Last lecture we defined a diagram in a category C of shape G (an oriented graph) to be a morphism of graphs $G \longrightarrow UC$, or what is the same, a functor $PG \longrightarrow C$ where PG is the path category.

Example $G = \{\cdot\}$ a single vertex, no anows. There is an equivalence of categories

$$[PG, C] \xrightarrow{E} C$$

defined on objects by $E(\alpha) = \alpha(\bullet)$ and on morphisms by $E(f) = f_{\bullet}$. The inverse functor $E^{-1}: C \longrightarrow [PG, C]$ sends an object C to the diagram assigning $\bullet \longmapsto C$.

The question that motivales today's lecture is: when can a <u>diagram</u> be approximated by an <u>object</u>? Here "approximated" should be understood in the rense of the following examples:

• Let S be a set, V(s) the free abelian group on S. Then V(s) is the "best approximation" to S among abelian groups, in that any function $S \longrightarrow A$, A an abelian group, factor uniquely via a morphism $V(s) \longrightarrow A$ in <u>Ab</u>

 If G is an oriented graph, PG is the "best approximation" to G among categories. (\mathbf{I})

In the above examples, to "approximate" sets by abelian groups or graphs by categories, we needed a <u>forgetful</u> functor which says: underlying any group is a set, and underlying any category is a graph.

In what follows G is an oriented graph and C a category.

Lemma There is a functor $I: \mathcal{C} \longrightarrow [PG, \mathcal{C}]$ sending any object C to the "identify diagram" at C, that is

for all vertices v of G, I(C)(v) = C,
for all edges e of G, I(C)(e) = idc.

<u>Roof</u> As defined I(C) is a well-defined cliagram. If $f: C \rightarrow C'$ is a morphism in C then $I(f): I(C) \rightarrow I(C')$ cleftined by $I(f)_{v} := f$ is a morphism of diagrams, and it is easily checked this makes I a functor. \Box

<u>Remark</u> Let Ceob(B) and $G = \begin{cases} v_1 \\ v_2 \rightarrow v_3 \end{cases}$. Consider a diagram α in Cof shape G, $\int_{A_2} \int_{g}^{A_1} f$ (2.1)

> A natural transformation $\gamma : IC \longrightarrow \mathcal{L}$ consists of mouphisms $\gamma_{v_i} : C \longrightarrow A_i$ such that $f \gamma_{v_1} = \gamma_{v_3}$, $g \gamma_{v_2} = \gamma_{v_3}$, i.e. both triangles in (2.1) commute. Note that γ is determined by $\gamma_{v_1}, \gamma_{v_2}$ s.t. $f \gamma_{v_1} = g \gamma_{v_2}$.

2)

 Def^{N} Let (eob(8) and α : $PG \rightarrow C$ be a diagram. A <u>cone</u> from C to α is a natural transformation 2: IC -> 2 Spelled out more concretely: <u>Def</u> A cone from C to a diagram α is a morphism $Z: C \longrightarrow \alpha(v)$ in C for every vertex v in G, such that for every edge $e: v \rightarrow V'$ in G, the diagram commutes. <u>Def</u> A <u>cocone</u> from α to an object C is a natural transformation $\mathcal{E}: \alpha \longrightarrow \mathbb{IC}$. This is a family of morphisms $\mathcal{E}_{v}: \mathcal{A}(v) \longrightarrow C$ for every vertex v, such that for every edge e: V - V' the diagram $\begin{array}{c|c} \alpha(v) & \varepsilon_{v} \\ \hline \alpha(e) & & \\ \hline \alpha(v') & \varepsilon_{v'} \end{array}$ FLOCORES on the <u>right</u> commutes. <u>Convention</u> Let us unite natural transformations $I \subset \rightarrow \propto (\dots \circ \infty)$ as simply C -> a, where this will not cause confusion, and similarly for cocones.

2.5

If for a fixed diagram α there is a <u>universal</u> cone into α (i.e. the "best approximation to α by an object, on the left") we call if the <u>limit</u> of the cliagram. The universal <u>cocone</u> (if it exists) is the <u>colimit</u> of α

<u>Def</u> Let $C \in ob(8)$ and $\alpha \colon PG \to \mathcal{C}$ be a diagram. A cone $\mathcal{U} \colon IC \to \alpha$ is a limit if for any other cone $IC' \xrightarrow{\mathcal{O}} \alpha$ there is a unique morphism $\widehat{\mathcal{O}} \colon C' \to C$ making the diagram

3

Nole Not every diagram has a limit (re. can be approximated by an object).

Example In the situation of (2.1), the limit is a pair of morphisms

$$C \rightarrow A_{1}, C \rightarrow A_{2} \text{ such that for any } C' \rightarrow A_{1}, C' \rightarrow A_{2}$$
making the square commule, there is unique $C' \rightarrow C \Rightarrow A_{2}$

$$C' \rightarrow C \rightarrow A_{1} = C' \rightarrow A_{1} \text{ and } C' \rightarrow C \rightarrow A_{2} = C' \rightarrow A_{2}$$

$$C' \rightarrow C \rightarrow A_{1} = \int_{A_{1}} \int_{A_{2}} \int_{A_{2}} \int_{A_{3}} \int_{A_{2}} \int_{A_{3}} \int$$

4

<u>Proof</u> Such a Vexists by the univer all property of $\mathcal{T}: \mathbb{C} \to \mathcal{A}$, and linewise there is a unique $\mathcal{Y}': \mathbb{C} \to \mathcal{C}'$ with $\mathcal{T}'_{\circ} \circ \mathcal{Y}' = \mathcal{T}_{\circ}$ for all \vee . We daim $\mathcal{Y} \circ \mathcal{T}' = |_{\mathbb{C}}$ and symmetrically $\mathcal{Y}'_{\circ} \mathcal{Y} = |_{\mathbb{C}}!$. Observe that for any \vee ,

	$\eta_{,o}(\gamma_{,o}\gamma_{,i})$	$\sim 1 $
	$=(\gamma_{\checkmark}\circ\gamma)\circ\gamma'$	() $()$ $()$ $()$ $()$
(5.1)	$= \eta'_{0} \circ \gamma'$	$\psi(\int)\psi$
	= <i>\</i> _	
	= 7,0)	

But $7: C \rightarrow \alpha(v)$ is a cone, so by the universal property of the limit $C \rightarrow \alpha$, there is a <u>unique</u> morphism $C \rightarrow C$ s.t. $C \rightarrow C \rightarrow \alpha(v)$ equals 3, for all v. That is, 1_{C} is <u>unique</u> with this property. From (5.1) we conclude $4 \circ \Psi' = 1_{C}$.

We are therefore justified in saying the limit of & (if it exists), and denoting it lime.

<u>Def</u>^N Let J be a set, viewed as an oriented graph with no edges. A diagram $J \longrightarrow C$ is just a collection of objects $\{A_j\}_{j \in J}$ induced by J. The limit of this diagram is called the product and written $\prod_{i \in J} A_i^{-1}$ (if it exists).

That is, the product consists of an object C, morphisms $T_{j}: C \to A_{j}$ for each j, which is a universal family in the sense that if $\{\mathcal{P}_{j}: C' \to A_{j}\}_{j \in \mathcal{J}}$ is another collection of morphisms there is a unique morphism $\tilde{\rho}: C' \to C$ such that

commuter for all j.

Ex 7 Check that the usual product in <u>Set</u> is a limit in this rense, and thus is also the categorical product.

Ex 8 What is the product in Ab and Top?
Ex 9 Is there always a product in SSet?
vertices indexed by IN
Ex 10 What is the limit of the diagram (on the graph
$$\dots \to \bullet \to \bullet \to \bullet$$
)
 $\dots \longrightarrow \mathbb{R}[x] \xrightarrow{\pi} \mathbb{R}[x] / (x^2) \xrightarrow{\pi} \mathbb{R}[x]/(x)$
in the calegoing Ab, or commutative rings, where $\pi(\overline{f(x)}) = \overline{f(x)}$ is
the quotient map at each edge.