- **6.2.** Give a universal characterization of kernel and cokernel, and show that kernel and cokernel are dual notions.
- 6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those of Exercises 3.4 and 3.5.
- **6.4.** Let $\varphi: A \to B$. Characterize im φ , $\varphi^{-1}B_0$ for $B_0 \subseteq B$, without using elements. What are their duals? Hence (or otherwise) characterize exactness.
- 6.5. What is the dual of the canonical homomorphism $\sigma : \bigoplus_{i \in J} A_i \to \prod_{i \in J} A_i$? What is

the dual of the assertion that σ is an injection? Is the dual true?

7. Injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal ideal domain is free. It is reasonable to expect that the injective modules over a principal ideal domain also have a simple structure. We first define:

Definition. Let Λ be an integral domain. A Λ -module D is divisible if for every $d \in D$ and every $0 \neq \lambda \in \Lambda$ there exists $c \in D$ such that $\lambda c = d$. Note that we do not require the uniqueness of c.

We list a few examples:

(a) As \mathbb{Z} -module the additive group of the rationals \mathbb{Q} is divisible. In this example c is uniquely determined.

(b) As \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is divisible. Here c is not uniquely determined.

(c) The additive group of the reals \mathbb{R} , as well as \mathbb{R}/\mathbb{Z} , are divisible.

(d) A non-trivial finitely generated abelian group A is never divisible. Indeed, A is a direct sum of cyclic groups, which clearly are not divisible.

Theorem 7.1. Let Λ be a principal ideal domain. A Λ -module is injective if and only if it is divisible.

Proof. First suppose D is injective. Let $d \in D$ and $0 \neq \lambda \in \Lambda$. We have to show that there exists $c \in D$ such that $\lambda c = d$. Define $\alpha : \Lambda \rightarrow D$ by $\alpha(1) = d$ and $\mu : \Lambda \rightarrow \Lambda$ by $\mu(1) = \lambda$. Since Λ is an integral domain, $\mu(\xi) = \xi \lambda = 0$ if and only if $\xi = 0$. Hence μ is monomorphic. Since D is injective, there exists $\beta : \Lambda \rightarrow D$ such that $\beta \mu = \alpha$. We obtain

$$d = \alpha(1) = \beta \mu(1) = \beta(\lambda) = \lambda \beta(1)$$
.

Hence by setting $c = \beta(1)$ we obtain $d = \lambda c$. (Notice that so far no use is made of the fact that Λ is a principal ideal domain.)

Now suppose D is divisible. Consider the following diagram

$$\begin{array}{c} A \xrightarrow{\mu} B \\ \alpha \\ \downarrow \\ D \end{array}$$

We have to show the existence of $\beta: B \to D$ such that $\beta \mu = \alpha$. To simplify the notation we consider μ as an embedding of a submodule Ainto B. We look at pairs (A_j, α_j) with $A \subseteq A_j \subseteq B$, $\alpha_j: A_j \to D$ such that $\alpha_j|_A = \alpha$. Let Φ be the set of all such pairs. Clearly Φ is nonempty, since (A, α) is in Φ . The relation $(A_j, \alpha_j) \leq (A_k, \alpha_k)$ if $A_j \subseteq A_k$ and $\alpha_k|_{A_j} = \alpha_j$ defines an ordering in Φ . With this ordering Φ is inductive. Indeed, every chain $(A_j, \alpha_j), j \in J$ has an upper bound, namely $(\bigcup A_j, \bigcup \alpha_j)$ where $\bigcup A_j$ is simply the union, and $\bigcup \alpha_j$ is defined as follows: If $a \in \bigcup A_j$, then $a \in A_k$ for some $k \in J$. We define $\bigcup \alpha_j(a) = \alpha_k(a)$. Plainly $\bigcup \alpha_j$ is welldefined and is a homomorphism, and

$$(A_j, \alpha_j) \leq (\bigcup A_j, \bigcup \alpha_j).$$

By Zorn's Lemma there exists a maximal element $(\overline{A}, \overline{\alpha})$ in Φ . We shall show that $\overline{A} = B$, thus proving the theorem. Suppose $\overline{A} \neq B$; then there exists $b \in B$ with $b \notin \overline{A}$. The set of $\lambda \in \Lambda$ such that $\lambda b \in \overline{A}$ is readily seen to be an ideal of Λ . Since Λ is a principal ideal domain, this ideal is generated by one element, say λ_0 . If $\lambda_0 \neq 0$, then we use the fact that D is divisible to find $c \in D$ such that $\overline{\alpha}(\lambda_0 b) = \lambda_0 c$. If $\lambda_0 = 0$, we choose an arbitrary c. The homomorphism $\overline{\alpha}$ may now be extended to the module \widetilde{A} generated by \overline{A} and b, by setting $\tilde{\alpha}(\overline{a} + \lambda b) = \overline{\alpha}(\overline{a}) + \lambda c$. We have to check that this definition is consistent. If $\lambda b \in \overline{A}$, we have $\tilde{\alpha}(\lambda b) = \lambda c$. But $\lambda = \xi \lambda_0$ for some $\xi \in \Lambda$ and therefore $\lambda b = \xi \lambda_0 b$. Hence

$$\overline{\alpha}(\lambda b) = \overline{\alpha}(\xi \lambda_0 b) = \xi \overline{\alpha}(\lambda_0 b) = \xi \lambda_0 c = \lambda c.$$

Since $(\overline{A}, \overline{\alpha}) < (\widetilde{A}, \widetilde{\alpha})$, this contradicts the maximality of $(\overline{A}, \overline{\alpha})$, so that $\overline{A} = B$ as desired.

Proposition 7.2. Every quotient of a divisible module is divisible.

Proof. Let $\varepsilon: D \longrightarrow E$ be an epimorphism and let D be divisible. For $e \in E$ and $0 \neq \lambda \in \Lambda$ there exists $d \in D$ with $\varepsilon(d) = e$ and $d' \in D$ with $\lambda d' = d$. Setting $e' = \varepsilon(d')$ we have $\lambda e' = \lambda \varepsilon(d') = \varepsilon(\lambda d') = \varepsilon(d) = e$. As a corollary we obtain the dual of Corollary 5.3.

Corollary 7.3. Let Λ be a principal ideal domain. Every quotient of an injective Λ -module is injective.

Next we restrict ourselves temporarily to abelian groups and prove in that special case

Proposition 7.4. Every abelian group may be embedded in a divisible (hence injective) abelian group.

The reader may compare this Proposition to Proposition 4.3, which says that every Λ -module is a quotient of a free, hence projective, Λ -module.

Proof. We shall define a monomorphism of the abelian group A into a direct product of copies of \mathbb{Q}/\mathbb{Z} . By Proposition 6.3 this will

suffice. Let $0 \neq a \in A$ and let (a) denote the subgroup of A generated by a. Define $\alpha: (a) \to \mathbb{Q}/\mathbb{Z}$ as follows: If the order of $a \in A$ is infinite choose $0 \neq \alpha(a)$ arbitrary. If the order of $a \in A$ is finite, say n, choose $0 \neq \alpha(a)$ to have order dividing n. Since \mathbb{Q}/\mathbb{Z} is injective, there exists a map $\beta_a: A \to \mathbb{Q}/\mathbb{Z}$ such that the diagram

is commutative. By the universal property of the product, the β_a define a unique homomorphism $\beta: A \to \prod_{\substack{a \in A \\ a \neq 0}} (\mathbb{Q}/\mathbb{Z})_a$. Clearly β is a monomorphism

since $\beta_a(a) \neq 0$ if $a \neq 0$.

For abelian groups, the additive group of the integers \mathbb{Z} is projective and has the property that to any abelian group $G \neq 0$ there exists a nonzero homomorphism $\varphi : \mathbb{Z} \to G$. The group \mathbb{Q}/\mathbb{Z} has the dual properties; it is injective and to any abelian group $G \neq 0$ there is a nonzero homomorphism $\psi : G \to \mathbb{Q}/\mathbb{Z}$. Since a direct sum of copies of \mathbb{Z} is called free, we shall term a direct product of copies of \mathbb{Q}/\mathbb{Z} cofree. Note that the two properties of \mathbb{Z} mentioned above do *not* characterize \mathbb{Z} entirely. Therefore "cofree" is *not* the exact dual of "free", it is dual only in certain respects. In Section 8 the generalization of this concept to arbitrary rings is carried through.

Exercises:

7.1. Prove the following proposition: The Λ module I is injective if and only if for every left ideal $J \subset \Lambda$ and for every Λ -module homomorphism $\alpha: J \rightarrow I$ the diagram $J \rightarrow \Lambda$

may be completed by a homomorphism $\beta : \Lambda \rightarrow I$ such that the resulting triangle is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

- **7.2.** Let $0 \rightarrow R \rightarrow F \rightarrow A \rightarrow 0$ be a short exact sequence of abelian groups, with F free. By embedding F in a direct sum of copies of \mathbb{Q} , show how to embed A in a divisible group.
- 7.3. Show that every abelian group admits a unique maximal divisible subgroup.
- 7.4. Show that if A is a finite abelian group, then $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z}) \cong A$. Deduce that if there is a short exact sequence $0 \to A' \to A \to A'' \to 0$ of abelian groups with A finite, then there is a short exact sequence $0 \to A'' \to A \to A' \to 0$.
- 7.5. Show that a torsion-free divisible group D is a Q-vector space. Show that $\operatorname{Hom}_{\mathbb{Z}}(A, D)$ is then also divisible. Is this true for any divisible group D?
- 7.6. Show that \mathbb{Q} is a direct summand in a direct product of copies of \mathbb{Q}/\mathbb{Z} .