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Background 1 : Matrix exponentials 1414121

updated 1816121

Let F- denote either R or Q. By a vectorspace we will always mean a vector space over IF

Given a finite -dimensional vector space V, an operator on V is a linear transformation

T: V→ V. We assume familiarity with normed vector spaces (see e.g. (MHS, 48,2197 ) and

the norm of a linear transformation .

Lemma 131-1 Any two norms 11 - Ha
,

11 -1lb on a finite-dimensional vector space V

are Lipschitz equivalent, 1- e. there exist 0<9 £ Cz such that

C
, Halla £1k 11b£ Call " Ha V- ✗ EV .

Proof It is easy to check that this relation of Lipschitz equivalence ~ is symmetric and

transitive
, so
it suffices to prove that for any norm 11-11 we have 11-11 ~ 11-111 where

the latter norm is defined by choosing basis 1h, - - -in for V and defining

HEE ,
anti 111 = EI , lait . (1-1)

This is easily checked to be a nom ( indeed it is the norm induced on V by the

vectorspace isomorphism
V IF

"

and theL1 norm on IF
"

(MHS, Thm Ll 8-☐)
.

To prove
11-1141-111

we firstprove that 11-11 : V→ IF is (uniformly) continuous when

V is given themetric determined by 11-111, or what is the same

Ye > 078>0 ( Kx - x ' 111<8 ⇒ I 11×11-11×41 I < e)
.

G.2)

To see this note by the reverse triangle inequality 111×11-11×1111 e- Kx - X ' II and

if x= EE ,
ai " i

,
a

'
= EE , ai

'

Vi then with C = sup { Il Yi Il I Ki en }



②

Ha - x 'll = H Iii , Cai - ai ) vill

⇐ EE , lai - ai
'

l 114ill

⇐ CEE , lai - ai
'

I

= C H x - x ' Hz

From thiswe easily deduce G. 21 , proving that H - H : ( V, H -H1 )→ ( IF
,
I - t ) is

continuous . Now by construction V with the H -Hz - induced topology is homeomorphic to

IRN
,
and so { VE V I 114HE 1 } is compact since the corresponding set in IR

"

is closed

and bounded (MHS, theorem 40-3] . Hence by the extreme value theorem (MHS, Corollary L9 -4]

the continuous function H -H attains its supremum and infimum on this unit H-Hz- sphere

c
,
= inft Hull l Hulk =L }

,

can

↳ = sup { Hull I Hultz = I}
.

.

That is
,
C

,
= Hull and G- Hull forsome v , w with Hultz = Aw Hz = I . In particular

v
,wt O and so Cl ,Cato .

We claim that for all v EV

C , H v Hz E Hull E CzHultz ( 2.2)

this immediate if Hultz=L or 4=0
,
and otherwise we may multiply by 1¥41 to

reduceto this case . D



③

Lemma B1 -2 Let N ,
H - Hu )

,
(W,

H-Hw) be normed spaces with V finite-dimensional . Then

any linear transformation
T- V→ W is bounded

.

Proof A transformation is bounded with respect to a pair of norms if . itis bounded with respect

to any Lipschitz equivalent norms , so by Lemma B1
- 1 we may assume H-Hu = H -HI

for some basis Vi
,

-
.

.

,
Vn of V .

But then if T- V→ W is linear and x = Eit , ai Vi

H Tx Hw = H EE , ai Thi ) H w
±

,
tail H This Hw

⇐ C H x lls

where C = supl HThi ) Hw / Kien } . Hence T is bounded . D

Lemma B1- 3 Let U
,
V
,
W be normed spaces and

S : V→ W
,
T: U→ V be bounded

linearoperators . Then so T is bounded and 11 So T H E H S H H T H
.

Proof Given x EU we have

11 Cso T) (x ) Hw = It s ( Tbc) ) Hw
⇐ H S H H TH th,

← lls 11 HT H Hall u

as claimed -
D

To introduce the matrix exponential we require some basic background in sequences ,
series and convergence in a normedspace .

Recall that the norm H - H determines a metric

d la , y) = Ha- y l l and we say a sequence is convergent or Cauchy, and a series is convergent,

if these statements hold in the usual sense with respect to thatmetric :



④

•

a sequence (un )Tio in a normed space (V, H - H ) converges to UEV if

HE>OF N E IN tfn E IN ( n > N ⇒ Kun - all L E )

• a sequence (un ) Feo in a normed space (V, H - H ) is Cauchy if

HE >OF NE IN Fm
,
ne IN ((m ? N and n> N )⇒ Hum - un IK e)

•
a series Into Un (which is actually the data of (Un)5=0 ) is said to converge
in a normed space (V, H

-H ) if the sequence ( Inyo Un ) info of partial
sums converges, and we write Info Un = timm→ • Ennio Un .

•

a normed space (V ,
H -H ) is complete if every Cauchy sequence in V converges .

Exercise B1- I Use Lemma B1-I to prove that every finite
-dimensional normed space

is complete (you may use that IR is complete) . Hence every finite
-dimensional

inner productspace is a Hilbert space .

We can reduce checking convergence of a series in V to checking convergence of a series in IR :

Lemma 131-4 Let ( V, H
-H) bea complete normed vector space and Info un a

series which has the property that I Io Hun H converges in IR

(such a series is called absolutely convergent) . Then Into Un converges .

Proof Set am = Into an .

Then for m > m
'

11 am - am . H = H Ent m 't , an H E Enimet , Hun H .

Hit

the sequence
( Ennio Hun H) mo--o is assumed to converge and is therefore Cauchy ,



⑤

so given E> 0 we can choose N s . t . for m > m '
7 N the RHS of (4. t) is less than E .

It follows that (am )m-F is Cauchy in V and hence converges . D

we assume familiarity with the various tests forconvergence for series in IR .

It iseasy
to

see that if linear transformations S,T are bounded so too are StT and 7T for X E IF.

Def
" Given normed spaces ( V, H

- H) , ( W, H -H ) we write 13 (V, W ) for the vector

space of bounded linear transformations v
→ W with the pointwise operations

(T t s ) ( x ) = T Ca ) t s ( x ) T
,
SEPH ), xEV

(XT) (x ) = X - T (x ) TE B H )
,
KEV

.

Lemma 131-5 The operator norm makes 13 ( V, W ) a normed space .

Proof It is clear that ll T 1170 and that A TIKO implies -1=0 . Given XE IF

HATH = supI / x to }

= sup f ly ,
H TH H

E / x to}

H TH H
= HI sup I⇒ / x # o } = HI HTH .

If S, T are bounded then

H S t TH = sup f
H (St 7%111

I at o }

=

supf
" SK t Tx 11

* l x to }

⇐ sup { "III t "T.it/lxto3 E Ils H t HT H - D



⑥

Recall that a normed space is calledBarrick if it is complete (meaning all Cauchy sequences
with respectto the inducedmetric converge) .

Lemma 131-6 If W is Banach then so is 1314, W ) for any normed space V.

Proof Let ( Tn )5=0 bea Cauchy sequence in 1341, W) , so each Tn : V→ W is bounded and

V-E> OF NEIN Hm , his N ( H Tm - Tn lls E )
.

(6. i )

Given xell we first claim ( Tn G) ) neo is Cauchy in W.
Given E> 0 let N be as in 16.11

but for the positive real number 411×11 x ( if x=O the sequence is trivially Cauchy ) .Then

form ,
n 7 N

H Tm Ge ) - Tn CH Hs H Tm - Tn H Hall v e yeah
,
Halle, = E lb - 2)

as claimed
.

Since W is assumed complete we may set Tca ) : = limn→• Tn (x) . It remains

to prove that thus defined T is linear and bounded , and that Tn→ Tin 131kW
)
.

To see that T is linear we use that any normed space is a topological vector space
[MHS, Ex 48-10] , that is, the operations are continuous ( and therefore

commutewith limits (MHS, L8] )

T(x ty) = limn→ • Tn (x ty )
= limn→ a. ( Tn (x ) t Tu ly ) ) (6.3 )
= limn -soo (Tn Cx ) ) t limn→ * ( Tn ly) )

= T(x) t Tty )

Thx ) = limn→ a Tn (xx )

= limn-in X Tfa ) = X limn→ Tn Cx ) = XT(x)



⑦

The norm on 13 ( V, W) is uniformly continuous (MHS, Lemma 48
-D and the image of

a Cauchy sequence under a uniformly continuous map is Cauchy , so ( Il
Tn H )F-o is Cauchy in IR

and thus converges, say to a . We claim that H TH) H s a Hall forall xEV.

To show this let KEV nonzero and s > 0 be given .

LetN be large enough that

HTGc) - TN (x ) H C 42 and l H Tn H - d l s 4211all - Then

H TCx) H = HT (x ) - TN (x ) t TN Ca) H

⇐ H T Cx) - TN la) H t H TN Cx) H

< 42 t k Tull Hall ( 7. , )

< 42 t ( L t 4211×11 ) Hall

= e t all all

Since E 70 was arbitrary this proves H TG ) H E all " H and so T is bounded .

To
prove

Tn→ T in 1344W) is to prove that H Tn - TH→ O in IR . Given e > 0 we

may since ( Tn In-70 is Cauchy find N such that H Tm - Tn H c Etz whenever m , n7N .

Given x EV nonzero let Noe be such that H Tm (x ) - Tk) H c E Hall whenever

MY Nx
- We may assume Na

7 N
. Then for any x nonzero and n7 N

H Tn Cx) - Tbc) H E H Tn (x) - Tn
.
( x ) t Tn

. (x) - TH H

E H Tn (x ) - Tna (x ) Ht H Tn. H - TK) H

E H Tn - Tn. H Hall t E Hall c E Hall t E Hall = e Il sell

Hence H Tn - THE E for n 7 N and hence Tn→ T in 13 ( V, W) as claimed . D



⑧

We write 13111) for 13 ( V, V) the normed space of bounded operators on V .

.

Given TEP ( V)

we write Tn for To - - - oT then - fold composition of Twith itself .

Theorem Bl -7 If T- V→ V is a bounded operator on a Banach space V then the series

exp ( T)
= In

⇒
IT

.

Tn (o.
i )

,

converges absolutely in 13 (V) .

=

Proof By Lemma 131-3 the operators T
"

= To - - - OT
are bounded

,
so the partial

sums Sm = Into n÷ Tnare vectors in PhD . By Lemma BI-G 13 (v) is a Banach space

so by lemma Bl-4 to show that 18.1 ) converges it suffices to show that the series

Into IT
.

H Tn Il (8. z )

converges in IR .

But lemma B1 - 3 this (positive) series is dominated by EF-ont H T H
"

which converges (to exp ( H TH ) ) , hence (8 . 2) also converges - D

Example B1- I V = IF
"

with the H -Hz norm, Halla = ( putt - - - t tant)
'k
, any linearoperator T

on V is bounded ( Lemma B1 - 2) and so exp (T) converges with respect to

the operator norm on 13 ( V ) = End#N) , the spaceof all linear operators .

Note that since End# IV ) is finite-dimensional the series ENTont. Tn

converges by Lemma B1 - 1 with respectto any norm on End# (V) .

In particular the series converges with respectto the Frobenius norm

42

IS HE ( E = , Isis
- T ) ( 8.3 )

which is justthe norm induced by End# ( V)
= IF
"
and the H-Ha norm on IF?



⑨

Lemma Bl -8 Let U
,
V
, W be normed vector spaces . Then the composition map

13 ( V, W ) x plus V ) > 3) ( U, W)

(S , T ) l→ SoT

is continuous .

Proof Here we give 13 (yw) x Blu , V) the productmetric (MHS , Ex 43-8]

d ( (Si , Ti ) , (Sz, Tz )) = Hs , - T, H t H Sa -Tall .

It suffices to prove that if Csn ,
Tn )→ ( S, T) in 13lb, W) xp IV.V ) then

Sno Tn→ SoTin BIU, W) [MHS, Lemma L 8-4] . The projections

from 13111, W) x 13144) to its two factors are continuous , so Sn→ S and Tn → T
.

Observe that

H Sno Tn - S -T H = It Sno Tn - SnoTt Sho T - So T H

E H Sn H H Tn - TH t Hsn- SH H T H

Sina H - H is continuous
,
Hsn Il→ H SH and so

nti→m ( Ksn Il Il Tn - TH t Hsn - SH H TH )

= fling 11h11 ) (him H Tn - TH ) t (him Hsn- SH ) HT H

= H SH . O t O - H T 11=0

Hence also limn→all Sno Tn - SoT 4=0 as claimed .D



④

Lemma B1- 9 If V is a Banach space and Info Vn converges absolutely , then any

rearrangement Info Vjcn ) converges absolutely and Info Yn
= Info Vjcn ) .

Tj : IN → IN a bijection

Proof From (absolute) convergence of Info think we know by the corresponding result for IR

(which we assume) that I Io H Vjhill converges and to the same limit. Hence

Into Vjln ) converges and we need only show Into Vn
= Into Yjln ) .

Set Lm - I nm=oVn, Rm- Eino "j In) .

We show l Imm→ o l l Lm - Rm 11=0 .

To this end let E > 0 be given .

We aim to show that there exists N such that

forall MYN we have 11 Lm - Rm IKE .

Set Sm = Into Hun H
.

Since the sequence ( Sm )MI is Cauchy we can

find N, such that form ,
m
'
> Ni I Sm - Sm ' la Elz .

Hence for m '
> m7 N,

{ i'm
+ ,

H vill = Smi - Sm C Etz

this implies thatfor BE IN 110, . .

,
N

, } finite Eie B H vill c E 12
.

Let Nz = max { j
- '

(O )
,

. .
-

, j
- '

(Ni ) }
,
and N= Max{Ny Nz)

.

Then for m >N

we have j (m) 44, .
N
, } .

Hence with A = { j
- ' lol, . . .

, j
- '

IN . ) )

Lm - Rm = Into Vn - Into Vj (n) = [ nm=µ
,
+ ,

''
n
- I Vjci )
i E LO, . . ., m} 1 A

Nl

since In=o Vn = IieA Vj Ci ) .

But (NIH, -
- - im}

,
j@0, . -

n

,
MHA) are both finite

sets disjointfrom {O, . -
-

,
N ,} so

H Lm - Rm H E Ent n , + ,
Hunt t Iie to, . . .

. my tall " itis H

< Elz t 42 = E

as claimed . D



①

Lemma 131-10 If V is a Banach space and EÑ=oYn converges absolutely then for any

surjective map j : IN→ IN with the property that j
- '

Cn ) is finite for all n c- IN

the series In:O ( Eiej - yn) Yi ) converges absolutely and
En%(Eiej -yn) Yi ) = En%Yn .

Proof we define a bijection J: IN→ IN by enumerating j
- '
lo) thenj -111) and soon, as in the diagram :

o I I
. . .

"" I
- -

*

j
-

yp=HaH),.._,Jlb
j
- '

G) = { to) , TH, . . . ,J(a)] j
- '

(2) =LJlbtil, . . . }

←
number of elements

More formally, let ✗ Ii )
= I # J

- '

(a) and if j
- ' ( jli ) ) arranged in

acjli)

ascending order contains pci ) elements strictly less than i, define J(it
= dliltpli ) .

By Lemma 131-9 the series En% Van) converges absolutely to EF=oYn .
But

with Sm = In?oVJCn) we see that Into { i←j - yn] Vi is a subsequence of (Sm)Ñ=o

and hence converges to the same limit . ☐

Theorem 131-11 Lets, -1 be bounded operators on a Banach space 11

( i ) exp ( o ) = Iv

Iii ) if 51=-15 then exp (s) exp ( T) = exp (STT)

Ciii) if dip c- IF then exp ( as ) exp ( ps ) = exp ( ( ✗ tp) 5) .

Liv ) exp(s ) is invertible with inverse expts) .

Proof ( it is immediate from 18.1) and Iii )⇒ Liii) ⇒ Civ ) so we need only prove Iii ) .

By definition exp (STT) is the limit of am
= Ennio # (Stl)" and

we claim that

( s + TY = [ ( ? ) 5-
"Ti ( ii. 2)



④

This is proven by induction on n, with n=O and n =L being trivial and the

inductive step using ST
- TS as follows

(StT )
" '
= (StT ) I (7) Sh

- it i

= {Io (7) 5-
it '

Ti t Eino (7) Sh
-i

Titi

= E
,
( ( 7.) + ( I , ) ] Sn

" - it '
am ,

= Eino
'

(
n

? ) snit
- i

Ti

Hence

am = En?
.
IT
.

(St T)
"

= Siio IT
.

Eino ii.IN#i.sn-iTi
-

= Into Eino (⇐ isn - ill Ti)
"")

= Into Satan ( ITSa) ( ITT
b)

Now by definition expo) - Ling Into n÷5, exp (T) -Lim En! ITT
'

so by

Lemma Bt- 8 we have

exp expCT) - Lima ( ( En!ont. 5) ( Eino ITT ) ] 112.3)

= Linn
.

Ea
,

oats a) ( ITT 's

)

Ifwe write Xa
,
b
= ITS - IT Tb then we have shown (a, b>O in the following)

b

exp (StT) = mliffh
,

I
atbsm

Xaib Ikea ( 12.4)

b

exp (s) exp (T) - mlismo Eason
,
bem Xa , b f

a



④

Let f : IN→ INXIN be the bijection which enumerates IN XIN as below :

a

• •

• • ( 13.1 )

:I
.

)
. . . . >

Set Cai , bi) = flit . Then I E- o a÷! H SH
"

bit
.

H TH
"

converges since it is the

limit of a sequence of partial sums which has Eat b em at lls Ha IT. It TIP as a

subsequence (this sequence converges by an analogueof 42.2) to exp ( llsHt H TH) ) and

an increasing sequence with a converging subsequence is bounded
,
hence convergent .

Then the series E Eeo Xfc , converges absolutely since

Eiko H Xfce , It ⇐ Eiko att Ils Hai bit. H TH
bi

. as-
z)

Let ①o
C ① I C - - - be any strictly ascending chain of nonempty finite subsets of INXIN

with Ui ① c.
= INXIN

,
and define j : IN→ IN by j (a) = inff it flat c- ① i }

.

This is easily
seen to be surjective , and hence by Lemma BI- to the series Info ( Eiej - ' Cn , Xfcis )
converges absolutely to Ei -5 Xfc is . Taking alternatively

①
m

= L la , b) C- IN XIN l atb ⇐ m }
,

( 13.3)
①m

= L ( a , b) E IN XIN l a em ,
b Em }

shows that exp (St T ) = expls) exp (T) using ( 12.4 ) . D



④

Exercise 131-2 Ci ) Let V be a normed space and vex.

Let 2, : IF→ V

be the linear transformation 7×171=711 .

Prove 117×11=11×11
,

where we use the norm 1-1 on /F.

Iii ) Prove that there is a norm - preserving isomorphism of vector spaces
V→ 13 ( F, V ) sending ✗ to % .

Ciii) Prove that for normed vector spaces V,
W the function

1314,
W ) ✗ V > W

(Jv )→ Tlv)

is continuous
.

( in ) Let T:X→ V be a bounded linearoperator on a Banach space V.

Prove that for ✗C-✓ we have

exp (T) (v) = Iim (£ ÷ -17×1 )
m → ao n = 0

Exercise 131-3 Let V
,
W be Banach spaces and S

: V→ W a norm -preserving

isomorphism of vector spaces .

Let T:X→ V be a bounded

linear operator. Prove that as operators on W,

S exp (T) 5
'
=

exp / STS
-

1)
.

Exercise 131-4 With 11=-112 consider V= ① as a two-dimensional IR-vector

spacewith basis 13--4 ,
i } and let T:X→ V be multiplication by i,

so 1-= (
°

, F) as a matrix . Prove that ei
•
= cosOtisin0

,
i. e. for DEIR

exp (OT ) = ( Wso
-since )sin 0 cos 0



④

Example 131-2 Suppose dimH ) = he and T-

- V→ V is linear
,
hence bounded

,

over IF = E
.

The existence of a Jordan normal form for T

means that with respect to some basis 13

"I } =

m

) " s' "

where each Ji is a Jordan block, I -e - a matrix of the form

) are,

where X is an eigenvalue of T. Note that this block is 7 It N where

N is nilpotent (some power is zero ) . A basis - free way of expressing
( 14.1 ) is to say that there is a directsum decomposition

V = V,
① -

-
- ① Vm (15-3)

with each Vi a T- invariant subspace (t- e - Thi ) E Vi ) and
the restriction Thi '

-Vi→ ki equal to Xi I t Ni for some 1-Ed

and nilpotent operator Ni .

Then

exp ( T ) = exp ( X ,
ItN , ) A - - - a exp ( XmI t Nm ) .

Cir4)

Thus in principle to compute the exponential of any operator on a finite-dimensional

①- vector space, we need only compute exponentials exp( 7 It N) of Jordan

blocks
.
But XI commuteswith N

,
and so by theorem Bl-11 if Nk = O,



④

exp ( XI TN ) = exp (XI ) exp ( N )

= e
' ( I t Nt IN 't - - - +÷

.

Nk
- I ]

" b - t )

Recall from 115.2) that N consists of 1 's on the off-diagonal, and so

* =

÷ : ;) """

and similarly for the other powers of N .
Hence if Nk

- '

to butNk=0
,

explain - e
"

) class
.

I

this is however less useful than it appears, because we are often given operators (such as
Z
"
)

defined abstractly forwhich we may not have a convenient way of determining the Jordan

normal form .

Exercise BI - 5 Prove that for any matrix X E Mn (
E)

exp ( trx ) = detfexplx) ) .

Exercise 131-6 Compute exp (xx) , exp (DY ) , exp ( LH ) for AER where

x. too ! :o) . 't : : :) . He :O :O :o) .



④

Lemma 131-12 Let V be a Banach space .
The function exp

: PW)→ PW) is continuous
.

Proof By Lemma 131-8 the partial sums 9m (X) = Ennio n÷Ñ are continuousmaps
1314)→ 131111 . Given R> 0 let Sr = { ✗ c- 131×1111×11<-12 } . Thesequence

( amlspi.sn→ 131×1 )m?→ 117.1)

converges uniformly since given E > 0

11 am 1×1 - expx 11--11 En?m+ , ¥1T 11

= 11 Iim En
h→ no

n=mt,
✗
" //

( 17. 2)
11-11 is cts

=
Iim 11 Ehn=mtn÷X" / /
h → ao

Lemma 131-3

← Info Ehn=m+ ,
¥ 11×11

"

⇐ ¥I•Enh=m+ ,
R
"

= [ n?m+, R
"

If Sm=En?→n÷R" then since Sm→ ER we have ER- Sm → 0 and hence

ET=m+ ,
Rn → 0 as m→ • . Thus given e > one can find N such that for

00

all m>N [ n=m+, ¥ R
"

< E and thus sup { 11 amA) - exp✗ 11 I ✗ c- SR } E E .

This
proves

that 117-11 converges uniformly to exp (X) as functions on SR and hence

as the uniform limit ofcontinuous functions
, exp (X ) /sr is continuous [MHS, theorem 43-5] .

But if ✗ c- 131×1 then there is an open neighbourhood of ✗ contained in SR for

R sufficiently large , hence exp is continuous at ✗, and hence on all of 131111 - ☐
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Logarithms

the following is taken from [1-1,523] . We take as given that the powerseries

00

logz = [ c- 1)
mtl ( Z - 1)

m

_m ( 18.1 )
m = I

converges absolutely for all 2- c-①with 12--11<1 , and that e'
09£
= Z for such z .

Forall

u with /ul < log2 , we have /e
"-11<1 and loge

"

= u
.

Lemma 131-13 If Tis abounded operatoron a Banach space V and H T - 1×11<1 then the series

log (T ) =[% ,
C-1)

" "(T (18.2)

converges absolutely in 13111) . With U
= { T I 111--1×11<1} the function

log :b→ 13111 ) is continuous
.

Proof this issimilar to theorem 131-7. The operators (T- Ix )
"

are bounded by Lemma 131-3

and satisfy HIT-1×511<-111--1×11 ? With 2- = 111--1×11 we have by 118.1) that

-

log ( It z ) = [ m= ,
C-1)
mt 'ZI
m

converges absolutely and hence

E.
"""" ← EEE < •

so that 118.2) converges absolutely and hence converges ( lemma 131-4) . Continuity follows

in thesame way as for exp
: for 12<1 sequence am

= III , C-1)
" "t

"

converges

uniformly to log -1 on SR
= { T 1111--1" IKR} and as a uniform limitofcontinuous

functions log is continuous on SR .

☐



④

Exercise 131-7 Let V
,
W be Banach spaces and S :X

→ W a norm -preserving

isomorphism of vector spaces .

Let T:X→ V be a bounded

linear operator satisfying 11T
- 1×11<1

.
Prove that 11 STS

- ' -1W 11<1 and

S log (T) 5
'
= log ( STS

-

1)
.

Some properties of the logarithm we will prove only for V finite-dimensional, since the general
arguments are (as far as I can tell ) more involved .

Exercise 131-8 Prove that the set D C- Mn (Q) of diagonalisable matrices is dense , i. e. for every
✗ c- Mn (E) there is a sequence ( Yn ) n >co in D with limn → • Yn = ✗

( the limit being say with respectto the Frobenius norm 11-HF
,
but by lemma 131-1

you can choose your norm ) ( Hint : an nxn matrix with n distinct eigenvalues

is diagonal isable . Generically , n complex numbers are distinct ! ) .

Lemma 131-14 Let V be a finite -dimensional complex normed space .

Then with

U = {TEPID I 111--1×11<1 } .
( 19.1 )

W={ ✗ c- 131×1 111×11<1092}

we have

G) exp (X) EU for all ✗ c- W

Iii ) exp ( log -1 ) = -1 for all TEU

Liii ) log ( exp X ) = ✗ forall ✗ c- W
\

Proof since F-= 1C the diagonal isable matrices are dense in 13 (4)
= Mn (E)

(here n=dimV)
. Suppose we can prove exp / logA) =A for any diagonalisable A- Then

with (Am )m% a sequence of diagonalisable matrices converging to T, we have



⑧

using continuity of exp , log (we may assume I/Am -1×11<1 forallm)

exp ( log -1 ) = exp ( log ( limn,→ Am ) )
= exp / Lingo log Am )

(Wi )
= lim
m→ •

exp ( log Am )
= lim Am = T
m→o0

Hence we can reduce to checking that exp / log A) = A for diagonal,
-sable AEU

.

If 8-
'

AS =D for

D= (dy . - -

,
dn ) diagonal , then

exp ( log A) = exp ( log ( s
- IDS ) )

F-✗ 131-2
=

exp ( s
- '

log D S )

Ex 131-3

= 5
'

exp ( logD) S (20-2)

= 5
'

exp 410904 . . . . logan )
S

= g-
1 llogdi )

"
"

"

exp ( logan ,
)
S " S

"

D S ← A

Note that A
,
D have the same eigenvalues di, . .

. ,dn and so Idi -11<-11 A -1×11<1

for / ⇐ ien (Ex 131-10) and hence logdi is computed by (18-1) and expllogdi) = di .

Now suppose ✗ c- W that is 11×11<1092 . Then exp✗ c- U since

as in 117.2)
t

11 expx -1×11=11%-9 ✗ ill a- EE ,
11×11

"
= exp11×11-1<1



②

Theproof that log lexpx ) = ✗ follows the same pattern : we first reduce by continuity to the

case where ✗ is diagonal isable and then we use a calculation like (20-2) in this case .

Note that if ✗ = diag (dy . -
-

, dn ) is diagonal and 11×11<1092 then Idi / < log 2

and hence log (expdi ) = di for all Kien . ☐

Exercise 131-9 There is no exercise 131-9
.

Exercise 131-10 Let T:X→ V be a bounded linear operator on a normed space V

and X c- IF an eigenvalue of T. Then 1×1<-111-11 .

Exercise 131-11 Prove that if 11-14,11-112 are Lipschitz equivalent norms on a vector space V,
n n

then they induce Lipschitz equivalent operator norms on 13111) .

Remark Let U = { TE MnHR) I 11T- In 11<1 }
,
W= { ✗ c- Mn HR) I 11×11<1092 } where

11-11 means the operator norm with respectto 11-112 on IR? Let Ua C- Mn (E)
,

We C- Mn (E) denote the analogous subsets for (0711-112) . Under the

canonical inclusion Mn ( IR ) c- Mn (E) we have UE Ue
,
W C- We

and the exponential and logarithm for complex matrices restrict to those

for real matrices
,
so from lemma 131-14 we deduce also forneat matrices that

( i ) exp (X) EU for all ✗ c- W

Iii ) exp ( log -1 ) = T for all TEU

Liii ) log ( exp X ) = ✗ forall ✗ c- W



⑨

Lemma 131-15 Let T be a bounded operatoron a Banach space V with 11TH< Yz . Then

11 log (1×1--1) - T 11<-411-112 122.1)

where c is a constant independent of 11TH.

Proof since

I = -12£ fi)mHTmlog (1×1--1) - T = [m•⇒f , )mH
Tm

m= 2

wehave

•

(Yzjm
-2

11 log (1×1--1)
- THE 111-1122mm

=3

• (44m
-2

and since c= [m=z_m converges we are done (by the ratio test) we are done . ☐

Remark ( Big 0 notation ) one often sees (22-1) written as

log (Tt 1×1=-1 to (11-1112). (22 . 2)

To interpretsuch statements you look inside the Of) to find the
"variable "

,
in this

case T
,
and you rearrange to

obtain a bounded operator which is a function

of this variable, in this case log (Tt Ix ) - T, and tosay this is 0111-1112)

is to say that there exists c> 0 and e> 0 such that whenever 11TH < E

we have 11 log (Tt Ix ) - T 11<-41-111 ?



⑤

Theorem Bl -16 ( Lie Product formula) Lets, T be linear operators on a finite-dimensional

complex normed space V. Then

exp (Stl ) =
Iim ( exp (E) exp (Fn ) )

"

m→ 00

Proof By Taylor 's theorem (with the Lagrange remainder, see Lbp -150) we have for any 1- c- IR

exp(t ) = 1 tt t e×P¥t2 (23.1 )

where b depends on t and is between 0 and t .
Hence

I exp ( "¥ ) - 1- 11¥ I = "Pz 115m¥ (zzz)

for some 0£ be
"¥

.
That is

, Ej% ( "Im )
I
= e×¥b) 115112m=

. Butthen

11 exp (E) - 1- £11s Ej: (
"⇒ I = ¥9 "÷E (23.3)

similarly for some 0s a c-
"m we have

exp (a) 11TH
'

II exp ( Fn ) - 1- Im /Is Ej: ( I = -2 Tm (23-4)

Note that exp / Fn ) = 1- + £+0 ( tmz) in the following precise sense : if 11511<1092 then

exp (b) ⇐ exp (
"Im ) E exp ( HSH ) < 2 and so

11 exp ( In ) - I - £m / I s ( 10925m¥ ⇐ ¥2 ( 23.51

We claim that

exp ( In ) exp ( Fn ) = 1×1- Ent Ent O ( Ir) 123.6)



④

in a sense to be made precise in a moment. Set L
= exp / In ) - Ix

- En and A = exp ( In ) - Ix - In .

Then

exp (E) exp (Fn ) = ( 1. + Er + 2) ( 1" t Ent 2)
= In, + Ent R t Ent MIST t In 52 124.1)

+ L t InLT + 22 .

Suppose 11511<1092, 11-111<1092 .
Then by (23-5) 11 2 11 a- ( 10925m¥

,
11211 I Clog25m¥

and so for all m > I

11 exp (E) exp ( Eu ) - Ix - In - In 11

= 11 at L + MIST 1- Fisk + 1mLTt 2211

c- 11211+11211 t ¥114111T Attn 1151111211 t (24-2)

£1121111T 11 + 1121111211

⇐ ( log25m¥ t ( 10925 Ena t ¥110927T tmsliog 25

+ mts ( log 2)
'
t ( 109214m¥

C- 6 ( log 25m¥ a- ¥

which proves
123.6) .

Since TÉ → 0
,
É → 0 in 13111 ) arm→ • and both the exponential

and multiplication are continuous ( Lemma 131-8 and Lemma 131-12 ) we have

exp (E) exp (E) → Iv arm→ ao and hence form sufficiently large this

product is in thedomain of the logarithm .

Hence by (23-6) for sufficiently largem

and 11511<1092, 111-11<1092

log ( exp (E) exp ( In ) ) = log ( Ix 1- Ent Ent 0km2) ) ( 24.3)



④

← 9=210921-6

Now 11 En 1- In tom's) 11 £ +
"n 1- ÷ ± 9 -1m which is strictly less than 42

form sufficiently large .
Hencefor such m

, by Lemma B1 -15

log ( exp (E) exp tin ) ) = In + En + 0111 In + Into Fma) /t) ( as.it

= En t Im + Ofma)

Hence by Lemma 131-14 applying exp to both sides yields

exp ( Fn ) exp (E) = exp ( In + En t 0mF. ) ) ( as:p

Hence by Lemma B1 -11 Ciii ) for 11511<1092 , 111-11<1092 and m>> O

m

[ exp (E) exp (E) ] = exp ( St -1+01 'ñ) ) .

By continuity of the exponential

Iim [ exp ( In ) exp ( In ) ]m= exp ( Lingo ( St -1+0 Fm) ) )
m→ a

= exp ( Stl ) . ☐

Acknowledgements thanks to Abraham Zhang and Brian Chan for pointing out
an error in the original statement of Lemma 131-14 .
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