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Lecture 1 : What is Real ? i 1312021

Real things have symmetries .

This is a mundane butdeep principle : the contrapositive
is that ifa phenomena disappears when you change your coordinate system, or put

differently if the phenomena disappears when the measurements are made by a different
but "equivalent

"

observer
,
then thephenomena is probably not real; it may just be

an artifact of yourpointof view .
Indeed this may be a kind of tautology .

But when do two observers count as
"

equivalent
" ? Whatdoes itmean for the phenomena

to "disappear
" ? In short

, the modern answer to the first question is that two observers

count as equivalent if their reference frames are related by a Lie group associated to the

phenomena itself, and a system of measurements of multiple equivalent observe is

counts as a "realphenomena
" if the measurements transform as a representation

of that Lie group .
Thus Lie groups and their representations lie at the heartofphysics ART .

Example the firstpostulate of special relativity [3] is

"
the laws by which the states of physical systems undergo
change are not affected, whether these changes of state

be referred to the one or the otherof two systems of

co - ordinates in uniform translatony motion .

"

The relevant Liegroup is
the Poincare group which is the group of continuous maps

IR
"
→ R

"

generated by translations and the Lorentz transformations 013 , l ) E G L41IR), which
4

are those linear transformations F : IR → IR
"

preserving the Minkowski innerproduct

(E
,
I> = - UM, t Hitz t 4343 t U444

. ( l . 1)

All of this may be derived (as Einstein did) from a short list ofpostulates which together
define when two observers are equivalent from thepoint of view of special relativity.
These ideas are reviewed in MAST30026 Lectures I - S .



②

To say that
a is a lie group is simply to say that the product rn : Gx a→ a and inversion

i : a→ a defined by itg) =g-
'
have continuous derivatives of all orders

,
that is
, they

are smooth functions .

To give a meansof determining which functions defined on a, a x G

are smooth is to define the structure of a smooth manifold on a .

We will do this soon in

lecturer
,
butfor a = 013,1 ) E M 4

(IR) ⇐ IR
' '
with a given itsmanifold structure as

a regular submanifold of R
"

,
we can give an ad hoc definition

we identify My HR) = IR
"

as a topological space andgive a the subspace topology
(see Lecture 6 of MAST30026 for the necessary background ) with inclusion j : A→ IR

"

.

Definition for UEG
open a function f: U→ IR is called smooth if for every p E U

there is an open neighborhood WE V ofp togetherwith VE R
"

open and

g
'

- V→ IR smooth (in the usualsense of multivariate calculus) such

that Una = W and g Iw = flw .

g
'

.

Replacing GEIR
"

by GxGER
"

HR
"
= R
"

supplies a definition of a smooth real-valued

function on the product GxG (again, we will return to this more systematically later) .

Definition Let U be either an open subsetof G or ax G and f
: U→ a a function .

Then

f is smooth if every componentof j o f : U→ IR
"
is smooth

,
that is

,
if for IE KE 16

u a R
"

R

is smooth where Tk denotes the Kth projection .
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Lemme L2-1 The multiplication m : Gxa→ A and inversion i : a→ a are smooth .

For the proof we need Cramer's rule .

Lemma L1-2 ( Cramer 's rule ) Consider an nxn invertible matrix A over a field k,

a vector b EIR
"

and an equation Ax = b .
The unique solution is

x = defeat ( deffAil, . . .

,
det (An ) )

T

(3.1 )

where Ai is A with the ith column replaced by b, i - e
.

Ai = ( A. t - - - A
. i - i

b A
. it .

- - - A
. n )

.

(3.2)

Proof consider the linearmap T
: IR

"

→ IR
"

defined by

TG ) = defeat ( del- faith, . . -

,
det (An ly )) )

"

where Ai ( Y ) is A with y substituted in
the ith column .

This is linear in
y by

basic properties of determinants : deHA ily t y
' ) ) = det (Ai ly ) ) t deHA ily ' ) )

and det (Ai (Ty ) ) = deff 7 Ai ly)) = Xdet (Ail Y) ) .

Now observe that

Tl A. i ) = deft, ( O , .
. .

,
d IHA )

,
. . -

,
o )

= ( o
,

. . .

,

I
,

. .
.

.

O)
.

Hence T is surjective, hence injective (dimension formula) , that is T

is an isomorphism .
Let TA : Rn → IR

"

be TA (x) = Ax .

Then we have

TTa Lei ) = T(A. i ) = ei for all i so we may conclude TTA =L ,
that is

,
T= TA

' '
. Then the unique soIN to 13.1 ) is x = A-

'

b = TC b) . D



④

Proof of Lemma L1 - I themultiplication map fits into a commutative diagram

11232

If
M s

IR
"
x Nb - y pub
^ A

jxj I j

G x a > a

m

where the components of M send two matrices, viewed as column vectors, to
some entry of the product, which is a polynomial function hence smooth .

The inversion i : axa→ a fits into a commutative diagram

I

Gly HR ) > 112lb
1- ×

.

J

G s a
i

where ALL, ( IR ) C- IRK is an open set
(it is the complement of det

- '
(o)
,
a closed set )

and I is the function sending an invertible matrix to its inverse .

It therefore suffices

to show I is smooth
,
and for this it suffices to show for K j s 4 thatthe function

Ij : GLy lR)→ R
"
sending A to the j th columns of A

' '
is smooth .

But then

Ij (A) is the unique solution of A Ij (A) = ej so by Cramer's rule

Ij (A) = detail detail, .
. .

,
deffAn ) T

with Aj defined appropriately . The entries in Ij IA ) are rational, hence smooth, functions . D



⑤

We have now shown that the operations on O(3, 1) are smooth . Technically to show
013,1 ) is a Liegroup we also have to check that 013,1

) is a regular submanifold of

R
"
( i - e - that it looks locally like IRK E R

''

for some k) butwe defer this to later.

For now let us returnto the question
"what is real ?

"

and complete the first telling of the

story that will serve as a motivating thread for the class .

This brings us to Wigner 's

theorem
, following Weinberg [2 , 5h27 .

Observers As discussed above
,
the Lorentz group

0131) is the group of all linear

transformations T: R"→ R
"
such that L Tx, Ty ) = 4497 for all x, y EIR

"

where L, > is (Irl ) .

Deff the Poincare group is the group of functions
T(A

,
a ) : 1124→ 1124 defined by

T(A
,
a) (x ) = Ax t a where A E OC 3

, 1) and a C- 1124. The group operation

is composition .

Forourpurposes an observer is aperson or device which makes entries in a private

copy of
1124 detailing events ( t, x, y, Z) which occur around them .

Observers are

related by the following rules (as a simple first approximation)

suppose that an observer A records a series of events corresponding to the constant

linear motion of another observer B .
Then A can use the following procedure

to predict how B will measure any event that A itselfmeasures
-

.

• Determine from B 's motion an appropriate element TCA, a) of the Poincare
'

group
• Given an event x EIR

"
as measured by A, then A predicts that B will measure

Tlk
,
a) Cx)

special Relativity says that A 's predictions of B 's measurements will be correct .



⑥

We will prove later that the Poincare
'

group is a Lie group .

So the above rules give our first example

of "equivalent observers
"

being related by a Lie group (in fact we may , once a
"standard

"

observer is chosen
, identify observers with Lie group elements) and their measurements

being related by an action of this Lie group , in this case the action (G- Poincare
'

group )

Y
G x 1124→ R

"

(6. i)

(A , x)t Ax

From a physical pointof view it seems natural to not only require 9 to be a continuous function

of its inputs (small variations in the observer B 's relative position or motion lead to small variations

in their predicted measurements) butalso smooth . Arguably if this were not the case then

thephenomena being measured could not be measured by macroscopic observers atall, since

every observer is itself fluctuating across time (tee MAST30026 LI p .⑨ formore discussion )
.

If G is a Lie group then a representation of a is a rector space V togetherwith a
smooth map GxV

→ V satisfying the obvious axioms . Right now it is notclear

whatwe mean by "smooth
"
but this will be defined carefully later. The general

principle of relativistic quantum mechanics is that associated to each particle
is a representation of the Poincare group in this sense on the Hilbert space

ofparticle States . Thus one starting point for an introduction to Quantum
Field theory (QFT) is the study of the representation theory of this Lie group [23 .

As we willsee this study is much assisted by the use of Lie algebras, which exhibit the
"infinitesimalgenerators

"

of Lie groups .

Next lecture we will look at the Lie group
SO (2) acting on the Hilbert space E( S

t)
.
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