofgreat beauty emerges GI . As this will be our

pathway into themathematical theory of Liegroups, we will in this lecture give a careful

treatmentof how we come to believe the class of unitary transformations H→H

are the appropriate transformations to represent elements g EG .

We recall briefly some of the axiomatic framework of quantum mechanics 1752 .D
.

Associated to

a quantum system is a Hilbert space
H of states

.

Aphysical state of the system represented by H

is an equivalence class of unit vectors, where two unit vectors 9,4 are equivalent ifthere exist

3 E U l1) (recall this denotes the set of complex numbers Z with Ht
=L) with 7=34.

DEI The setof physical states is denoted Sse .

Elements of SH are called rays

and we denote them by letters like 12, I
'

,

S
,
S'

.

DEI A Hilbertspace is separable if it contains a countable orthonormal basis,
that is

,
a countable orthonormal setspanning a dense subspace, see

(MHS
, Theorem L

21 - IOI
. Sometimes this is called a completest .

Most of the typical Hilbert spaces encountered in quantum mechanics are separable
(or so I'm told ) and I'll restrict to this case so that MHScontains the necessary

background to prove Wigner 's theorem .

The general case is notmuch harder .
So in what follows H denotes a separable Hilbert space . We write LY, 97 for thepairing
and I for the conjugate

-

and adopt the physics convention that CY, I> is linear in 9 .



④

If a system is in a state represented by a ray 12, and an experiment is done to test

whether it is one of the different slates represented by the rays Ki, 132, . .

which

are mutually orthogonal and complete in the sense that we can find an orthonormal

dense basis 14123k¥ with Tk ERK for all 1231 (forexample if the Bk represent

definite values of one ormore observables) then the probability of finding it in

the state represented by In is (choose any unit vector YER )

P (K→ Rn ) = KY
,
Tn > 12

.
Li -ti )

To quote Weinberg 177 a symmetry transformation is a change in our pointof view that

does not change the resultsofpossible experiment . If an observer O sees a system in a

state represented by a rayK or B , or Az , . - - then an equivalent observer O
'

who

looks atthesame system will observe it in a different state Q
'

,
K '

,
,
Ki

,
.

.
.

but

the two observers must find the same probabilities

P ( R→ Rn ) = P ( R '→ 7in )
.

( I . 5. 2)

The relation between observers is thus a function Q : Soe→ Sre which preserves

the pairing ( t - 5.1 ) between rays . Wigner 's theorem shows that every such symmetry
arises from a unitary or antiunitary transformation H→ H .

DEI QPR is the set of equivalence classes for the following equivalence relation
on the set RKO} of nonzero vectors in H

Y - Y ⇐ FXEQ It0 and 7=74

This set ( topological space, really ) is called the project irisation of H .
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Exercise L2- I ( i Prove that there is a bijection QPR→ Sae sending HT to"

(I ] where I = Y
- so physical slates are points of projective

space .

Note that te need not be finite-dimensional .

x x

Cii ) Prove that the function EPH x EPH→ IR
. ( th , HI) 1-7 ICY, y> I

is well-defined .

( iii) If you have the background , prove this is also continuous where QPR has

the quotient topology .

DEI we define the rayproduct C-, - ) : Soe x Soe→ IR by (K , S ) = K9,471 ,

where YER
,
YES are arbitrary .

Recall that a function f : H→ His antilinear or conjugate linear if faty
') = fIH tfH ')

for all 9,9
'
EH and this) = I fly) for all te Cl, YEH . This is the same thing

as a linear transformation I→ H see [MHS, L2 O p.⑧ ]
.

A linear transformation

f : H→ His unitary if Lf 7, f-47 =L 747 for all 7YEH . Note that f

is bounded and indeed HH = I
,
so that f is automatically continuous (MHS, Lemma 49-33 .

Exercise L2-2 Prove that a unitary transformation is injective, and give a counterexample
to show that it isn't necessarily surjective .

An anti linear transformation f : H→ His antiunitary if L f-9, f47 =

for all 94EH, and one proves such an f is a continuous bijection as above .

Let Je = { YEH I HYH = H
. We say a function Q

: Sse→ Sae
preserves

the ray product if the diagram below commutes :

Q x Q

Sse x Soe > Soe x Soe

k-,→ l K-i -71 ← ray product
J L

IR



③

Exercise L2-3 ( i ) If U : H→ H is unitary or antiunitary then there is a commutative diagram

a U

H s je

(3. l )

s
!
.
. s
!

( t :c:*.me,

where Q preserves the ray product . Prove Q is a bijection if U is .

Iii ) Prove that in the situation of Ci )
,
Q must be continuous when

we give Soe the topology of EPH .

So bijective unitary and antiunitary transformations H
→ H are the canonical source of

ray product- preserving (continuous ) bijections Sre
→ SH ( symmetriesof H

yield symmetries of S re ) . Wigner 's theorem asserts that this is the only source .

Theorem ( Wigner ) Let H be a separable Hilbertspace with dimH > I,
and let Q : Sse → be be a ray product -preserving surjection .

Then there

exists a bijective unitary or antiunitary transformation U
'

- H → H inducing Q in

the sense that (3.1 ) commutes .

we leave the reader to make

✓ necessary modifications if dimH Loo .

Proof Let { Tk}II be a countable orthonormal dense basis and let WEH

denote { YEH I LY, it > to }, which is open . Suppose we can construct

a function U
'

- W→ H which is either unitary or antiunitary and induces
Q in the sense that whenever BYE W IME E and Html E W then

✓ ( XY try ) = X UH) ter U lT) (unitary case ) ( 3. z )
U (Html) = JULY) tf U (Y) (anitunitauy case )



④

and for all Y, YEW

( Uy, UY) = CY, 47 (unitary case) (4 .
I )

-

<us
,
VY) = LT

,
47 (antiunitary case)

and for any
RE Sze and YER

,
UCD EQ (K)

.

We give W the subspace metric,
and note that U '

- W→ H is uniformly continuous because given 9, YE W if we take

8 sufficiently small we have
'

II Uy - UY 11 = 11 VY - UH t 84, ) t UHt SH ) - UY H

⇐ HUY - UH t 84,111 t H U (Yt 84. ) - 0411

= Kul 84. ) H t Hu ( Yt 84 - Y ) H ( g. i )

= SHY. Ht Htt 84,
- T H

s 28114 , H t 117-411

Hence given E > 0 if we take S s % 2114, htt ) then HUY - UY Hae for

all 9,4 C-Was claimed . Hence by the universal property of complete metric spaces
(MHS , Lemma 48-4] there is a unique uniformly continuous Ue

*

making

u
ext

N - - - - - - - - → x
> ( 4. 2)

I u

w

commute .
It is straightforward to check linearity and (anti) unitarily of Uext

given that this holds on W, completing the proof .



④

We have now reduced to constructing U
: W→ H which induces Q and is either unitary

or antiunitary in the above sense .

Let Bk denote the ray containing Tk .

Let us choose arbitrary vectors TLE Q (Kk ) for k> I and observe that (writing
( K, 2

' ) for the ray product )

ILY'm
,
Y
'

e 71 = ( Q Ikk )
,
Q (ke ) )

= (Kk
,
Re )

= KYK
,
Ye > I = 8 ke

so LYHEE , is an orthonormal family . If LO, Tk> = O forall k > I and OF 0

then 8=110410 belongs to a ray R
'

and since Q is surjective R
'
= Q (K) for

some ray 12 and hence 0 =Kit
,
4£71 = ( Q Lk )

,
Q (2K )) = (2,2k )

for all 1231 . But choosing any vector T ER this implies LT.tk> = O for all k 71

which is a contradiction (MHS, Theorem 221 - to]
.

This shows that LYDIE ,

is an orthonormal dense basis in the sense of (MHS, L2 l p .
④ ]

.

If the desired unitary orantiunitary transformation U exists then by commutativity of 13 .D

Tk je
°

, je V Hk)

¥ ¥ (4. D

Sae s Soe
> Q
Xk Q (Kk)

we must have ULYK ) = 2124k
'

for some 7k E VII ) .
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So the problem ofconstructing U is precisely the problem of choosing phases 2k such that

the assignment 4kt Milk is either unitary or antiunitary and makes 13 -
t)

commute for every unit vector Yeti .
The (anti) linearity and (anti) unitary

properties are essentially trivial, but making 13.1 ) commute is not . Note for example

that if U is linear and UHk ) - 2K TL for k> I then for k#l

U l #(Yat Ye ) ) = fz(2kYht7eY'e ) ( si)

but with Y=# that Ye ) it is not clear that with Ike the ray containing
Y that # ( 2K Y

'

k t Ze Tk ) belongs to Q Ph ke) . Indeed
,
this canet be true

for arbitrary choices of phases 2k, 2e (why?) so the question is whether it is

true for any choice .

We know Q preserves
the ray product which implies that for Y

'

E Q (Ake ) that

Ky '
,
4671 = ( QCKhel , Q (Kil )

= ( Ike , ki ) (s.2)

= LT
, Yi >

= fz Sik tf 8 it

hence y
'tf( 3kt 'k t 314k ) for some 3k,HE UH. Since Y 'was an

arbitrary element of the ray Q (Kke ) the phases 3k , 3l have no particular meaning,
but the quotient Je 315

'

E U (1) is independent of this choice and depends only
on the pair (Kil) . We could regard

y're : = #( th t 3e3I ' Y'e ) E Q (Ake ) (5. 3)

as a
"canonical " choice of representative, since the coefficient of XL is 1 .

But

while Ike = Kek we have The t Tek in general , which is a problem !
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The solution is to fix a special index, say 12=1 , and consider only pairs (1st ) .

As we will

see
,
this corresponds to constructing U only on the open set WEH which we have

already seen is sufficient. So finally we define

Uhh ) = Y
,

'

U ( Ye ) = 3131 'T
'

e e > I (Gi)

Note { UHH IIE , is an orthonormal dense basis and by the above forany l > I that

⇐ ( Uhh ) t utter ) ) E Q (Ree ) ( 6. 2)

In the earlier notation
,
we have made the choices 71=1 and Me = 3h35 ! Note that while

12=1 is a choice, the complex number 3135
'

is determined by Q ,
the choice of

basis {THEE
,
and the choices of representatives {Y'KIKI . We claim that- once

the pain (1, l) are
"sorted out " this resolves all other such combinations

, provided they
involve the index 1 .

More precisely :

claim 1 For any sequence of distinct indices 1, is , . .
.

,
in if we set

Io = Nt( Y, t Yi , t - - - t Yin ) E K (6.3 )

then n¥( Uhh ) tutti, ) t - - - t Ul Yin ) ) E Q (K )
.

Proof of claim 't Take an arbitrary unit vector Y - EEE ,
CKYK with C

, to lie -TEW )

and any
XTE Q (2) where YER

. Writing 4
'
= SEE , C

'

KUHk ) we have for k> I

Ich I = KUNk )
,
Y
'

> I = ( Q (Kk )
,
Q U2 ) ) (6.4)

= (Kk, 2) = KYK,47 I = I Ck I



⑦

Now since for k¥1 we have #( Uhh ) t UHH ) ) E Q (KIK ) we have

I C's t Ck I = Etsy; #( UH, It 4Th ) ) > I
= fr (Q CR) , Q (Kek ) ) ( 7- t )

= flat
,
¥14,

that > I

= I C ,
t Ck l

.

Combining these two equations gives (if Ck to)

( I t
c

Yaa I = KitCHI ICH te-2)

=
Kit Crill tail

= It t a'lait

since we also have 14cal =/ Ck
' / we can set cycle = a tib and

GYChl = Ct id and deduce a 2 the = cat d2, ( Ita)'t b-
= ( Itc) 'td

'

from which we obtain for all k¥1

Re ( CHC , ) = Re ( C
'

4Ck ) ( T- 3)

Im ( "Yc , ) = ± Im ( Chile 's )

and therefore for each k¥1 at least one ofthe following holds (perhaps both )

① C'Hc 's =
Ckhe

② CHC 's = fat
"-4)

Now apply the above to F- in the claim , with TEER, and let#
'
E Q (K)

.

From ①
,
②

we see that c'k ( C 's = CHCe = I for Kelis - - - , in } so there is 3 E UCI )

with Io
' =¥i( 3 Uhh ) t 3014in ) t - - - t 3014in ) ) as claimed - D



⑧

Claim 2 Forany unit vector
4 = SKI CKYK with C, t O with YER we

have SKI Ck VHk ) E Q CK) or ⇐ Ek UIYKIEQ (K )
.

Proof of Claim 2 From the proof of claim 1 we know that for every k f-I one
of ① or ② in ( 7.4) holds ( possibly both ) . We claim further that one

( or both ) of conditions ① , below hold (that is, either① or② holds consistently)

① tk¥1 Ck Ic 's =
CkIce

④ Vk¥1 Ck lez = Kiya
H "

To prove this let
ltk be both different to 1. Then ¥14 tYat Ye ) E S for some ray S

and by claim 1 we have #( Uhh ) t UIYK) tutte ) ) EQ ( s )
.
Hence if 4 is as

in the statement of claim 2 with Y
'
= SEE ,

Chul 4k ) E Q (Q ) chosen

arbitrarily
,

I Ck t Ck t Ck I =B K Y '

,
It until tutti ) tuMe ) > I

= B ( Q CK) , Q ( s) )
= B (K

,
s ) (8. 2)

= I CI t Ck t Ce I

Dividing through by Kil
= I Ci t we find that

I 1 t dye; t
C
'

Yc; I =/ It CMC
,
t ok

, I co-3)

Suppose for a contradiction that neither ④ nor applies to 4.

Then without

loss of generality both 44Cz , Alcs are complex and CkIce = Ck'tCI ,
Cil Cz' = ¥ .

Then by (8. 3)



⑨

I 1 t
"let III. I = I 1 t CME t '4cal

which implies Im ( Ck Ict ) Im (CetCe )
= O which contradicts the hypothesis

that both ratios are complex .
This completes the proof that either① applies in which case

Y ' =
,

CLUNK ) =
,
Ici Eti UHH = Ee, Ci that = I

,

crunk)

or applies in which case

Y
'
- Ee

,

Given -- Iii utkt-E.ci ohhh E. EauHH

as claimed .
D

we say thata ray 12 is real if it contains a vectorX such that for all k> I the

coefficient LYK, 47 is real . Note thata ray R is real if and only if for every

4 = EKE ,
CKYK E R and distinct indices k t e we have that Ence is real

(in fact it suffices to have Ek Ce real for any fixed k and all l ) .

Given a ray K and Y = SEE ,
CRYke K with C, to note that both EKE , Ck UNk)

and EKE , Tk U LYk) belong to Q (K) if 12 is real
,
and moreover the convene holds :

if both of these vectors belong to Q (K) and we set Ck = rise
"Ok

for me IR then

there exists 3 E UCI ) with Ck =3 CI for all k 71 and hence EkCe = 3-
'

Ck 3 Te

= Ck Ee is real
,
hence the ray K is real

.

Def we call a non - real ray 12 normal if for any ( hence every) 4
= SEE , Ck Tk ER

we have G t O and EEE ,
Ck UNk) C- Q (K)

.

Def we call a non - real ray I conjugate if forany ( hence every ) Y
= EEE ,

CKYK EK

we have Gt O and EEE Tk 44k ) e Q CK ) .



④

By claim 2 and the above discussion each non -real ray 12 with YER satisfying
th

,
4740

is either normal or conjugate, and notboth .

Claim 3 Suppose 12, S are non -real rays with 12 normal and Sconjugate .

If

Io = SEE ,
CKYKER and I = EE ,

Dk 4k E S then

⇐⇒ Im ( DKDI ) Im (Gate ) = O
.

Proof Using standard theoryof Hilbert spaces ( see e. g .

(MHS, theorem L21 - to]

I SEE , Dick T = IL SEE ,
DI UNH

,
See , CeUte) > I

= ( Q ( s ) , Q CR ) ) = (S, 2) = I SEE ,DICKY

since the two series converge absolutely (see e.g . [MHS , lemma L
21-5] ) so do their conjugates,

and we can expand the square of the absolute value as the productof the series with its conjugate

⇐ ¥=aDkCk DICT
= §o¥=aDI CkDe Ee

which implies

⇐⇐
=
ack Ee ( DKDI - DI De ) = O

and thus Ek ,
e
Im ( Dk DT ) Im ( CkCI ) = O as claimed .D



④

Note that 421, %) ¥0 itand only if for all Y ER we have oh , Y >F O .

Claim 4 If K, S are non -real rays with (Ki ,2) to, (Thi , S) t O then either both

are normal or both are conjugate .

Proof of Claim 4 Suppose for a contradiction that It S exist with neither both K, S

normal nor both conjugate .

Let us say Q is normal ( hence not conjugate ) and S is

conjugate ( hence not normal ) .

We let Io ER
,
I E S be as in the statementof claim 3

and produce it
= SKI Ek4k with EFI O such that

Ek
,
e Im ( Dk DI ) Im l Ek Ee ) F O

( 10 . 2)

Ek
, e
Im ( CkEe ) Im ( EkEe ) t O

which is a contradiction
,
since the ray

TFN is either conjugate or normal ( claim 2) .

Since 17 , S are non -real, there is an index lt 1 such that Ct
CT is complex .

If

we can choose l such that DIDI is also complex then with D=# ( Yet iYe )
both sums in 110 . 2) are nonzero as required .

If we canine so choose , let etn be indices such that Cz Ee , DIDI are complex but

CIN
,

DIDI are real (otherwise we are in the previous case ) .
Set

r = tf i Yet Yet Yn )

in which case the above sums are nonzero . D



④

So either every non
- real ray is normal or every non

- real ray is conjugate ( restricting attention

to those rays with a nonzero ray product with K , )
.

We now define U on unitvectors YEW, that is, unit vectors with th ,
Y>to -

If every non-real ray is normal and Y = EEE Ck4k is a unit vector in a ray k

with (121,12 ) F O (not assumed non -real) then we define

U ( Y ) : = IIE ,
Chu tha) ( H - 3)

This series converges by (MHS, Lemma 221-5] and dearly agrees with the earlier

definition of U on the Xk .

If every non
- real ray is conjugate then we define

U ly ) i. = III , Tk UNk ) .

Ul - 4)

By definition in either case U (4) EQ(K ) . It remains to define U on all vectors .

We obviously set 401=0 and if YEW is nonzero we define U(Y ) -

-

= HT H U ( 4/11411 )
.

It remains to prove that U is (anti) linear in the sense of (3.2) and and (anti ) unitary

in the sense of 14 -
t ) on W .

We prove that if every non - real ray is normal then U
'

- w→ H

is linear and unitary in this sense, and we leave the argument that U is anti linear and

antiunitary in the case where every non-real ray is conjugate to the reader.

Suppose every non -real ray is normal
,
that 7, YEW and IME Cl are such that

liftMY E W . Then with L = HTT tu Y H F O, and

I = ckyn
,
I = SIE ,

Dkk
,
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we have

u ( 79 try ) = L U ( ¥9 t EY )
= L U ( II , ( Z Ck t I Dk )4k )
= L EEE , ( E Ck t IDK) u tha)
= EE ,

X CkUHh) t EEE ,y Dk Vl Tk )

= DUH ) truly )

and

< uhh
,
WY ) > = 11911 - HT H L U l F )

,
VII) >

= 11711 HT HLEE ,
Chul4k)

,
EE , DkVlYe ) 7

= 11911 11411 EE ,
CI Dk

= L T
,
47

.

This suffices
, by whatwe said at the beginning of the proof, to show that there exists an

(anti ) unitary U : H→ H inducing Q . This map is injective by Ex L2-2 and surjective
since Q is surjective . D

Acknowledgements Thanks to Tom Waring and Billy Price for catching errors in and

suggesting fixes to the aboveproof .
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Exercise L2 -4 Check that U
"t
of (4.2) is either linear and unitary or antilinear

and antiunitary , using the construction of Uext in (MHS, 483 .

Prove also that U
"t

is a bijection .

Exercise L2-5 Why is itnot suspicious that Q is notassumed continuous in Wigner 's

theorem ?

Exercise L2- 6 Given Q is the U in Wigner 's theorem unique ? If not, what

is the relationship between two unitary or antiunitary transformations
Ui
,
uz : H→H inducing the same function Sae → be ?

Exercise L2 -7 What is the correct statement of Wigner 's theorem if dimH
= I ?

Exercise L2-8 As a consequence of Wigner 's theorem we see that a surjective ray product

preservingfunction Q
: Sae → SH is necessarily also injective .

Give a

directproof (you may recycle an appropriate partof the argumentfrom
the proof of the theorem, but make this a minimal part) .

Exercise L2 - 9 In the situation of the theorem prove that W
= {YEH I th

,
47 to }

is a dense subset of H .
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