Now we know what limits and colimits are, let us see some examples. To begin with, let us enumerate some examples of limits and colimits that have <u>special names</u>. A good reference here is Borceaux "Handbook of categorical algebra".

Def^N Given a category
$$\mathcal{C}$$
 and a set of objects $\{A_j\}_{j \in \mathcal{J}}$ a product of the family is a pair $(P, \{\pi_j\}_{j \in \mathcal{J}})$ consisting of an object P and morphisms $\pi_j : P \longrightarrow A_j$ such that for every pair $(Q, \{a_j\}_{j \in \mathcal{J}})$ where $a_j : Q \longrightarrow A_j$ there is a unique morphism $O: Q \longrightarrow P$ such that $\pi_j : O = b_j$ for all j .

Example If
$$\mathcal{C} = \underline{Set}$$
 then the usual Cartesian product $\prod_{j \in J} A_j$ with
the projections $\pi_i((a_j)_j) = a_i$ is a product, with $\mathcal{O}(q) = (b_j(q))$.

Def With
$$\mathcal{C}$$
, $\{A_j\}_{j \in J}$ as above a coproduct is a pair $(\mathcal{C}, \{L_j\}_{j \in J})$ where
 \mathcal{C} is an object and $\iota_j : A_j \longrightarrow \mathcal{C}$ are morphisms, such that for every
other pair $(\mathcal{Q}, \{b_j : A_j \longrightarrow \mathcal{Q}\}_{j \in J})$ there is a unique morphism
 $\mathcal{O}: \mathcal{C} \longrightarrow \mathcal{Q}$ with $\mathcal{O} \sqcup_j = \mathcal{Z}_j$ for all \mathcal{J} .

Example (1) If
$$C = Jet$$
 then the disjoint union

$$\coprod_{j \in J} A_j = \bigcup_{j \in J} \{j\} \times A_j$$

with functions
$$li: A_i \longrightarrow \coprod A_j$$
 given by $li(\alpha) = (i, \alpha)$ is a coproduct.

(2) If
$$C = Ab$$
 then $\bigoplus_{j \in J} A_j = \{(a_j) \in T_j A_j \mid only finitely many \}$
is a coproduct.

Assume all the Jx are disjoint Lemma Let G be a category, $\{J_{x}\}_{x \in \Lambda}$ a set of sets, and for each $\alpha \in \Lambda$ suppose $\{A_{j}\}_{j \in J_{x}}$ is a set of object in G. Assuming all involved products exist, there is a canonical isomorphism $\prod_{J \in J} A_{j} \cong \prod_{\alpha \in \Lambda} \prod_{j \in J_{\alpha}} A_{j}^{*}$ where $J = \bigcup_{\alpha J_{\alpha}} J_{\alpha}$. Example Let (L, \leq) be a partially ordered set, viewed as a category. Given $S \subseteq L$ the product P of the set of objects S would be an object (i.e. $P \in L$) with morphisms $P \longrightarrow s$ for all $s \in S$ (i.e. $P \leq s$ for alls) such that for any other family of morphisms $Q \longrightarrow S$ (i.e. $Q \leq s$ $\forall s \in S$) there is a unique morphism $Q \longrightarrow P$ (i.e. $Q \leq P$). Since uniqueneos is automatic, we conclude

· the product of S is precisely the infimum of S (if exist)

Similarly

· the coproduct of S is precisely the supremum of S (if exists)

Def A lattice is a partially ordered sets with binary puducts and woroducts.

<u>Ez 1</u> Prove that a category with binary products (resp. coproducts) has arbitrary finite products (resp. coproducts).

<u>Ex 2</u> Find a counterexample to the following statement - a category with finite products has an initial object.

3

$$\frac{\mathbb{E}\pi 3}{\mathbb{E}\pi 3} \quad \text{Let } \operatorname{Reg} \text{ denote the calegous of commutative rings (with identity),} and suppose we have ring morphisms
$$S \xrightarrow{\mathcal{R}} \mathbb{R}_{1}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{2}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{2}, \\
\text{ure say } \mathbb{R}_{1}\mathbb{R}_{2} \text{ are } \underline{S-algebras}. \text{ Bove that the pushout of this clicagram in } \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n}, \\
\mathbb{E}_{2} \xrightarrow{1} \mathbb{R}_{1}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \xrightarrow{1} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} \mathbb{R}_{2}^{n} = \mathbb{R}_{2}^{n} \mathbb{R$$$$

Ø

(2) In <u>set</u> the we qualizer is B/\sim where \sim is the equiv. rel^N generated by pair (f(a), g(a)) for all $a \in A$.

(3) In <u>Ab</u> the coequaliser of f,g is $B \xrightarrow{\pi} B/_{Im}(f-g)$, π the quotient

Proof Clearly
$$\pi f(a) = \pi g(a)$$
 for all a , so $\pi f = \pi g$. If
 $T: B \longrightarrow C$ is a morphism with $Tf = Tg$ then $T(f-g) = O$
so T factors uniquely via π .

Functoriality of limits and colimits

Let
$$\mathcal{C}$$
 be a category, \mathcal{C} an oriented graph and $\forall_1, d_2: \mathcal{PC} \longrightarrow \mathcal{C}$ two
diagrams, with a morphism $f: d_1 \longrightarrow d_2$. Suppose both \forall_1, d_2 have
limits, withen $\mathcal{T}_1: \mathbb{I}(\lim d_1) \longrightarrow d_1$ and $\mathcal{T}_2: \mathbb{I}(\lim d_1) \longrightarrow d_2$. Then
the morphism $f \circ \mathcal{T}_1$ in

induces by the universal property of γ_2 a <u>unique</u> morphism $\lim_{n \to \infty} \lim_{n \to \infty} d_2$ (call if $\lim_{n \to \infty} f$) such that (5.1) commutes.

<u>Proposition</u> The assignment $f \mapsto \liminf is functional.$ That is, if $g : d_2 \longrightarrow d_3$ is a morphism of diagrams then $\lim (g \circ f) = \lim (g) \circ \lim (f)$ (assuming $\limsup a$ also exist) and if $\alpha = d_1 = d_2$ and $f = id_{\alpha}$ then $\lim (id_{\alpha}) = id_{\lim d}$.

5

Roof We prove lim(gof) = lim(g) · lim(f) and leave lim(idd) = idlima as an exercise. Consider

• on morphisms, $f:d, \rightarrow d_2 \longmapsto lim f: lim d, \rightarrow lim d_2$.

(6)

Ex 4 Check that the bijection of Lecture 8, formula (8.3),

 $Hom_{\mathcal{E}}(C, \operatorname{lim} \alpha) \cong Hom_{\mathcal{E}}(\mathcal{I}C, \alpha)$ (7.1)

is also natural in d.

Ex5 Prove that colimits (when they exist) are also functorial, in the sense of the above. Also, show that there is an analogue of (7.1): if \mathcal{L} is a dragram with colimit $\mathcal{E}: \mathcal{L} \to \mathcal{L}$ olimit there is a bijection

 $Home(colima, C) \cong Hom_{[PG, V]}(\alpha, IC) \quad (7.2)$

natural in both X, and C.

7