We assume without comment set theoretic foundations which include <u>sets</u> and <u>classes</u> [FCT]. There is a class of all sets, and of all abelian groups, etc. Category theory is the theory of <u>universal properties</u>, the only sane API for many mathematical constructions.

<u>Def</u> A category C consists of

$$M_{abc}: C(b,c) \times C(a,b) \longrightarrow C(a,c)$$

called composition. We write
$$f \circ g$$
 for $m_{abc}(f, g)$.
(4) for each $a \in ob(\mathcal{C})$ a morphism $1_a : a \longrightarrow a$, called the identity

subject to the following axioms:

(1) (associativity) for any objects $a, b, c, d \in ob(\mathcal{B})$ the diagram

$$\begin{array}{cccc}
& m \times 1 \\
\mathcal{C}(c,d) \times \mathcal{C}(b,c) \times \mathcal{C}(q,b) & \longrightarrow & \mathcal{C}(b,d) \times \mathcal{C}(q,b) \\
& 1 \times m & & & & & & & \\
\mathcal{C}(c,d) \times \mathcal{C}(q,b) & & & & & & \mathcal{C}(q,d) \\
\end{array}$$

$$(1.1)$$

commutes. That is, for all $f: a \rightarrow b, g: b \rightarrow c, h: c \rightarrow d$

$$h \circ (g \circ f) = (h \circ g) \circ f \qquad (1.2)$$

(2) (units) for any objects a, b the diagram (1 is the singleton set {*})

commutes where $L_a(*) = 1_a$, $L_b(*) = 1_b$. That is, for all $f: a \rightarrow b$

$$1_b \circ f = f = f \circ 1_a \tag{2.2}$$

<u>Remark</u> Sometimes C(a,b) is denoted Home (a,b).

Example B2-1 (1) The category <u>Set</u> where the objects are sets, <u>Set</u>(a, b) is the set of-functions a → b and composition m is function composition.
(2) The category <u>Ab</u> where the objects are abelian groups, <u>Ab</u>(a, b) is the set of homomorphisms of groups, m is function composition. Similarly <u>Arp</u> denotes the category of all groups.
(3) Given a ring R we obtain a category <u>Mod</u>R of right R-modules (and R-linear maps) and a category <u>Mod</u>R of right R-modules.
(4) Given a field k we write k <u>Vect</u> for k <u>Mod</u>, the category of k-vector spaces and linear maps.
(5) The category of normed vector spaces over IF and bounded linear maps.
(7) The category of Hilbert spaces and unitary maps.

<u>Def</u> Let \mathcal{A}, \mathcal{B} be categories. A <u>functor</u> $F: \mathcal{A} \to \mathcal{B}$ is the data of

(1) a function
$$F: ob(\mathcal{A}) \longrightarrow ob(\mathcal{B})$$

(2) for each pair $a_{b} \in ob(\mathcal{A})$ a function $F_{ab} : \mathcal{A}(a,b) \longrightarrow \mathcal{B}(Fa,Fb)$, where we often write F(f) for $F_{ab}(f)$.

subject to the following axioms:

(1) for any objects $a_1b_1, c \in ob(A)$ the diagram

commutes. That is, for all $f: a \rightarrow b, g: b \rightarrow c$ we have

$$F(g \circ f) = F(g) \circ F(f).$$

- (2) for every object $a \in ob(A)$, $F(1_a) = 1_{F(a)}$.
- Example B2-2 (1) There are forgetful functors F: Ab → Set, F: Grp → Set etc
 which send an abelian group (group, etc) to its underlying set,
 and functions to themselves.
 (2) The identity functor 1st A → A which is the identity on
 all objects and morphisms.
 - (3) A subcategory of A is a functor $F: \mathcal{B} \longrightarrow \mathcal{A}$ which is the inclusion of a subclass $ob(\mathcal{B}) \subseteq ob(\mathcal{A})$ and $\mathcal{B}(q,b) \subseteq \mathcal{A}(q,b)$ for all q,b. (note that $1_a \in \mathcal{B}(q,q)$ if $a \in ob(\mathcal{B})$).

<u>Lemma B2-1</u> If $F: \mathcal{A} \to \mathcal{B}$, $G: \mathcal{B} \to \mathcal{C}$ are functor then $G \circ F: \mathcal{A} \to \mathcal{C}$ is a functor defined by $a \mapsto G(F(a))$ on objects and $f \mapsto G(F(f))$ on morphisms.

<u>Proof</u> We have $(G \circ F)(1_a) = G(F(1_a)) = G(1_{Fa}) = 1_{G(Fa)} = 1_{(G \circ F)(a)}$ and for composable arrows $f: a \rightarrow b, g: b \rightarrow c$,

$$(G \circ F)(g \circ f) = G(F(g \circ f))$$

= $G(F(g) \circ F(f))$
= $G(F(g)) \circ G(F(f)) = (G \circ F)(g) \circ (G \circ F)(f).$

Remark Functor composition is a sociative and 1+ A -> A act as an identify.

Given a function $f: S \longrightarrow \mathbb{Z}$ we call $\{s \in S \mid f(s) \neq 0\}$ the support of f and say f has finite support if this set is finite. With S any set we consider

$$\bigvee(S) = \{ f: S \longrightarrow \mathbb{Z} \mid f \text{ has finite support} \}$$

This is an abelian group with (f+g)(s) = f(s) + g(s), and it is generated as an abelian group by the functions $\delta_s : S \to \mathbb{Z}$ defined for each $s \in S$ by $\delta_s(t) = 0$ if $s \neq t$ and $\delta_s(s) = 1$. Clearly $f = \sum_{s \in S} f(s) \delta_s$ as elements of V(S). Abusing notation we may write S for δ_s and view $f \in V(S)$ as formal linear combinations of elements of S. We denote by $L: S \to V(S)$ the map sending S to $L(s) = \delta_s$.

<u>Lemma B2-2</u> Given any abelian group B, set S and function $h: S \longrightarrow B$ there is a <u>unique</u> morphism of abelian groups $\tilde{h}: V(S) \longrightarrow B$ making the following diagram commule

$$V(S) - - \stackrel{\tilde{h}}{\longrightarrow} B \qquad (4.1)$$

<u>Proof</u> We define $\tilde{h}(f) = \sum_{s \in S} f(s) h(s)$. This sum is finite since f has finite support. It is easy to check that \tilde{h} is a morphism of abelian groups, and $\tilde{h} \circ L = h$. To see uniqueness suppose \tilde{h} were another morphism of abelian groups with $\tilde{h}' \circ L = \tilde{h} \circ L$. Then we have

$$\widetilde{h}'(f) = \widetilde{h}'(\sum_{s \in s} f(s)d_s)$$

$$= \sum_{s \in s} \widetilde{h}'(f(s)d_s)$$

$$= \sum_{s \in s} f(s)\widetilde{h}'(f_s)$$

$$= \sum_{s \in s} f(s)h(s) = \widetilde{h}(f)$$
(5.1)

so h is unique an claimed. []

The abelian group V(S) (or more correctly the pair (V(S), L)) is called the <u>free abelian group</u> generated by S. The word "free" summarises the <u>universal property</u> expressed in (4.1). Replacing \mathbb{Z} by any ring R the same method constructs the <u>free R-module</u> on a set S (and if R is a field we call this the <u>free vector space</u>).

Exercise B2-1 Prove that if k is a field and S is a set, then $\{S_s\}_{s \in S}$ is a basis of the free vector space V(S).

Lemma B2-3 Given a function $f: S \longrightarrow S'$ between sets, let V(f) denote the unique momphism of a belian groups making

$$V(s) \longrightarrow V(s')$$

$$\downarrow \uparrow \qquad \uparrow \qquad (J.2)$$

$$S \longrightarrow S'$$

commute Then V: Set -> Ab is a functor, called the free functor.

Proof If $f = 1_s$ then $1_{V(s)}$ makes (5.2) commute and thus $V(1_s) = 1_{V(s)}$ by uniqueness. If $g: S' \rightarrow S''$ then commutativity of

means that $l \circ (9 \circ f) = (V(9) \circ V(f)) \circ l$ and so by uniqueness $V(9) \circ V(f) = V(9 \circ f)$.

Given abelian groups A, B, T a function $\mathcal{Y}: A \times B \rightarrow T$ is <u>bilinear</u> if $\mathcal{Y}(a+a',b) = \mathcal{Y}(a,b) + \mathcal{Y}(a',b)$ and f(q, b+b') = f(q, b) + f(q, b') for all $q, a' \in A$ and $b, b' \in B$.

Lemma B2-4 Let A, B be abelian groups. There exists a pair (T, 9) consisting of an abelian group T and bilinear map J: A×B -> T which is universal, in the following sense: if (Q, Ψ) is any such pair, consisting of an abelian group Q and $\Upsilon: A \times B \longrightarrow Q$ bilinear, there is a unique momphism of abelian groups $\widetilde{\Psi}$ making

commute.

Let $V(A \times B)$ denote the free abelian group on the set $A \times B$, and $L: A \times B \to V(A \times B)$ Proof the canonical map. We will define a subgroup $N \subseteq V(A \times B)$ and prove that the composite $A \times B \xrightarrow{L} V(A \times B) \longrightarrow V(A \times B)/N = T$ is the required universal bilinear map 9.

Let N be the subgroup generated by the elements

$$l(a+a',b) - l(a,b) - l(a',b) = a_{,}a' \in A \ b \in B$$

$$l(a,b+b') - l(a,b) - l(a,b') = a \in A \ b,b' \in B$$
(7.1)

Set $T := \frac{V(A \times B)}{N}$ as above and let J be $\pi \circ L$ where $\pi \colon V(A \times B) \longrightarrow T$ is the quotient. Then

$$\begin{aligned} \mathcal{I}(a+a',b) &= \pi \left(\iota(a+a',b) \right) \\ &= \pi \left(\iota(a_{i}b) + \iota(a',b) \right) \\ &= \pi \left(\iota(a_{i}b) \right) + \pi \left(\iota(a',b) \right) \\ &= \mathcal{I}(a_{i}b) + \mathcal{I}(a',b) \end{aligned}$$
(7.2)

and similarly $\mathcal{I}(a,b+b') = \mathcal{I}(a,b) + \mathcal{I}(a,b')$ so fis bilinear. To prove the universal property of the property of the property of the free abelian group we have a unique morphism of groups $\mathcal{V}' : \mathcal{V}(A \times B) \longrightarrow \mathcal{Q}$ making

commule, and

$$\begin{aligned} \psi'(\iota(a+a',b) - \iota(a,b) - \iota(a',b)) &= \psi'(\iota(a+a',b)) - \psi'(\iota(a,b)) - \psi'(\iota(a',b)) \\ &= \psi(a+a',b) - \psi(a,b) - \psi'(a',b) \\ &= 0 \end{aligned}$$

similarly $\Upsilon'(\iota(a_1b+b')-\iota(a_1b)-\iota(a_1b'))=0$ so $\Upsilon'(N)=0$ and hence there is a unique morphism of abelian groups $\widetilde{\Upsilon}: T \longrightarrow Q$ with $\widetilde{\Upsilon} \circ T = \Upsilon'$. Thus

$$\widetilde{\mathscr{Y}} \circ \mathscr{J} = \widetilde{\mathscr{Y}} \circ \pi \circ \iota = \mathscr{Y} \circ \iota = \mathscr{Y}$$

To see that $\widetilde{\Psi}$ is unique with this property suppose \mathcal{K} were a morphism of abelian groups with $\mathcal{K} \circ \mathcal{I} = \mathcal{Y}$ so $(\mathcal{K} \circ \pi) \circ \mathcal{L} = \mathcal{Y}$. By the universal property of the free vector space $\mathcal{K} \circ \pi = \mathcal{Y}'$ and thus $\mathcal{K} \circ \pi = \mathcal{Y}' = \widetilde{\mathcal{Y}} \circ \pi$. Since π is surjective $\mathcal{K} = \widetilde{\mathcal{Y}}$, \Box

Def A momphism
$$f:a \rightarrow b$$
 in a category \mathcal{A} is an isomorphism if there exists $g:b \rightarrow a$
with $f \circ g = 1_b$, $g \circ f = 1_a$.

Any two pairs (T, P), (T', J') with the same universal property are (uniquely) isomorphic:

Lemma B2-S In the above situation, suppose (T', S') also possesses the universal property. By the respective universal properties there are unique morphisms of abelian groups $S, \in a$ in the cliagram below

satisfying $\delta f = f'$ and $\epsilon f' = f$, and these morphisms are mutually inverse, $\epsilon \delta = 1_{\tau}, \ \delta \epsilon = 1_{\tau'}$.

- <u>Proof</u> The stated morphisms $\delta, \in exist by hypothesis. Note that <math>\delta \cdot \in T' \rightarrow T'$ satisfies $\delta \cdot \in \sigma \mathcal{I}' = \delta \cdot \mathcal{I} = \mathcal{I}'$ and so by the universal property of (T', \mathcal{I}') we have $\delta \cdot \in = 1_{T'}$. Similarly $\in \sigma \cdot \in = 1_T$. \Box
- <u>Def</u>ⁿ Given abelian groups A, B we define $A \otimes B = \frac{V(A \times B)}{N}$ as above and call this the <u>tensor product</u> of A, B. The equivalence class $[U(a, b)] \in A \otimes B$ is denoted $a \otimes b$.

Exercise B2-2

- (i) Prove that a@0=0@b=0 in A@B for all a∈A, b∈B
 (ii) Prove that {a@b}a∈A, b∈B generates A@B as an abelian group but give an example of A, B for which A × B → A@B, (a,b) → a@b is not surjective (not all elements of A@B are "pure" tensors)
- (ii) Given morphisms of abelian groups $\alpha : A \longrightarrow A'$, $\beta : B \longrightarrow B'$ prove that there is a well-defined morphism of abelian groups $\alpha \otimes \beta : A \otimes B \longrightarrow A' \otimes B'$ with $(\alpha \otimes \beta)(\alpha \otimes b) = \alpha(\alpha) \otimes \beta(b)$. Rowe that $1_A \otimes 1_B = 1_{A \otimes B}$ and if $\alpha' : A' \longrightarrow A''$, $\beta' : B' \longrightarrow B''$ are morphisms of abelian groups then

$$(\alpha'\otimes\beta')\circ(\alpha\otimes\beta)=(\alpha'\circ\alpha)\otimes(\beta'\circ\beta)$$

References

[FCT] Foundations for Category Theory, the risingsea.org.

[B] Borceux, "Handbook of categorical algebra".