7. The Tensor Product

Exercises:

- **6.1.** Show that if A is torsionfree, $Ext(A, \mathbb{Z})$ is divisible, and that if A is divisible, $Ext(A, \mathbb{Z})$ is torsionfree. Show conversely that if $Ext(A, \mathbb{Z})$ is divisible, A is torsionfree and that if $Ext(A, \mathbb{Z})$ is torsionfree and $Hom(A, \mathbb{Z}) = 0$ then A is divisible. (See Exercise 5.8.)
- **6.2.** Show that $\text{Ext}(\mathbb{Q}, \mathbb{Z})$ is divisible and torsionfree, and hence a Q-vector space. (Compare Exercise 2.4.) Deduce that $\text{Ext}(\mathbb{Q}, \mathbb{Z}) \cong \mathbb{R}$, $\text{Hom}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{R}$. Compute $\text{Ext}(\mathbb{R}, \mathbb{Z})$.
- 6.3. Show that $Ext(\mathbb{Q}/\mathbb{Z},\mathbb{Z})$ fits into exact sequences

$$0 \rightarrow \mathbb{Z} \rightarrow \text{Ext}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}) \rightarrow \mathbb{R} \rightarrow 0,$$
$$0 \rightarrow \text{Ext}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}) \rightarrow \mathbb{R} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0.$$

- **6.4.** Show that the simultaneous equations $\operatorname{Ext}(A, \mathbb{Z}) = 0$, $\operatorname{Hom}(A, \mathbb{Z}) = 0$ imply A = 0.
- **6.5.** Show that the simultaneous equations $\text{Ext}(A, \mathbb{Z}) = \mathbb{Q}$, $\text{Hom}(A, \mathbb{Z}) = 0$ have no solution. Generalize this by replacing \mathbb{Q} by a suitable \mathbb{Q} -vector space. What can you say of the solutions of $\text{Ext}(A, \mathbb{Z}) = \mathbb{R}$. $\text{Hom}(A, \mathbb{Z}) = 0$?

7. The Tensor Product

In the remaining two sections of Chapter III we shall introduce two functors: the tensor product and the Tor-functor.

Let Λ again be a ring, A a right and B a left Λ -module.

Definition. The tensor product of A and B over A is the abelian group, $A \otimes_A B$, obtained as the quotient of the free abelian group on the set of all symbols $a \otimes b$, $a \in A$, $b \in B$, by the subgroup generated by

$$\begin{aligned} (a_1 + a_2) \otimes b - (a_1 \otimes b + a_2 \otimes b), a_1, a_2 \in A, b \in B; \\ a \otimes (b_1 + b_2) - (a \otimes b_1 + a \otimes b_2), a \in A, b_1, b_2 \in B; \\ a \lambda \otimes b - a \otimes \lambda b, a \in A, b \in B, \lambda \in A. \end{aligned}$$

In case $\Lambda = \mathbb{Z}$ we shall allow ourselves to write $A \otimes B$ for $A \otimes_{\mathbb{Z}} B$. For simplicity we shall denote the element of $A \otimes_{\Lambda} B$ obtained as canonical image of $a \otimes b$ in the free abelian group by the same symbol $a \otimes b$.

The ring Λ may be regarded as left or right Λ -module over Λ . It is easy to see that we have natural isomorphisms (of abelian groups)

$$A \otimes_A B \xrightarrow{\sim} B, \ A \otimes_A A \xrightarrow{\sim} A$$

given by $\lambda \otimes b \mapsto \lambda b$ and $a \otimes \lambda \mapsto a \lambda$.

For any $\alpha: A \to A'$ we define an induced map $\alpha_*: A \otimes_A B \to A' \otimes_A B$ by $\alpha_*(a \otimes b) = (\alpha a) \otimes b$, $a \in A$, $b \in B$. Also, for $\beta: B \to B'$ we define $\beta_*: A \otimes_A B \to A \otimes_A B'$ by $\beta_*(a \otimes b) = a \otimes (\beta b)$, $a \in A$, $b \in B$. With these definitions we obtain

Proposition 7.1. For any left Λ -module $B, -\bigotimes_A B : \mathfrak{M}^r_A \to \mathfrak{Ab}$ is a covariant functor. For any right Λ -module $A, A \bigotimes_A - : \mathfrak{M}^l_A \to \mathfrak{Ab}$ is a covariant functor. Moreover, $-\bigotimes_A -$ is a bifunctor.

The proof is left to the reader.

If $\alpha: A \rightarrow A'$ and $\beta: B \rightarrow B'$ are homomorphisms we use the notation

$$\alpha \otimes \beta = \alpha_* \beta_* = \beta_* \alpha_* : A \otimes_A B \longrightarrow A' \otimes_A B'.$$

The importance of the tensorproduct will become clear from the following assertion.

Theorem 7.2. For any right Λ -module A, the functor $A \otimes_{\Lambda} - : \mathfrak{M}_{\Lambda}^{l} \to \mathfrak{Ab}$ is left adjoint to the functor $\operatorname{Hom}_{\mathbb{Z}}(A, -): \mathfrak{Ab} \to \mathfrak{M}_{\Lambda}^{l}$.

Proof. The left-module structure of $\operatorname{Hom}_{\mathbb{Z}}(A, -)$ is induced by the right-module structure of A (see Section I.8). We have to show that there is a natural transformation η such that for any abelian group G and any left Λ -module B

$$\eta$$
: Hom_{**z**} $(A \otimes_A B, G) \xrightarrow{\sim}$ Hom_A $(B, \text{Hom}_{\mathbf{z}}(A, G))$.

Given $\varphi : A \otimes_A B \rightarrow G$ we define $\eta(\varphi)$ by the formula

$$((\eta(\varphi))(b))(a) = \varphi(a \otimes b)$$

Given $\psi: B \to \operatorname{Hom}_{\mathbb{Z}}(A, G)$ we define $\tilde{\eta}(\psi)$ by $(\tilde{\eta}(\psi))(a \otimes b) = (\psi(b))(a)$. We claim that $\eta, \tilde{\eta}$ are natural homomorphisms which are inverse to each other. We leave it to the reader to check the necessary details. \Box

Analogously we may prove that $-\bigotimes_A B: \mathfrak{M}_A^r \to \mathfrak{A} \mathfrak{b}$ is left adjoint to $\operatorname{Hom}_{\mathbb{Z}}(B, -): \mathfrak{A}\mathfrak{b} \to \mathfrak{M}_A^r$, where the right module structure of $\operatorname{Hom}_{\mathbb{Z}}(B, G)$ is given by the left module structure of B. We remark that the tensor-product-functor $A \otimes_A -$ is determined up to natural equivalence by the adjointness property of Theorem 7.2 (see Proposition II.7.3); a similar remark applies to the functor $-\bigotimes_A B$.

As an immediate consequence of Theorem 7.2 we have

Proposition 7.3. (i) Let $\{B_j\}$, $j \in J$, be a family of left Λ -modules and let Λ be a right Λ -module. Then there is a natural isomorphism

$$A \otimes_A \left(\bigoplus_{j \in J} B_j \right) \xrightarrow{\sim} \bigoplus_{j \in J} (A \otimes_A B_j).$$

(ii) If $B' \xrightarrow{\beta'} B \xrightarrow{\beta''} B'' \rightarrow 0$ is an exact sequence of left Λ -modules, then for any right Λ -module A, the sequence

$$A \otimes_A B' \xrightarrow{\beta_{\star}} A \otimes_A B \xrightarrow{\beta_{\star}} A \otimes_A B'' \longrightarrow 0$$

is exact.

Proof. By the dual of Theorem II.7.7 a functor possessing a right adjoint preserves coproducts and cokernels.

Of course there is a proposition analogous to Proposition 7.2 about the functor $-\bigotimes_A B$ for fixed B. The reader should note that, even if β' in Proposition 7.3 (ii) is monomorphic, β'_* will not be monomorphic in general: Let $\Lambda = \mathbb{Z}$, $A = \mathbb{Z}_2$, and consider the exact sequence $\mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \longrightarrow \mathbb{Z}_2$ where μ is multiplication by 2. Then

$$\mu_*(n\otimes m) = n\otimes 2m = 2n\otimes m = 0\otimes m = 0,$$

 $n \in \mathbb{Z}_2$, $m \in \mathbb{Z}$. Hence $\mu_* : \mathbb{Z}_2 \otimes \mathbb{Z} \to \mathbb{Z}_2 \otimes \mathbb{Z}$ is the zero map, while $\mathbb{Z}_2 \otimes \mathbb{Z} \cong \mathbb{Z}_2$.

Definition. A left Λ -module B is called flat if for every short exact sequence $A' \xrightarrow{\mu} A \xrightarrow{\epsilon} A''$ the induced sequence

$$0 \longrightarrow A' \otimes_A B \xrightarrow{\mu \star} A \otimes_A B \longrightarrow A'' \otimes_A B \longrightarrow 0$$

is exact. This is to say that for every monomorphism $\mu: A' \to A$ the induced homomorphism $\mu_*: A' \otimes_A B \to A \otimes_A B$ is a monomorphism, also.

Proposition 7.4. Every projective module is flat.

Proof. A projective module P is a direct summand in a free module. Hence, since $A \otimes_A - p$ reserves sums, it suffices to show that free modules are flat. By the same argument it suffices to show that Λ as a left module is flat. But this is trivial since $A \otimes_A \Lambda \cong A$.

For abelian groups it turns out that "flat" is "torsionfree" (see Exercise 8.7). Since the additive group of the rationals Q is torsionfree but not free, one sees that flat modules are not, in general, projective.

Exercises:

- 7.1. Show that if A is a left Γ -right Λ -bimodule and B a left Λ -right Σ -bimodule then $A \otimes_A B$ may be given a left Γ -right Σ -bimodule structure.
- **7.2.** Show that, if Λ is commutative, we can speak of the tensorproduct $A \otimes_A B$ of two left (!) Λ -modules, and that $A \otimes_A B$ has an obvious Λ -module structure. Also show that then $A \otimes_A B \cong B \otimes_A A$ and $(A \otimes_A B) \otimes_A C \cong A \otimes_A (B \otimes_A C)$ by canonical isomorphisms.
- **7.3.** Prove the following generalization of Theorem 7.2. Let A be a left Γ -right Λ -bimodule, B a left Λ -module and C a left Γ -module. Then $A \otimes_{\Lambda} B$ can be given a left Γ -module structure, and Hom_{Γ}(A, C) a left Λ -module structure. Prove the adjointness relation

$$\eta: \operatorname{Hom}_{\Gamma}(A \otimes_{A} B, C) \xrightarrow{\sim} \operatorname{Hom}_{A}(B, \operatorname{Hom}_{\Gamma}(A, C)).$$

7.4. Show that, if A, B are A-modules and if $\sum_{i=1}^{n} a_i \otimes b_i = 0$ in $A \otimes_A B$, then there are

finitely generated submodules $A_0 \subseteq A$, $B_0 \subseteq B$ such that $a_i \in A_0$, $b_i \in B_0$ and $\sum_i a_i \otimes b_i = 0$ in $A_0 \otimes B_0$.