In this lecture we define singular homology and cohomology of topological spaces. Recall the simplex category \triangle , the category of simplicial sets

 $\underline{SSet} = [\Delta^{\circ P}, \underline{Set}]$

and the functor S: Top -> Set.

<u>Def</u>^N Let G be a category. Then [△^{op}, C] is the category of simplicial objection G (e.g. simplicial abelian groups, or R-modules).

Theorem A simplicial object in C is a family { Cq } gro of objects of C together with two families of morphisms

 $d_{i}: C_{q} \longrightarrow C_{q-1} \qquad s_{i}: C_{q} \longrightarrow C_{q+1} \qquad i = 0, \dots, 2$

with q>0 in the case of di, which satisfy

didi =	= dj-1di	(`<	(1.1)
-	= Sj^+1Si	ĵ≤j	(1.2)
disj =		í<í	(1.3)
	J .	0	
	Sj-1di	ĩ <j< th=""><th></th></j<>	
$d_{i}s_{j} = \langle$	1	i=j, or i=j+1	(1.4)
v	Sidi-1) > ĵ + I	

And a morphism $f: C \longrightarrow C'$ of such simplicial objects is a family of morphisms $\{f_q: C_q \rightarrow C'_q\}_{q \ge 0}$ s.t. $d_i f_q = f_{q-1} d_i$ and $s_i f_q = f_{q+1} s_i$ for all q and $0 \le i \le q$.

(

<u>Proof</u> Given a simplicial object $F: \mathbb{A}^{\circ P} \to \mathcal{C}$ set $C_q = F([9])$ and

$$d_{i} = F(\varepsilon^{i} : [q-1] \rightarrow [q]) \qquad \text{in} \square$$

$$s_{i} = F(\gamma^{i} : [q+1] \rightarrow [q]).$$

The velations (1.1) - (1.4) follow from the relations for $\mathcal{E}_{i} \mathcal{X}$ checked in Ex 2 of Lecture 4. A morphism $F \rightarrow F'$ is by def N a family $f_{q}: C_{q} \rightarrow C_{q}'$ making the appropriate diagrams commute, including the required identities with d_{i}, s_{i} .

Conversely, given the data $\{C_{2}, s_{i}, d_{i}\}_{q \gg 0, 0 \in i \leq q}$ satisfying (1.1)-(1.4) we can define a simplicial object $F: \triangle^{o_{1}} \rightarrow \mathcal{C}$ by $F([v_{1}]) = C_{2}$ on objects and on $\mu: [v_{1}] \rightarrow [v_{1}]$ wing the unique presentation

$$\mathcal{M} = \mathcal{E}^{i_1} \cdots \mathcal{E}^{i_s} \mathcal{T}^{j_1} \cdots \mathcal{T}^{Jt} \qquad i_1 > \cdots > i_s, \ j_1 < \cdots < j_t$$

from the Theorem of Lecture S, by defining

$$F(\mu) := s_{jt} \cdots s_{j_1} d_{i_s} \cdots d_{i_{j_1}}$$

To see F is a functor say
$$O: [P] \rightarrow [r]$$
 with $O = \mathcal{E}^{\overline{i_1}} \cdots \mathcal{E}^{\overline{i_5}} \mathcal{T}^{J_1} \cdots \mathcal{T}^{J_{\overline{t}}}$
again with $\overline{i_1} > \cdots > \overline{i_5}$, $\overline{j_1} < \cdots < \overline{j_{\overline{t}}}$. Then $O\mu$ may be put into the
" \mathcal{E} 's after \mathcal{T} 's" form using the commutation rules of $\mathbb{E}_{x,2}$ of Lecture 4,
and since by hypothesis the same rules apply to $s_{\overline{i_1}}$, $d_{\overline{i_1}}$ we see
 $F(O\mu) = F(O)F(\mu)$, as claimed. \Box

Lemma Let C be a simplicial abelian group (Cq, si, di as above). Then with

$$\partial_{q}: C_{q} \longrightarrow C_{q-1}, \quad \partial:= \sum_{i=0}^{q} (-i)^{i} d_{i}$$

we have $\partial_{q-1} \circ \partial_q = 0$ for all q, i.e. (C, ∂) is a chain complex.

Pwof We have

$$\begin{aligned} \partial \partial &= \left(\sum_{i} (-1)^{i} d_{i} \right) \left(\sum_{j} (-1)^{j} d_{j} \right) \\ &= \sum_{i < j} (-1)^{i+j} d_{i} d_{j} \\ &= \sum_{i < j} (-1)^{i+j} d_{i} d_{j} + \sum_{i > j} (-1)^{i+j} d_{i} d_{j} \\ &= \sum_{i < j} (-1)^{j+j} d_{j-1} d_{i} + \sum_{i > j} (-1)^{i+j} d_{i} d_{j} \\ &= \sum_{i < k+1} (-1)^{i+k+1} d_{k} d_{i} + \sum_{i > j} (-1)^{i+j} d_{i} d_{j} \\ &= \sum_{i < k} (-1)^{i+k+1} d_{k} d_{i} + \sum_{i > j} (-1)^{i+j} d_{i} d_{j} \\ &= 0. \end{aligned}$$

Ex1 The construction $C \mapsto (C, \partial)$ extends to a functor comp : $[A^{\circ p}, Ab] \rightarrow Ch(\mathbb{Z}),$
$\frac{1}{1 \cdot e \cdot \operatorname{comp}(\{C_q, s_i, d_i\}) = (C, \partial = \varepsilon_i(-i)^i d_i) \text{ and from } f \colon C \to C'$
we obtain a morphism of complexes with $f_q - C_q \rightarrow C_q'$ in degree q.

3

Let
$$\forall : \underline{Set} \longrightarrow \underline{Ab}$$
 be the fire abelian group functor from Lecture 2.
Ristromposition with \forall defines a functor (see $p.0$ Lecture 6)
 $\forall := -: \underline{Sset} = [\Delta^{\circ p}, \underline{Set}] \longrightarrow [\Delta^{\circ p}, \underline{Ab}].$
Del⁵ Let $Ch^{\circ}(R), Ch_{\circ}(R)$ devote respectively the categories of cochain
completes of R-modules and chain complexes. Last lecture we
elefined function $H^{n}(-): Ch^{\circ}(R) \rightarrow R-Mod$, so have the inth homology
of a chain complex
 $\dots \longrightarrow C_{n,q} \xrightarrow{\partial_{n-1}} C_{n} \xrightarrow{\partial_{n}} (c_{n-1} \longrightarrow \dots)$
is defined by
 $H_{n}(c) := \frac{Z_{n}(c)}{B_{n}(c)} = \frac{Ker(\partial n)}{Im(\partial m t)}.$
Del¹⁰ (Homology groups of a topological space). We define a functor $H_{n}(-,\mathbb{Z})$
to be the composite $H_{n}(-,\mathbb{Z}): Top \longrightarrow Ab$ given by
 $Top \xrightarrow{S} SSet = [\Delta^{\circ p}, \underline{set}] \xrightarrow{V=-} [\Delta^{\circ p}, Ab] \xrightarrow{Omp} Ch_{\circ}(\mathbb{Z}) \longrightarrow Ab$.
That is, for a topological space X , $H_{n}(X,\mathbb{Z})$ is the homology of the
cochain complex with differential
 $V(\sum_{l=0}^{\infty} (-i)^{l}d_{l}): V((SX)([n])) \longrightarrow V((SX)([n-1]))$

Now by def^N

$$C_{n} = \bigvee ((SX)([n])) = \bigvee (Hom_{\underline{Top}}(\Delta^{n}, X)) = \bigoplus_{\substack{x:\Delta^{n} \to X \\ \text{in } \underline{Top}}} \mathbb{Z} x \qquad (4,1)$$

We call such a singular n-simplifies, so C_n is the set of formal linear combinations of n-simplices, called <u>n-chains</u>. By def^N, $V(d_i) : C_n \longrightarrow C_{n-1}$ sends a generator $x : \Delta^n \longrightarrow X$ to $d_i(x) = (SX)(\varepsilon^i)(x) = x \circ \Delta^{\varepsilon^i}$ where

$$\Delta^{z^{i}}: \Delta^{n-1} \longrightarrow \Delta^{n} \text{ is } (a_{0}, \dots, a_{n}) \longmapsto (a_{0}, \dots, a_{i-1}, 0, a_{i}, \dots, a_{n}) \qquad (4.2)$$

$$\uparrow \text{ this is the inclusion of the ith face of } \Delta^{n}, d_{i} \text{ is called}$$

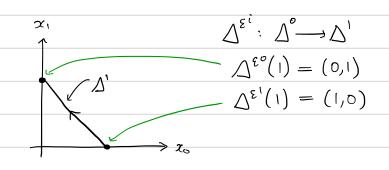
$$\text{ the ith face map of the simplicial object SX}.$$

$$\begin{array}{c} \partial_{n} : \bigoplus \mathbb{Z}_{X} \longrightarrow \bigoplus \mathbb{Z}_{Y} \\ x: \Delta^{n} \to X \\ g: \Delta^{n-1} \to X \\ \vdots \\ \vdots \\ i = 0 \end{array}$$
(4.3)
$$(4.3)$$

To see what this means, consider the following example:

4

Example Consider the inclusion $L: \Delta' \longrightarrow \mathbb{R}^2$, as in



Then $\partial_1(L) = L \cdot \Delta^{\varepsilon^{\circ}} - L \cdot \Delta^{\varepsilon^{\circ}}$ as a linear combination of O-simplices in IR? But $\Delta^{\circ} = \{ 1\} \in \mathbb{R}^{1} \text{ is just a point, so we may identify O-simplices with points$ in which cove $\partial_1(l) = (0,1) - (1,0)$ (not as vectors, this is a formal linear sum of points in IR2). Following standard convention we view the signs as providing an orientation in the indicated direction, so in summary

$$\Im^{1}\left(\checkmark\right) = \cdot^{+}$$

Lemma IF X is path connected, $H_0(X,\mathbb{Z}) \cong \mathbb{Z}$.

Prove By def^N,
$$H_0(X, \mathbb{Z}) = \bigoplus_{x:\Delta^o \to X} \mathbb{Z}_x / Im(\partial_1)$$
. Choose a

point loe ~ and algrie maps

$$\begin{array}{ccc} H_{o}(X,\mathbb{Z}) \xrightarrow{f} \mathbb{Z} & f(\mathcal{Z}_{x\in X}q_{x}X) = \mathcal{Z}_{x\in X}q_{x}\\ \mathbb{Z} \xrightarrow{g} H_{o}(X,\mathbb{Z}) & g(q) = a x_{o}. \end{array}$$

Observe f is well-defined since for a path $y: \Delta' \longrightarrow X$, we have

$$f(\partial_{I}(y)) = f(y \circ \Delta^{\varepsilon^{\circ}} - y \circ \Delta^{\varepsilon^{\prime}}) = 1 - 1 = 0$$

Clearly fog = id, and given
$$\sum_{x \in X} a_{xX}$$
 write it as $\sum_{i=1}^{k} a_{iX_{i}}$ and let
 \overline{c}_{i} be any path in X from \overline{a}_{i} to \overline{a}_{0} , viewed as a continuous map $\overline{a}_{i}: \Delta^{i} \rightarrow X$
(tobe dear, $\overline{a}_{i}(1, \overline{c}) = \overline{x}_{i}, \overline{a}_{i}(0, 1) = \overline{x}_{0}$). Then $\sum_{i=1}^{k} a_{i}\overline{c}_{i}$ is a 1-chain in X, with
 $\overline{a}_{i}(\sum_{i}\overline{a}_{i}) = \sum_{i}\overline{a}_{i}(\overline{a}_{i})$
 $= \sum_{i}(a_{i}\overline{a}_{i} - a_{i}\overline{a}_{0})$
 $= \sum_{i}a_{i}\overline{a}_{i}(\overline{a}_{i})$
This shows that in Ho(X, \overline{a}), $\sum_{i}a_{i}\overline{x}_{i} = (\sum_{i}a_{i})\overline{x}_{0}$ so g is surjective
and humua bijection. \underline{n}

 \bigcirc