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Introduction *

This book arose out of a course of lectures given at the Swiss Federal
Institute of Technology (ETH), Zurich, in 1966--67. The course was
first set down as a set of lecture notes, and, in 1968, Professor Eckmann
persuaded the authors to build a graduate text out of the notes, taking
account, where appropriate, of recent developments in the subject.

The level and duration of the original course corresponded essentially
to that of a year-long, first-year graduate course at an American university.
The background assumed of the student consisted of little more than the
algebraic theories of finitely-generated abelian groups and of vector
spaces over a field. In particular, he was not supposed to have had any
formal instruction in categorical notions beyond simply some under-
standing of the basic terms employed (category, functor, natural trans-
formation). On the other hand, the student was expected to have some
sophistication and some preparation for rather abstract ideas. Further,
no knowledge of algebraic topology was assumed, so that such notions
as chain-complex, chain-map, chain-homotopy, homology were not
already available and had to be introduced as purely algebraic constructs.
Although references to relevant ideas in algebraic topology do feature in
this text, as they did in the course. they are in the nature of (two-way)
motivational enrichment, and the student is not left to depend on any
understanding of topology to provide a justification for presenting a given
topic.

The level and knowledge assumed of the student explains the order
of events in the opening chapters. Thus, Chapter I is devoted to the theory
of modules over a unitary ring A. In this chapter, we do little more than
introduce the category of modules and the basic functors on modules
and the notions of projective and injective modules, together with their
most easily accessible properties. However, on completion of Chapter 1,
the student is ready with a set of examples to illumine his understanding
of the abstract notions ofcategory theory which are presented in Chapter [I.

* Sections of this Introduction in small type are intended to give amplified
motivation and background for the more experienced algebraist. They may be
ignored, at least on first reading, by the beginning graduate student.



2 Introduction

In this chapter we are largely influenced in our choice of material by the
demands of the rest of the book. However, we take the view that this is
an opportunity for the student to grasp basic categorical notions which
permeate so much of mathematics today, including. of course. algebraic
topology. so that we do not allow ourselves to be rigidly restricted by our
immediate objectives. A reader totally unfamiliar with category theory
may find it easiest to restrict his first reading of Chapter II to Sections l
to 6; large parts of the book are understandable with the material presented
in these sections. Another reader, who had already met many examples
of categorical formulations and concepts might, in fact, prefer to look at
Chapter II before reading Chapter I. Of course the reader thoroughly
familiar with category theory could, in principal, omit Chapter II,
except perhaps to familiarize himself with the notations employed.

In Chapter III we begin the proper study of homological algebra
by looking in particular at the group Ext,,(A, B), where A and B are
A-modules. It is shown how this group can be calculated by means of a
projective presentation of A, or an injective presentation of B; and how
it may also be identified with the group of equivalence classes of extensions
of the quotient module A by the submodule B. These facets of the Ext
functor are prototypes for the more general theorems to be presented
later in the book. Exact sequences are obtained connecting Ext and Hom,
again preparing the way for the more general results of Chapter IV.
In the final sections of Chapter III, attention is turned from the Ext
functor to the Tor functor, Tor^(A. B), which is related to the tensor
product of a right A-module A and a left A-module B rather in the same
way as Ext is related to Hom.

With the special cases of Chapter III mastered, the reader should be
ready at the outset of Chapter IV for the general idea of a derived functor
of an additive functor which we regard as the main motif of homological
algebra. Thus, one may say that the material prior to Chapter IV con-
stitutes a build-up, in terms of mathematical knowledge and the study
of special cases, for the central ideas of homological algebra which are
presented in Chapter IV. We introduce, quite explicitly, left and right
derived functors of both covariant and contravariant additive functors,
and we draw attention to the special cases of right-exact and left-exact
functors. We obtain the basic exact sequences and prove the balance of
Ext;,(A, B), TorA (A, B) as bifunctors. It would be reasonable to regard
the first four chapters as constituting the first part of the book, as they did,
in fact, of the course.

Chapter V is concerned with a very special situation of great im-
portance in algebraic topology where we are concerned with tensor
products of free abelian chain-complexes. There it is known that there
is a formula expressing the homology groups of the tensor product of the
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free abelian chain-complexes C and D in terms of the homology groups
of C and D. We generalize this Kunneth formula and we also give a
corresponding formula in which the tensor product is replaced by Hom.
This corresponding formula is not of such immediate application to
topology (where the Kunneth formula for the tensor product yields a
significant result in the homology of topological products), but it is
valuable in homological algebra and leads to certain important identities
relating Hom, Ext, tensor and Tor.

Chapters VI and VII may, in a sense, be regarded as individual
monographs. In Chapter VI we discuss the homology theory of abstract
groups. This is the most classical topic in homological algebra and really
provided the original impetus for the entire development of the subject.
It has seemed to us important to go in some detail into this theory in
order to provide strong motivation for the abstract ideas introduced.
Thus, we have been concerned in particular to show how homological
ideas may yield proofs of results in group theory which do not require
any homology theory for their formulation - and indeed, which were
enunciated and proved in some cases before or without the use of homo-
logical ideas. Such an example is Maschke's theorem which we state
and prove in Section 16.

The relation of the homology theory of groups to algebraic topology is ex-
plained in the introductory remarks in Chapter VI itself. It would perhaps be
appropriate here to give some indication of the scope and application of the
homology theory of groups in group theory. Eilenberg and MacLane [15] showed
that the second cohomology group, H2(G, A), of the group G with coefficients in
the G-module A, may be used to formalize the extension theory of groups due to
Schreier, Baer, and Fitting. They also gave an interpretation of H3(G,A) in terms of
group extensions with non-abelian kernel, in which A plays the role of the center of
the kernel. For a contemporary account of these theories, see Gruenberg [20]. In
subsequent developments, the theory has been applied extensively to finite groups
and to class field theory by Hochschild, Tate, Artin, etc.; see Weiss [49]. A separate
branch of cohomology, the so-called Galois cohomology, has grown out of this
connection and has been extensively studied by many algebraists (see Serre [41]).

The natural ring structure in the cohomology of groups, which is clearly in
evidence in the relation of the cohomology of a group to that of a space, has also
been studied, though not so extensively. However, we should mention here the deep
result of L. Evens [17] that the cohomology ring of a finite group is finitely generated.

It would also be appropriate to mention the connection which has been
established between the homology theory of groups and algebraic K-theory,
a very active area of mathematical research today, which seems to offer hope
of providing us with an effective set of invariants of unitary rings. Given a unitary
ring A we may form the general linear group, GL (A), of invertible (n x n) matrices
over A, and then the group GL(A) is defined to be the union of the groups GL (A)
under the natural inclusions, If E(A) is the commutator subgroup of GL(A), then a
definition given by Milnor for K2(:1), in terms of the Steinberg group, amounts to
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saying that K2(A)=H2(E(A)). Moreover, the group E(A) is perfect, that is to say,
Hl (E(A)) = 0, so that the study of the K-groups of .1 leads to the study of the second
homology group of perfect groups. The second homology group of the group G
actually has an extremely long history, being effectively the Schur multiplicator
of G, as introduced by Schur [40] in 1904.

Finally, to indicate the extent of activity in this area of algebra, without in any
way trying to be comprehensive. we should refer to the proof by Stallings [45]
and Swan [48], that a group G is free if and only if H"(G, A) = 0 for all G-modules A
and all n >_ 2. That the cohomology vanishes in dimensions >_ 2 when G is free is
quite trivial (and is, of course, proved in this book); the opposite implication,
however, is deep and difficult to establish. The result has particularly interesting
consequences for torsion-free groups.

In Chapter VII we discuss the cohomology theory of Lie algebras.
Here the spirit and treatment are very much the same as in Chapter VI,
but we do not treat Lie algebras so extensively, principally because so
much of the development is formally analogous to that for the cohomology
of groups. As explained in the introductory remarks to the chapter,
the cohomology theory of Lie algebras, like the homology theory of
groups, arose originally from considerations of algebraic topology,
namely, the cohomology of the underlying spaces of Lie groups. However,
the theory of Lie algebra cohomology has developed independently
of its topological origins.

This development has been largely due to the work of Koszul [31]. The co-
homological proofs of two main theorems of Lie algebra theory which we give
in Sections 5 and 6 of Chapter VII are basically due to Chevalley-Eilenberg [8].
Hochschild [24] showed that, as for groups, the three-dimensional cohomology
group H3( g, A) of the Lie algebra g with coefficients in the g-module A classifies
obstructions to extensions with non-abelian kernel.

Cartan and Eilenberg [7] realized that group cohomology and Lie
algebra cohomology (as well as the cohomology of associative algebras
over a field) may all be obtained by a general procedure, namely, as
derived functors in a suitable module-category. It is, of course, this
procedure which is adopted in this book, so that we have presented the
theory of derived functors in Chapter IV as the core of homological
algebra, and Chapters VI and VII are then treated as important special
cases.

Chapters VIII and IX constitute the third part of the book. Chapter VIII
consists of an extensive treatment of the theory of spectral sequences.
Here, as in Chapter II, we have gone beyond the strict requirements of
the applications which we make in the text Since the theory of spectral
sequences is so ubiquitous in homological algebra and its applications,
it appeared to us to be sensible to give the reader a thorough grounding
in the topic. However, we indicate in the introductory remarks to
Chapter VIII, and in the course of the text itself, those parts of the
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chapter which may be omitted by the reader who simply wishes to be
able to understand those applications which are explicitly presented.
Our own treatment gives prominence to the idea of an exact couple and
emphasizes the notion of the spectral sequence functor on the category
of exact couples. This is by no means the unique way of presenting
spectral sequences and the reader should, in particular, consult the book
of Cartan-Eilenberg [7] to see an alternative approach. However, we
do believe that the approach adopted is a reasonable one and a natural one.
In fact, we have presented an elaboration of the notion of an exact
couple, namely, that of a Rees system, since within the Rees system is
contained all the information necessary to deduce the crucial convergence
properties of the spectral sequence. Our treatment owes much to the
study by Eckmann-Hilton [10] of exact couples in an abelian category.
We take from them the point of view that the grading on the objects
should only be introduced at such time as it is crucial for the study of
convergence: that is to say. the purely algebraic constructions are carried
out without any reference to grading. This, we believe, simplifies the
presentation and facilitates the understanding.

We should point out that we depart in Chapter VIII from the standard con-
ventions with regard to spectral sequences in one important and one less important
respect. We index the original exact couple by the symbol 0 so that the first derived
couple is indexed by the symbol t and. in general, the n-th derived couple by the
symbol n. This has the effect that what is called by most authorities the EZ-term
appears with us as the E,-term. We do not believe that this difference of convention,
once it has been drawn to the attention of the reader, should cause any difficulties.
On the other hand, we claim that the convention we adopt has many advantages.
Principal among them, perhaps, is the fact that in the exact couple

the n-th differential in the associated spectral sequence d" is, by our convention,
induced by la-"y. With the more habitual convention d" would be induced by
flri i y It is our experience that where a difference of unity enters gratuitously
into a formula like this, there is a great danger that the sign is misremembered or
that the difference is simply forgotten. A minor departure from the more usual
convention is that the second index, or q index, in the spectral sequence term,

signifies the total degree and not the complementary degree. As a result, we
have the situation that if C is a filtered chain-complex, then H,,(C) is filtered by
subgroups whose associated graded group is {EQ9 ). Our convention is the one usually
adopted for the generalized Atiyah-Hirzebruch spectral sequence, but it is not the
one introduced by Serre in his seminal paper on the homology of fibre spaces,
which has influenced the adoption of the alternative convention to which we referred
above. However, since the translation from one convention to another is, in this
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case, absolutely trivial (with our convention, the term has complementary
degree q - p), we do not think it necessary to lay further stress on this distinction.

Chapter IX is somewhat different from the other chapters in that it
represents a further development of many of the ideas of the rest of the
text, in particular, those of Chapters IV and VIII. This chapter did not
appear in its present form in the course, which concluded with applica-
tions of spectral sequences available through the material already
familiar to the students. In the text we have permitted ourselves further
theoretical developments and generalizations. In particular, we present
the theory of satellites, some relative homological algebra, and the theory
of the homology of small categories. Since this chapter does constitute
further development of the subject, one might regard its contents as more
arbitrary than those of the other chapters and, in the same way, the
chapter itself is far more open-ended than its predecessors. In particular,
ideas are presented in the expectation that the student will be encouraged
to make a further study of them beyond the scope of this book.

Each chapter is furnished with some introductory remarks describing
the content of the chapter and providing some motivation and back-
ground. These introductory remarks are particularly extensive in the
case of Chapters VI and VII in view of their special nature. The chapters
are divided into sections and each section closes with a set of exercises.
These exercises are of many different kinds; some are purely computa-
tional, some are of a theoretical nature, and some ask the student to fill
in gaps in the text where we have been content to omit proofs. Sometimes
we suggest exercises which take the reader beyond the scope of the text.
In some cases, exercises appearing at the end of a given section may
reappear as text material in a later section or later chapter; in fact, the
results stated in an exercise may even be quoted subsequently with
appropriate reference, but this procedure is adopted only if their de-
monstration is incontestably elementary.

Although this text is primarily intended to accompany a course
at the graduate level, we have also had in mind the obligation to write
a book which can be used as a work of reference. Thus, we have endeavored,
by giving very precise references, by making self-contained statements,
and in other ways, to ensure that the reader interested in a particular
aspect of the theory covered by the text may dip into the book at any
point and find the material intelligible - always assuming, of course,
that he is prepared to follow up the references given. This applies in
particular to Chapters VI and VII, but the same principles have been
adopted in designing the presentation in all the chapters.

The enumeration of items in the text follows the following con-
ventions. The chapters are enumerated with Roman numerals and the
sections with Arabic numerals. Within a given chapter, we have two series
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of enumerations, one for theorems, lemmas, propositions, and corollaries,
the other for displayed formulas. The system of enumeration in each of
these series consists of a pair of numbers, the first referring to the section
and the second to the particular item. Thus, in Section 5 of Chapter VI,
we have Theorem 5.1 in which a formula is displayed which is labeled (5.2).
On the subsequent page there appears Corollary 5.2 which is a corollary
to Theorem 5.1. When we wish to refer to a theorem, etc., or a displayed
formula, we simply use the same system of enumeration, provided the
item to be cited occurs in the same chapter. If it occurs in a different
chapter, we will then precede the pair of numbers specifying the item with
the Roman numeral specifying the chapter. The exercises are enumerated
according to the same principle. Thus, Exercise 1.2 of Chapter VIII
refers to the second exercise at the end of the first section of Chapter VIII.
A reference to Exercise 1.2, occurring in Chapter VIII, means Exercise 1.2
of that chapter. If we wish to refer to that exercise in the course of a
different chapter, we would refer to Exercise VIII.1.2.

This text arose from a course and is designed, itself, to constitute a
graduate course, at the first-year level at an American university. Thus,
there is no attempt at complete coverage of all areas of homological
algebra. This should explain the omission of such important topics
as Hopf algebras, derived categories, triple cohomology, Galois co-
homology, and others, from the content of the text. Since, in planning
a course, it is necessary to be selective in choosing applications of the
basic ideas of homological algebra, we simply claim that we have made
one possible selection in the second and third parts of the text. We hope
that the reader interested in applications of homological algebra not
given in the text will be able to consult the appropriate authorities.

We have not provided a bibliography beyond a list of references
to works cited in the text. The comprehensive listing by Steenrod of
articles and books in homological algebra * should, we believe, serve as a
more than adequate bibliography. Of course it is to be expected that the
instructor in a course in homological algebra will, himself, draw the
students' attention to further developments of the subject and will thus
himself choose what further reading he wishes to advise. As a single
exception to our intention not to provide an explicit bibliography, we
should mention the work by Saunders MacLane. Homology, published
by Springer, which we would like to view as a companion volume to the
present text.

Some remarks are in order about notational conventions. First, we
use the left-handed convention, whereby the composite of the morphism cp

* Reviews of Papers in Algebraic and Differential Topology, Topological
Groups and Homological Algebra, Part II (American Mathematical Society).
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followed by the morphism ip is written as W (p or, where the morphism
symbols may themselves be complicated, tp cp. We allow ourselves
to simplify notation once the strict notation has been introduced and
established. Thus, for example, f (x) may appear later simply as f x and
F(A) may appear later as FA. We also adapt notation to local needs in
the sense that we may very well modify a notation already introduced
in order to make it more appropriate to a particular context. Thus, for
instance, although our general rule is that the dimension symbol in
cohomology appears as a superscript (while in homology it appears as a
subscript), we may sometimes find it convenient to write the dimension
index as a subscript in cohomology; for example, in discussing certain
right-derived functors. We use the symbol 0 to indicate the end of a
proof even if the proof is incomplete; as a special case we may very
well place the symbol at the end of the statement of a theorem (or pro-
position, lemma, corollary) to indicate that no proof is being offered or
that the remarks preceding the statement constitute a sufficient de-
monstration. In diagrams. the firm arrows represent the data of the dia-
gram, and dotted arrows represent new morphisms whose existence is
attested by arguments given in the text. We generally use MacLane's
notation >--*, -» to represent monomorphisms and epimorphisms
respectively. We distinguish between the symbols = and =>. In the
first case we would write X = Y simply to indicate that X and Y are
isomorphic objects in the given category, whereas the symbol cp : X---* Y
indicates that the morphism tp is itself an isomorphism.

It is a pleasure to make many acknowledgments. First, we would
like to express our appreciation to our good friend Beno Eckmann for
inviting one of us (P.H.) to Zurich in 1966--67 as Visiting Professor at
the ETH, and further inviting him to deliver the course of lectures which
constitutes the origin of this text. Our indebtedness to Beno Eckmann
goes much further than this and we would be happy to regard him as
having provided us with both the intellectual stimulus and the encourage-
ment necessary to bring this book into being. In particular, we would
also like to mention that it was through his advocacy that Springer-
Verlag was led to commission this text from us. We would also like to
thank Professor Paul Halmos for accepting this book into the series
Graduate Texts in Mathematics. Our grateful thanks go to Frau Marina
von Wildemann for her many invaluable services throughout the evolu-
tion of the manuscript from original lecture notes to final typescript.
Our thanks are also due to Frau Eva Minzloff. Frau Hildegard Mourad.
Mrs. Lorraine Pritchett. and Mrs. Marlys Williams for typing the manu-
script and helping in so many ways in the preparation of the final text.
Their combination of cheerful good will and quiet efficiency has left us
forever in their debt. We are also grateful to Mr. Rudolf Beyl for his
careful reading of the text and exercises of Chapters VI and VII.
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We would also like to thank our friend Klaus Peters of Springer-
Verlag for his encouragement to us and his ready accessibility for the dis-
cussion of all technical problems associated with the final production of
the book. We have been very fortunate indeed to enjoy such pleasant
informal relations with Dr. Peters and other members of the staff of
Springer-Verlag, as a result of which the process of transforming this book
from a rather rough set of lecture notes to a final publishable document
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I. Modules

The algebraic categories with which we shall be principally concerned
in this book are categories of modules over a fixed (unitary) ring A and
module-homomorphisms. Thus we devote this chapter to a preliminary
discussion of A-modules.

The notion of A-module may be regarded as providing a common
generalization of the notions of vector space and abelian group. Thus
if A is a field K then a K-module is simply a vector space over K and a
K-module homomorphism is a linear transformation; while if A = 7L
then a 7L-module is simply an abelian group and a 7L-module homo-
morphism is a homomorphism of abelian groups. However, the facets
of module theory which are of interest in homological algebra tend to be
trivial in vector space theory; whereas the case A=7L will often yield
interesting specializations of our results, or motivations for our construc-
tions.

Thus, for example, in the theory of vector spaces, there is no interest
in the following question: given vector spaces A, B over the field K,
find all vector spaces E over K having B as subspace with A as associated
quotient space. For any such E is isomorphic to ABB. However, the
question is interesting if A, B, E are now abelian groups; and it turns
out to be a very basic question in homological algebra (see Chapter III).

Again it is trivial that, given a diagram of linear transformations of
K-vector spaces

P

I
B ` C

where e is surjective, there is a linear transformation #:P--+B with
s /3 = y. However, it is a very special feature of an abelian group P that,
for all diagrams of the form (0.1) of abelian groups and homomorphisms,
with s surjective, such a homomorphism /3 exists. Indeed, for abelian
groups, this characterizes the free abelian groups (thus one might say
that all vector spaces are free). Actually, in this case, the example A =7L
is somewhat misleading. For if we define a A-module P to be projective if,
given any diagram (0.1) with s surjective, we may find /3 with s fl = y,
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then it is always the case that free A-modules are projective but, for some
rings A, there are projective A-modules which are not free. The relation
between those two concepts is elucidated in Sections 4 and 5, where we
see that the concepts coincide if A is a principal ideal domain (p.i.d.) -
this explains the phenomenon in the case of abelian groups.

In fact, the matters of concern in homological algebra tend very much
to become simplified - but not trivial - if A is a p.i.d., so that this special
case recurs frequently in the text. It is thus an important special case, but
nevertheless atypical in certain respects. In fact, there is a precise numerical
index (the so-called global dimension of A) whereby the case A a field
appears as case 0 and A a p.i.d. as case 1.

The categorical notion of duality (see Chapter II) may be applied to
the study of A-modules and leads to the concept of an injective module,
dual to that of a projective module. In this case, the theory for A = 7L,
or, indeed, for A any p.i.d., is surely not as familiar as that of free modules;
nevertheless, it is again the case that the theory is, for modules over a p.i.d.,
much simpler than for general rings A - and it is again trivial for vector
spaces!

We should repeat (from the main Introduction) our rationale for
placing this preparatory chapter on modules before the chapter introduc-
ing the basic categorical concepts which will be used throughout the
rest of the book. Our justification is that we wish, in Chapter II, to have
some mathematics available from which we may make meaningful
abstractions. This chapter provides that mathematics; had we reversed
the order of these chapters, the reader would have been faced with a
battery of"abstract" ideas lacking in motivation. Although it is, of course,
true that motivation, or at least exemplification, could in many cases
be provided by concepts drawn from other parts of mathematics familiar
to the reader, we prefer that the motivation come from concrete instances
of the abstract ideas germane to homological algebra.

1. Modules

We start with some introductory remarks on the notion of a ring. In
this book a ring A will always have a unity element 1A * 0. A homo-
morphism of rings w : will always carry the unity element of the
first ring A into the unity element of the second ring T. Recall that the
endomorphisms of an abelian group A form a ring End(A, A).

Definition. A left module over the ring A or a left A-module is an
abelian group A together with a ring homomorphism w : A-+ End (A, A).

We write A a for (w(t)) (a), a e A, A e A. We may then talk of A operating
(on the left) on A, in the sense that we associate with the pair (A, a) the
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element 2a. Clearly the following rules are satisfied for all a, a1, a2 a A,
2, All 22 a A:

M1: (.Z1+22)a=21a+22a
M2: (.Z122)a=21(A2a)
M3: lAa=a
M4: 1(a1 +a2)=2a1 +2a2 .
On the other hand, if an operation of A on the abelian group A

satisfies M 1, ..., M 4, then it obviously defines a ring homomorphism

w : A -+End(A, A), by the rule (w(Al)) (a) = A a.

Denote by A°PP the opposite ring of A. The elements 2°" E A°PP are
in one-to-one correspondance with the elements A a A. As abelian groups
A and A°PP are isomorphic under this correspondence. The product in
A°PP is given by 1'PP2ZPP = (22 11°PP. We naturally identify the underlying
sets of A and A°PP.

A right module over A or right A-module is simply a left A°PP-module,
that is, an abelian group A together with a ring map w' : A°PP-> End(A, A).
We leave it to the reader to state the axioms M V, M 2', M 3', M 4' for a
right module over A. Clearly, if A is commutative, the notions of a left
and a right module over A coincide. For convenience, we shall use the
term "module" always tc mean "left module".

Let us give a few examples:
(a) The left-multiplication in A defines an operation of A on the

underlying abelian group of A, satisfying M 1, ..., M 4. Thus A is a left
module over A. Similarly, using right multiplication, A is a right module
over A. Analogously, any left-ideal of A becomes a left module over A,
any right-ideal of A becomes a right module over A.

(b) Let A = Z. the ring of integers. Every abelian group A possesses
the structure of a 7L-module; for a e A, n e Z define n a = 0. if n = 0,
na=a+ +a (n times), if n>0, and na= -(-na). if n<0.

(c) Let A = K, a field. A K-module is a vector space over K.
(d) Let V be a vector space over the field K, and T a linear trans-

formation from V into V. Let A= K [T], the polynomial ring in T
over K. Then V becomes a K[T]-module, with the obvious operation
of K[T] on V.

(e) Let G be a group and let K be a field. Consider the K-vector-
space of all linear combinations kxx, kx a K. One checks quite

easily that the definition
xEG

Y kxx) (
Y

kyy) = Y (kxkv)xy
\xeG / yeG x,yeG

where xy denotes the product in G, makes this vector space into a K-
algebra KG, called the group algebra of G over K. Let V be a vector space
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over K. A K-representation of G in V is a group homomorphism
a : G-- AutK (V, V). The map a gives rise to a ring homomorphism
a' : K G- EndK(V, V) by setting

a'(Ykxx)=Ykxu(x).
xeG / xeG

Since every K-linear endomorphism of V is also a homomorphism of the
underlying abelian group, we obtain from a' a ring homomorphism
e : V), making V into a KG-module. Conversely, let V
be a K G-module. Clearly V has a K-vector-space structure, and the struc-
ture map g : KG- End7(V. V) factors through EndK(V, V). Its restriction
to the elements of G defines a K-representation of G. We see that the
K-representations of G are in one-to-one correspondance with the KG-
modules. (We leave to the reader to check the assertions in this example.)

Definition. Let A, B two A-modules, A homomorphism (or map)
pp : A--+B of A-modules is a homomorphism of abelian groups such that
cp(Aa)_2((pa) for all aeA,.1eA.

Clearly the identity map of A is a homomorphism of A-modules;
we denote it by 1A : A ---+A.

If cp is surjective, we use the symbol (p : A---)* B. If (p is injective, we
use the symbol cp : A---+ B. We call cp : isomorphic or an isomorphism,
and write cp : A-=).B,B, if there exists a homomorphism W : B--+A such that
y.1 cp =1A and W W =1B. Plainly, if it exists, 4' is uniquely determined;
it is denoted by (p-' and called the inverse of (p. If cp : A--+B is isomorphic,
it is clearly injective and surjective. Conversely, if the module homo-
morphism cp : A--+B is both injective and surjective, it is isomorphic.
We shall call A and B isomorphic, A= B, if there exists an isomorphism
cp : A=> B.

If A' is a subgroup of A with 1a' a A' for all A e A and all a' c- A',
then A' together with the induced operation of A is called a submodule
of A. Let A' be a submodule of A. Then the quotient group A/A' may be
given the structure of a A-module by defining .1(a + A') _ (2. a + A')
for all A e A, a e A. Clearly, we have an injective homomorphism P: A',-* A
and a surjective homomorphism n: A--»A/A'.

For an arbitrary homomorphism rp : A-->B, we shall use the nota-
tion ker (p = {a e A I cp a = 0} for the kernel of rp and

imrp=cpA={beBIb=cpa forsomeaeA}

for the image of (p. Obviously ker cp is a submodule of A and im cp is
a submodule of B. One easily checks that the canonical isomorphism
of abelian groups A/ker (p = im cp is actually an isomorphism of A-modules.
We also introduce the notation cokercp=B/im( for the cokernel of (p.
Just as kercp measures how far cp differs from being injective, so eokercp
measures how far cp differs from being surjective. If p : A'-+A is injective,
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we can identify A' with the submodule µA' of A. Similarly, if e : A-»A"
is surjective, we can identify A" with A/kere.

Definition. Let cp : A--+B and V': B--+C be homomorphisms of A-
modules. The sequence A-°+B w+ C is called exact (at B) if ker p = im (p.
If a sequence is exact at A1..... A,,, then the
sequence is simply called exact.

As examples we mention
(a) O--+A 1+B is exact (at A) if and only if cp is injective.
(b) A"- B--+0 is exact (at B) if and only if (p is surjective.
(c) The sequence 0--+A'--'+A--'+A"--+O is exact (at A'. A. A") if and

only if p induces an isomorphism A'-+pA' and e induces an isomorphism
A/kere = A/pA'=+A". Essentially A' is then a submodule of A and A" the
corresponding quotient module. Such an exact sequence is called short
exact, and often written

The proofs of these assertions are left to the reader. Let A, B, C, D
be A-modules and let a, I, y, 6 be A-module homomorphisms. We say
that the diagram

A °`B

I Y I fi

C a-+D

is commutative if Pa =by: A-D. This notion generalizes in an obvious
way to more complicated diagrams. Among the many propositions and
lemmas about diagrams we shall need the following:

Lemma 1.1. Let A'>--+A-»A" and B'>-+B-»B" be two short exact
sequences. Suppose that in the commutative diagram

A'-"* A E A"
1a' I a

1.-fB E w B"
any two of the three homomorphisms a', a, a" are isomorphisms. Then the
third is an isomorphism. too.

Proof. We only prove one of the possible three cases, leaving the
other two as exercises. Suppose a', a" are isomorphisms; we have to
show that a is an isomorphism.

First we show that kera=O. Let aekera, then O=e'aa=a"ca.
Since a" is an isomorphism, it follows that sa = 0. Hence there exists
a' a A' with pa' = a by the exactness of the upper sequence. Then
0 = aµa' = p'a'a'. Since p'a' is injective, it follows that a' =O. Hence
a=pa'=0.
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Secondly, we show that a is surjective. Let b e B; we have to show
that b = a a for some a e A. Since a" is an isomorphism, there exists
a" a A" with a" a" = e' b. Since a is surjective, there exists a e A such
that 6i=a". We obtain Hence
by the exactness of the lower sequence there exists V e B' with µ' b' = b - au.
Since a' is isomorphic there exists a' a A' such that a' a' = b'. Now

a(pa'+a)=apa'+aa=p'a'a'+aa=p'b'+aa=b.
So setting a = p a' + a, we have a a = b. 0

Notice that Lemma 1.1 does not imply that, given exact sequences
A'>---+A-»A", B'>-+B-»B", with A'=B', A"=B", then A=B. It is
crucial to the proof of Lemma 1.1 that there is a map A-+B compatible
with the isomorphisms A' = B', A" = B", in the sense that (1.2) commutes.

Exercises:

1.1. Complete the proof of Lemma 1.1. Show moreover that, in (1.2), a is surjective
(injective) if a', a" are surjective (injective).

1.2. (Five Lemma) Show that, given a commutative diagram

,A5--
1 V.

1.2
1 m3 1 ma I

',

with exact rows, in which cp,, V2, q4, V5 are isomorphisms, then 93 is also an
isomorphism. Can we weaken the hypotheses in a reasonable way?

1.3. Give examples of short exact sequences of abelian groups

0-+A'-+A--+A"-+O , 0-+B' B-+B"-+O
such that

(i) A'= B', AB, A" B";
(ii) A'. B', AB, A"= B";
(iii) A'$B', A=B, A"=B".

1A. Show that the abelian group A admits the structure of a Z. -module if and
only if mA=O.

1.5. Define the group algebra KG for K an arbitrary commutative ring. What are
the KG-modules?

1.6. Let V be a non-trivial (left) KG-module. Show how to give V the structure of
a non-trivial right KG-module. (Use the group inverse.)

1.7. Let O- A'-"+A-A'-'O be a short exact sequence of abelian groups. We say
that the sequence is pure if, whenever p(a') = ma, a' e A', a e A, m a positive
integer, there exists b' a A' with a' = mb'. Show that the following statements
are equivalent:

(i) the sequence is pure;
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(ii) the induced sequence (reduction modm) O--.A'm "-)Am----- A"-+0 is
exact for all m; (Am = A/mA, etc.)

(iii) given a" a A" with ma" = 0, there exists a e A with e(a) = a". ma = 0
(for all m).

2. The Group of Homomorphisms

Let HomA(A, B) denote the set of all A-module homomorphisms from
A to B. Clearly, this set has the structure of an abelian group; if cp : A-+B
and W : A-+ B are A-module homomorphisms, then T + W : A-+ B is
defined as (co + ip) a = T a + i' a for all a e A. The reader should check
that co + ip is a A-module homomorphism. Note, however, that HomA (A, B)
is not, in general, a A-module in any obvious way (see Exercise 2.3).

Let /3 : B1-*B2 be a homomorphism of A-modules. We can assign
to a homomorphism qp : A-*B1. the homomorphism &o: A-+B2, thus
defining a map l* = HomA(A, fl): HomA(A, B1)-+ HomA(A. B2). It is left
to the reader to verify that l* is actually a homomorphism of abelian
groups. Evidently the following two rules hold:

(i) If fl: B1-+B2 and /3' : B2--'B3, then

(/3'33)* =/3'13 : HomA(A, B1 )-+HomA(A, B3)

(ii) If fl: B1-.B1 is the identity, then f * : HomA(A. Bl)-+HomA(A. B1)
is the identity, also.

In short, the symbol HomA(A, -) assigns to every A-module B an
abelian group HomA(A, B), and to every homomorphism of A-modules
fl: B1-+B2 a homomorphism of abelian groups

/3* = HomA(A. fl): HomA(A. B2)

such that the above two rules hold. In Chapter II, we shall see that this
means that HomA(A, -) is a (covariant) functor from the category of
A-modules to the category of abelian groups.

On the other hand, if a : A2-> Al is a A-module homomorphism,
then we assign to every homomorphism (p: A,---+B the homomorphism
(p a : A2-4 B, thus defining a map

a* = HomA(a. B) : HomA(Al, B)-+HomA(A2, B).

Again we leave it to the reader to verify that a* is actually a homomorphism
of abelian groups. Evidently, we have:

(i)' If a : A2-+ A1 and a': A3-+A2, then (a a')* = a'* a* (inverse order!).
(ii)' If x : A1-+A1 is the identity, then a* is the identity.
HomA(-, B) is an instance of a contravariant functor (from A-modules

to abelian groups).
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Theorem 2.1. Let B'.'*B be an exact sequence of A-modules.
For every A-module A the induced sequence

B')-"'+Hom,,(A. B)-`-*HomA(A. B")

is exact.

Proof. First we show that p* is injective.
Assume that µ p in the diagram

A

I -P
B', µ ,B a ,B"

is the zero map. Since p : B'-.B is injective this implies that cp : A--+B'
is the zero map, so µ* is injective.

Next we show that kere* ) imp*. Consider the above diagram.
A map in imp* is of the form p (p. Plainly e µ cp is the zero map, since e p
already is. Finally we show that imp* Dkere*. Consider the diagram

A

I Ip

B' lu -BBB".

We have to show that if e W is the zero map, then W is of the form µ cp
for some tp : A -+B'. But, if e W = 0 the image of ip is contained in kere = imp.
Since µ is injective, ip gives rise to a (unique) map qp : A--*B' such that
µ(p=W- 0

We remark that even in case a is surjective the induced map e* is not
surjective in general (see Exercise 2.1).

Theorem 2.2. Let E). A" be an exact sequence of A-modules.
For every A-module B the induced sequence

O- Hom,, (A". B)- HomA(A. B) µ i Homn (A'. B)
is exact.

The proof is left to the reader. El

Notice that even in case p is injective p* is not surjective in general
(see Exercise 2.2).

We finally remark that Theorem 2.1 provides a universal characteri-
zation of kere (in the sense of Sections 11.5 and 11.6): To every homo-
morphism c p : A- B with a*((p) = e p : the zero map there exists
a unique homomorphism cp' : A-),B' with µ*(cp) = µ tp' = cp. Similarly
Theorem 2.2 provides a universal characterization of cokerp.



18

Exercises:

I. Modules

2.1. Show that in the setting of Theorem 2.1 s* = Hom(A, s) is not, in general,
surjective even ifs is. (Take A=Z, A=Z,,, the integers modn, and the short
exact sequence Z44--»Z, where y is multiplication by n.)

2.2. Prove Theorem 2.2. Show that p* = HomA(p, B) is not, in general, surjective
even if p is injective. (Take A = Z, B = the integers mod n, and the short
exact sequence Z_"4Z-»Z,,, where p is multiplication by n.)

2.3. Suppose A commutative, and A and B two A-modules. Define for a A-module
homomorphism (p: A-.B. (A(p) (a) = (p(Aa), a E A. Show that this definition
makes HomA(A, B) into a A-module. Also show that this definition does not
work in case A is not commutative.

2.4. Let A be a A-module and B be an abelian group. Show how to give HomA (A, B)
the structure of a right A-module.

2.5. Interpret and prove the assertions 0* = 0. 0* = 0.
2.6. Compute Hom(Z, Z.), Hom(Zm, Z.), Hom(Zm, Z), Hom(Q, Z), Hom(Q, Q.

[Here "Hom" means "Hom$' and Q is the group of rationals.]
2.7. Show (see Exercise 1.7) that the sequence 0-.A'-+A-.A"-.0 is pure if and

only if Hom(Zm, -) preserves exactness, for all m > 0.
2.8. If A is a left A-module and a right F-module such that the A-action commutes

with the F-action, then A is called a left A-right F-bimodule. Show that if A
is a left A-right E-bimodule and B is a left A-right F-bimodule then HomA(A, B)
is naturally a left I-right f'-bimodule.

3. Sums and Products

Let A and B be A-modules. We construct the direct sum A @ B of A and B
as the set of pairs (a, b) with a e A and b e B together with componentwise
addition (a, b) + (a', b') = (a + a', b + b') and componentwise A-operation
A(a, b) = (Aa, 2b). Clearly, we have A-module monomorphisms'A: A-+AQ+ B
defined by LA(a) = (a, 0) and 'B: B-* AQ+ B defined by tB(b) = (0, b).

Proposition 3.1. Let M be a A-module. WA : A--+M and WB: B--+M
A-module homomorphisms. Then there exists a unique map

W = <W A, y,,,>: A ®B- M

such that W to=WA and W 1B=WB.

We can express Proposition 3.1 in the following way: For any A-
module M and any maps WA' WB the diagram
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can be completed by a unique homomorphism p: A(I B-.M such
that the two triangles are commutative.

In situations like this where the existence of a map is claimed which
makes a diagram commutative, we shall use a dotted arrow to denote
this map. Thus the above assertion will be summarized by the diagram

WA

4'B
B

and the remark that W is uniquely determined.

Proof. Define w(a, b) = WA(a) + WB(b). This obviously is the only
homomorphism W : AQ+ B-*M satisfying W to =WA and W 1B =WB 0

We can easily expand this construction to more than two modules:
Let {Aj}, j e J be a family of A-modules indexed by J. We define the
direct sum @ Aj of the modules Aj as follows: An element of @ Aj

jE jE
is a family (aj)je with aj a Aj and aj +0 for only a finite number of sub-
scripts. The addition is defined by (aj)JE + (b j) jE = (aj + bj)jE and the

=j. For each k e J we can define injectionsA-operation by)(a3)j =(A a%,
Ik : Ak- O Aj by tk(ak) = (bj)jE with bj = 0 for j + k and bk = ak, ak a Ak.

jE
Proposition 3.2. Let M be a A-module and let {WJ: A.->M}. jeJ.

be a family of A-module homomorphisms. Then there exists a unique homo-
morphism W = (Wj) : Q Aj--+ M, such that W tj = Wj for all j e J.

jE
Proof. We define W Wj(aj). This is possible because aj = 0

jE
except for a finite number of indices. The map W so defined is obviously
the only homomorphism W : Aj-* M such that W tj = Wj for all j e J. 0

jE
We remark the important fact that the property stated in Pro-

position 3.2 characterizes the direct sum together with the injections up to
a unique isomorphism. To see this, let the A-module S together with
injections ij : Aj-*S also have the property 9 claimed for Q Aj; ij11

jE /

in Proposition 3.2. Write (temporarily) T for 0 Aj. First choose M = T
jE

and wj = ij, j e J. Since (S, z) has property 1, there exists a unique
homomorphism W: S-+ T such that the diagram

S-. ....i T
W
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is commutative for every j e J. Choosing M = S and wj' = i; and invoking
property 9 for (T: 'j) we obtain a map w': T->S such that the diagram

is commutative for every j e J. In order to show that w w' is the identity,
we remark that the diagram

A.

T
T::::: :::::;>T

vw'

is commutative for both WW' and the identity. By the uniqueness part of
property 9 we conclude that WW'= 'T. Similarly we prove that W' W =1s.
Thus both w and yi are isomorphisms.

A property like the one stated in Proposition 3.2 for the direct sum
of modules is called universal. We shall treat these universal properties
in detail in Chapter II. Here we are content to remark that the construction
of the direct sum yields an existence proof for a module having property 9.

Next we define the direct product fl AJ of a family of modules {AJ}, j e J.
jEJ

An element of fl AJ is a family (aj)JEJ of elements aj e A. No restrictions
jEJ

are placed on the elements aJ: in particular, the elements aJ may be non-
zero for an infinite number of subscripts. The addition is defined by
(a)JE,+(bj)JEJ=(aa+bj)JE, and the A-operation by A(aj)JEJ=(.Laj)JE,.
For each k e J we can define projections nk : fl AJ->Ak by nk(aJ)JEJ = ak.

JEJ

For a finite family of modules AJ, j =1, ..., n, it is readily seen that the
n h

modules H AJ and 0 AJ are identical; however in considering the
j=1 J=1

direct sum we put emphasis on the injections iJ and in considering the
direct product we put emphasis on the projections 7rj.

Proposition 3.3. Let M be a A-module and let {T,: M-* AJ}, j e J.
be a family of A-module homomorphisms. Then there exists a unique homo-
morphism cp = {gyp,} : M-> fl AJ such that for every j e J the diagram

jEJ

jEJ

is commutative, i.e. irr cp = Tj. 0
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The proof is left to the reader; also the reader will see that the universal
property of the direct product r[ Aj and the projections irj characterizes

jEJ
it up to a unique isomorphism. Finally we prove

Proposition 3.4. Let B be a A-module and {Aj}, j e J be a family of A-
modules. Then there is an isomorphism

rl : HomA (O Aj, B) =. fl HomA(Aj, B).
jej l/ jEJ

Proof. The proof reveals that this theorem is merely a restatement of
the universal property of the direct sum. For W : (@ AA-.B, define

jEJ
rl(W) _ (W ij : Aj- B)jE J. Conversely a family {Wj : Aj- *B}, j c- J, gives rise
to a unique map W : Q Aj--. B. The projections 7tj : F1 HomA(Aj, B)

jEJ jEJ
-. Hom i(Aj, B) are given by 7[jtl = Hom,1(ij, B). 0

Analogously one proves:

Proposition 3.5. Let A be a A-module and {Bj}, j E J be a family of
A-modules. Then there is an isomorphism

HomA (A, fl Bj\i =.J HomA(A, Bj).
jej l/ jEJ

The proof is left to the reader. 0

Exercises:

3.1. Show that there is a canonical map v :

M n

3.2. Show how a map from Q Ai to Bj may be represented by a matrix

j

0 = (q' ),

where tpij: Ai-.Bj. Show that, if we write the composite of 9: A---).B and
W : as (pW (not W1p), then the composite of

and

0 = ((pi) Ai-. U B;
m

i=1 j=i

n q

T=(Wjkl:EE) Bj-'QCk
j=1 k=1

is the matrix product 0 W.
3.3. Show that if, in (1.2), a' is an isomorphism, then the sequence

0-.AAA"QB B"-+0

is exact. State and prove the converse.
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3A. Carry out a similar exercise to the one above, assuming a" is an isomorphism.
3.5. Use the universal property of the direct sum to show that

(A1(BA2)®A3 = A, O(A2(DA3)

3.6. Show that Zm9Z.=Zm if and only if m and n are mutually prime.
3.7. Show that the following statements about the exact sequence

0-+A' AE4A"-+0

of A-modules are equivalent:
(i) there exists p : A"-+A with a" ,u = 1 on A";

(ii) there exists e : A -+A' with ea' =1 on A';
(iii) 0-'HomA(B, A')-"+HomA(B, A)-' HomA(B, is exact for all B;
(iv) 0-.HomA(A", C)-'-*+ HomA(A, C) a `*Hom4(A', C)--'O is exact for all C;
(v) there exists p : A"-+A such that <a', p> : A' @ A'=+A.

3.8. Show that if 0-+A'-4A4A"-+0 is pure and if A" is a direct sum of cyclic
groups then statement (i) above holds (see Exercise 2.7).

4. Free and Projective Modules

Let A be a A-module and let S be a subset of A. We consider the set AO
of all elements a e A of the form a = Y AS s where AS e A and As + 0 for

SES

only a finite number of elements s e S. It is trivially seen that Ao is a
submodule of A; hence it is the smallest submodule of A containing S.

If for the set S the submodule AO is the whole of A, we shall say that S
is a set of generators of A. If A admits a finite set of generators it is said
to be finitely generated. A set S of generators of A is called a basis of A
if every element a e A may be expressed uniquely in the form a = Y Ass

SES

with AS e A and AS + 0 for only a finite number of elements s e S. It is
readily seen that a set S of generators is a basis if and only if it is linearly
independent, that is, if Y Ass = 0 implies As = 0 for all s e S. The reader

sES
should note that not every module possesses a basis.

Definition. If S is a basis of the A-module P, then P is called free on the
set S. We shall call P free if it is free on some subset.

Proposition 4.1. Suppose the A-module P is free on the set S. Then
P - (@ As where As = A as a left module for s e S. Conversely, As

SES SES

is free on the set {lAs,seS).

Proof. We define (p: P-+ Q As as follows: Every element a e P is
SES

is expressed uniquely in the form a = Y A., s; set (p(a) = (2s)seS. Conversely,
SES
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for s e S define Vas : A,->P by v's(As) = A., s. By the universal property of the
direct sum the family f DVS}, s e S, gives rise to a map ip = <ws> : Q AS-*P.

sES

It is readily seen that (p and W are inverse to each other. The remaining
assertion immediately follows from the construction of the direct sum. 0

The next proposition yields a universal characterization of the free
module on the set S.

Proposition 4.2. Let P he free on the set S. To every A-module M and
to every function f from S into the set underlying M, there is a unique
A-module homomorphism cp : P---*M extending f.

Proof. Let f (s) = ms. Set cp(a) = (p
(Y

Ass) = Y As ms. This obviously
scS // sES

is the only homomorphism having the required property. 0

Proposition 4.3. Every A-module A is a quotient of a free module P.

Proof. Let S be a set of generators of A. Let P = Q As with As = A
scS

and define (p: P--+A to be the extension of the function f given by
f s. Trivially (p is surjective. 0

Proposition 4.4. Let P be a free A-module. To every surjective homo-
morphism e : B-o C of A-modules and to every homomorphism y : P--), C
there exists a homomorphism fl: P-->B such that efi = T.

Proof. Let P be free on S. Since c is surjective we can find elements
bs a B, s e S with e (hs) = y (s), s e S. Define /3 as the extension of the func-
tion f : S--*B given by f (s) = b, s e S. By the uniqueness part of Pro-
position 4.2 we conclude that e/3 = T. 0

To emphasize the importance of the property proved in Proposition 4.4
we make the following remark: Let C be a short exact sequence
of A-modules. If P is a free A-module Proposition 4.4 asserts that every
homomorphism y: P-* C is induced by a homomorphism 13: P--B.
Hence using Theorem 2.1 we can conclude that the induced sequence

O--> HomA (P, A) N.. HomA(P, B) `' HomA(P, C)-+O (4.1)

is exact, i.e. that e* is surjective. Conversely, it is readily seen that exactness
of (4.1) for all short exact sequences AFB--»C implies for the module
P the property asserted in Proposition 4.4 for P a free module. Therefore
there is considerable interest in the class of modules having this property.
These are by definition the projective modules:

Definition. A A-module P is projective if to every surjective homo-
morphism e : B-w. C of A-modules and to every homomorphism y : P- C
there exists a homomorphism /3: with efi=y. Equivalently, to any
homomorphisms e, y with a surjective in the diagram below there exists
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f such that the triangle

is commutative.
As mentioned above, every free module is projective. We shall give

some more examples of projective modules at the end of this section.

Proposition 4.5. A direct sum Q Pi is projective if and only if each Pi is.
iE(

Proof. We prove the proposition only for A = PQ Q. The proof in the
general case is analogous. First assume P and Q projective. Let E : B--. C
be surjective and y : P Q+ Q-+ C a homomorphism. Define yp =yip : P-+C
and yQ = y iQ : Q-iC. Since P, Q are projective there exist fip, PQ such that
e fop = yp, ElQ = yQ. By the universal property of the direct sum there
exists f : P pQ-*B such that fit,, = fip and f iQ = fQ. It follows that
(E f) ip = s fip = yp =yip and (fl) iQ = E fiQ = yQ = y iQ. By the uniqueness
part of the universal property we conclude that e fl = y. Of course, this
could be proved using the explicit construction of PQQ, but we prefer
to emphasize the universal property of the direct sum.

Next assume that PQQ is projective. Let E : B--HC be a surjection
and yp : P--+C a homomorphism. Choose yQ : Q--3 C to be the zero map.
We obtain y : P Q+ Q-3 C such that yip = yp and y iQ = yQ = 0. Since P Q+ Q
is projective there exists fi : PE )Q--+B such that of = y. Finally we obtain
e(fi ip) =yip = y p. Hence Pip: P--+B is the desired homomorphism. Thus P
is projective; similarly Q is projective. 0

In Theorem 4.7 below we shall give a number of different characteriza-
tions of projective modules. As a preparation we define:

Definition. A short exact sequence A> -iB `» C of A-modules splits if
there exists a left inverse to c, i.e. a homomorphism a : C--+B such that
ae =1c. The map a is then called a splitting.

We remark that the sequence A!AQ+CiC is exact, and splits
by the homomorphism tic. The following lemma shows that all split short
exact sequences of modules are of this form (see Exercise 3.7).

Lemma 4.6. Suppose that a : C-+B is a splitting for the short exact
sequence `»C. Then B is isomorphic to the direct sum AQ+ C.
Under this isomorphism,,u corresponds to A and a to ic.

In this case we shall say that C (like A) is a direct summand in B.
Proof. By the universal property of the direct sum we define a map W

as follows A
µ

'A +n C......................

a
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Then the diagram
A, nc..C

A- ° )B C

is commutative; the left hand square trivially is; the right hand square
is by sp(a,c)=e(,ua+Qc)=O+sae=c, and nc(a,c)=c, ac-A, cc-C.
By Lemma 1.1 ip is an isomorphism. 0

Theorem 4.7. Fora A-module P the following statements are equivalent:
(1) P is projective;
(2) for every short exact sequence A-'-'-).B-»C of A-modules the

induced sequence

0-->HomA(P, A)-!! HomA(P, B) `'+HomA(P, C)-*O
is exact;

(3) if s : B--HP is surjective, then there exists a homomorphism fl: P---B
such that E f3 =1P;

(4) P is a direct summand in every module of which it is a quotient;
(5) P is a direct summand in a free module.

Proof. (1) By Theorem 2.1 we only have to show exactness at
Homn (P, C), i.e. that E* is surjective. But since s : B--> C is surjective this
is asserted by the fact that P is projective.

(2)x(3). Choose as exact sequence kerE>-->B--f+).P. The induced
sequence

0-+ HomA(P, ker E) -+ H omA (P, B) f4 . HomA (P, P)--+O

is exact. Therefore there exists Q : P-+ B such that c f3 = li,.
(3) => (4). Let P = B/A, then we have an exact sequence A B-+ P.

By (3) there exists fl: P-> B such that E f3 = 1,,. By Lemma 4.6 we conclude
that P is a direct summand in B.

(4)x(5). By Proposition 4.3 P is a quotient of a free module P'.
By (4) P is a direct summand in P'.

(5) = (1). By (5) P' = P Q+ Q, where P' is a free module. Since free
modules are projective, it follows from Proposition 4.5 that P is
projective. 0

Next we list some examples:
(a) If A = K, a field, then every K-module is free, hence projective.
(b) By Exercise 2.2 and (2) of Theorem 4.7, Z,, is not projective as a

module over the integers. Hence a finitely generated abelian group is
projective if and only if it is free.

(c) Let A = Z6, the ring of integers modulo 6. Since 716 =713 Q®712
as a 716-module, Proposition 4.5 shows that Z2 as well as 713 are projective
716-modules. However, they are plainly not free 716-modules.
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Exercises:

4.1. Let V be a vector space of countable dimension over the field K. Let
A = HomK(V, V)_ Show that, as K-vector spaces V. is isomorphic to V@ V.
We therefore obtain

A = HomK(V, V) = HomK(Ve V, V) = HomK(V, V)Q HomK(i , V) = A p+ A .

Conclude that, in general, the free module on a set of n elements may be iso-
morphic to the free module on a set of in elements, with n 4 m.

4.2. Given two projective A-modules P, Q, show that there exists a free A-module R
such that P E[) R = Q E[) R is free. (Hint: Let PQ P' and Q E[) Q' be free. Define
R=P"O(QOQ')O(PE[ P')® =Q'®(POP) 0(Q9Q')e

4.3. Show that Q is not a free Z-module.
4.4. Need a direct product of projective modules be projective?
4.5. Show that if O-.M-+Q-.A->O are exact with P,Q

projective, then P Q M = Q Q N. (Hint: Use Exercise 3.4.)
4.6. We say that A has a finite presentation if there is a short exact sequence

O-.N->P-+A->O with P finitely-generated projective and N finitely-
generated. Show that

(i) if A has a finite presentation. then. for every exact sequence

with S finitely-generated, R is also finitely-generated:
(ii) if A has a finite presentation, it has a finite presentation with P free;

(iii) if A has a finite presentation every presentation
with P projective, N finitely-generated is finite, and every presentation
O. with P finitely-generated projective is finite:

(iv) if A has a presentation 0->N,-API-+A-'O with P, finitely-generated
projective, and a presentation with P2 projective, N2
finitely-generated, then A has a finite presentation (indeed, both the given
presentations are finite).

4.7. Let A = K(x,, ..., x,,, ...) be the polynomial ring in countably many in-
determinates x ..., x,,, ... over the field K. Show that the ideal I generated
by x ..., x,,, ... is not finitely generated. Hence we may have a presentation
O-+N-+P-+A-+O with P finitely generated projective and N not finitely-
generated.

5. Projective Modules over a Principal Ideal Domain

Here we shall prove a rather difficult theorem about principal ideal
domains. We remark that a very simple proof is available if one is content
to consider only finitely generated A-modules; then the theorem forms
a part of the fundamental classical theorem on the structure of finitely
generated modules over principal ideal domains.

Recall that a principal ideal domain A is a commutative ring with-
out divisors of zero in which every ideal is principal, i.e. generated by
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one element. It follows that as a module every ideal in A is isomorphic
to A itself.

Theorem 5.1. Over a principal ideal domain A every submodule of
a free A-module is free.

Since projective modules are direct summands in free modules,
this implies

Corollary 5.2. Over a principal ideal domain, every projective module
is free.

Corollary 5.3. Over a principal ideal domain, every submodule of a
projective module is projective.

Proof of Theorem 5.1. Let P = Q Aj. where Aj = A, be a free module
jeJ

and let R be a submodule of P. We shall show that R has a basis. Assume J
well-ordered and define for every j e J modules

P(j)=QAi,i<j P(j) _ Ai.
i5j

Then every element a e P(j) n R may be written uniquely in the form (h, ) )
where b e P(j) and A e A. We define a homomorphism fj : P(j)nR-4A
by fj(a) = A. Since the kernel of fj is P(j) n R we obtain an exact sequence

P(j)nR-.Pi fj .

Clearly im. fj is an ideal in A. Since A is a principal ideal domain, this ideal
is generated by one element, say 2,. For A,j $ 0 we choose cj e P(j)nR,
such that fj(c j) = Aj. Let Y C J consist of those j such that Aj $ 0. We
claim that the family {cj},jeJ', is a basis of R.

n

First we show that {c j}, j e J', is linearly independent. Let Y_ lik
cjk

= 0
k=1

and let j1 <j2 < . < jn. Then applying the homomorphism fj,,, we get
µn f(c) = pnAj = 0. Since Aj $ 0 this implies y = 0. The assertion then
follows by induction on n.

Finally, we show that {cj}, j e J', generates R. Assume the contrary.
Then there is a least i e J such that there exists a e P(i)nR which cannot
be written as a linear combination of {cj}, j e Y. If i J', then a e P(i) n R;
but then there exists k < i such that a e P(k) n R, contradicting the mini-
mality of i. Thus i e Y.

Consider fi(a) = p li and form b = a - p ci. Clearly

fi(b)=fi(a)-fi(µci)=0.
Hence b e P(i)nR, and b cannot be written as a linear combination of
{c j},jeJ'. But there exists k < i with b e P(k) n R, thus contradicting the
minimality of i. Hence {cj}, j e J', is a basis of E. 0
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Exercises:

5.1. Prove the following proposition, due to Kaplansky: Let A be a ring in which
every left ideal is projective. Then every submodule of a free A-module is
isomorphic to a direct sum of modules each of which is isomorphic to a left
ideal in A. Hence every submodule of a projective module is projective.
(Hint: Proceed as in the proof of Theorem 5.1.)

5.2. Prove that a submodule of a finitely-generated module over a principal ideal
domain is finitely-generated. State the fundamental theorem for finitely-
generated modules over principal ideal domains.

5.3. Let A, B, C be finitely generated modules over the principal ideal domain A.
Show that if A Q C = B (D C, then A f B. Give counterexamples if one drops
(a) the condition that the modules be finitely generated, (b) the condition that :1
is a principal ideal domain.

5.4. Show that submodules of projective modules need not be projective. (A = Zp2,
where p is a prime. Zp>--*Zp2-» Z, is short exact but does not split!)

5.5. Develop a theory of linear transformations T : V-+V of finite-dimensional
vectorspaces over a field K by utilizing the fundamental theorem in the
integral domain K[T].

6. Dualization, Injective Modules

We introduce here the process of dualization only as a heuristic
procedure. However, we shall see in Chapter II that it is a special case of
a more general and canonical procedure. Suppose given a statement
involving only modules and homomorphisms of modules; for example,
the characterization of the direct sum of modules by its universal property
given in Proposition 3.2:

"The system consisting of the direct sum S of modules {AA}, j n J,
together with the homomorphisms ij : Aj--S, is characterized by
the following property. To any module M and homomorphisms
{iVj: Aj-+M}, jnJ, there is a unique homomorphism W : S--+M such that
for every j c- J the diagram

S ............ ............. , M
4'

is commutative."
The dual of such a statement is obtained by "reversing the arrows" ;

more precisely, whenever in the original statement a homomorphism
occurs we replace it by a homomorphism in the opposite direction.
In our example the dual statement reads therefore as follows:

"Given a module T and homomorphisms {nj : T->A1}. j c- J. To
any module M and homomorphisms {Vj : M->Aj}, j c- J, there exists a
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unique homomorphism (p : M-+T such that for every j e J the diagram

is commutative."
It is readily seen that this is the universal property characterizing

the direct product of modules {A,}, j e J, the itj being the canonical
projections (Proposition 3.3). We therefore say that the notion of the
direct product is dual to the notion of the direct sum.

Clearly to dualize a given statement we have to express it entirely
in terms of modules and homomorphisms (not elements etc.). This can be
done for a great many - though not all - of the basic notions introduced
in Sections 1, ..., 5. In the remainder of this section we shall deal with a
very important special case in greater detail: We define the class of
injective modules by a property dual to the defining property of projective
modules. Since in our original definition of projective modules the term
surjective" occurs, we first have to find a characterization of surjective
homomorphisms in terms of modules and homomorphisms only. This
is achieved by the following definition and Proposition 6.1.

Definition. A module homomorphism e: B--+C is epiniorphic or an
epimorphism if at E = a2 E implies at = a2 for any two homomorphisms
ai:C-*M, i=1,2.

Proposition 6.1. E: B--+C is epimorphic if and only if it is surjective.

Proof. Let B--+ C M. If E is surjective then clearly al E b = a2 Eb
for all b e B, implies at c = a2 c for all c e C. Conversely, suppose E epi-

morphic and consider B-4 C o CIE B, where it is the canonical projec-
tion and 0 is the zero map. Since 0 E = 0 = x e, we obtain 0 = it and there-
fore C/E B= 0 or C= c B. 0

Dualizing the above definition in the obvious way we have
Definition. The module homomorphism p : A-* B is monomorphic

or a monomorphism if Pat =µa2 implies al = a2 for any two homo-
morphisms ai : M-->A. i = 1.2.

Of course one expects that "monomorphic" means the same thing
as "injective". For modules this is indeed the case; thus we have

Proposition 6.2. p : A-> B is monomorphic if and only if it is injective.

Proof. If p is injective, then Pat x =P a2 x for all x e M implies
at x = x2 x for all x e M. Conversely, suppose p monomorphic and
a,, a2 e A such that p a, =µa2. Choose M = A and ai : A-> A such that
ai(l) = ai, i =1, 2. Then clearly p a, = l 2 ; hence a, = a2 and a, = a2 . 0



30 1. Modules

It should be remarked here that from the categorical point of view
(Chapter II) definitions should whenever possible be worded in terms of
maps only. The basic notions therefore are "epimorphism" and "mono-
morphism", both of which are defined entirely in terms of maps. It is
a fortunate coincidence that, for modules, "monomorphic" and "injective"
on the one hand and "epimorphic" and "surjective" on the other hand
mean the same thing. We shall see in Chapter II that in other categories
monomorphisms do not have to be injective and epimorphisms do not
have to be surjective. Notice that, to test whether a homomorphism is
injective (surjective) one simply has to look at the homomorphism
itself, whereas to test whether a homomorphism is monomorphic
(epimorphic) one has, in principle, to consult all A-module homo-
morphisms.

We are now prepared to dualize the notion of a projective module.
Definition. A A-module I is called injective if for every homomorphism

a : A-*I and every monomorphism z: A,+B there exists a homo-
morphism fl: B-* I such that f3p =a, i.e. such that the diagram

1'
is commutative. Since p may be regarded as an embedding, it is natural
simply to say that I is injective if homomorphisms into I may be extended
(from a given domain A to a larger domain B).

Clearly, one will expect that propositions about projective modules
will dualize to propositions about injective modules. The reader must
be warned, however, that even if the statement of a proposition is dualiz-
able, the proof may not be. Thus it may happen that the dual of a true
proposition turns out to be false. One must therefore give a proof of the
dual proposition. One of the main objectives of Section 8 will, in fact,
be to formulate and prove the dual of Theorem 4.7 (see Theorem 8.4).
However, we shall need some preparation; first we state the dual of
Proposition 4.5.

Proposition 6.3. A direct product of modules F1 I, is injective if and
only if each 1, is injective. 0 jei

The reader may check that in this particular instance the proof of
Proposition 4.5 is dualizable. We therefore leave the details to the reader.

Exercises:

6.1. (a) Show that the zero module 0 is characterized by the property: To any
module M there exists precisely one homomorphism (p:0-'M.
(b) Show that the dual property also characterizes the zero module.
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6.2. Give a universal characterization of kernel and cokernel, and show that kernel
and cokernel are dual notions.

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those
of Exercises 3.4 and 3.5.

6.4. Let rp : A--+B. Characterize imp, ip -1 Bo for Bo C B, without using elements.
What are their duals? Hence (or otherwise) characterize exactness.

6.$. What is the dual of the canonical homomorphism a : Q Ai-. H Ai? What is
iEJ iEJ

the dual of the assertion that a is an injection? Is the dual true?

7. injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal
ideal domain is free. It is reasonable to expect that the injective modules
over a principal ideal domain also have a simple structure. We first
define:

Definition. Let A be an integral domain. A A-module D is divisible
if for every d e D and every 0 $ A E A there exists c e D such that Ac = d.
Note that we do not require the uniqueness of c.

We list a few examples:
(a) As 71-module the additive group of the rationals Q is divisible.

In this example c is uniquely determined.
(b) As 71-module Q/Z is divisible. Here c is not uniquely determined.
(c) The additive group of the reals IR, as well as IR/Z, are divisible.
(d) A non-trivial finitely generated abelian group A is never divisible.

Indeed. A is a direct sum of cyclic groups, which clearly are not divisible.

Theorem 7.1. Let A be a principal ideal domain. A A-module is in-
jective if and only if it is divisible.

Proof First suppose D is injective. Let d e D and 0 $ A E A. We
have to show that there exists c e D such that Ac = d. Define a : A-->D
by a(1) = d and p : A--+A by µ(1) = A. Since A is an integral domain,

i; A = 0 if and only if i; = 0. Hence p is monomorphic. Since D is
injective. there exists fl: A-+D such that /iµ = a. We obtain

d=a(1)=/3µ(l)=/3(l)=2/3(11.

Hence by setting c = /3(1) we obtain d = Ac. (Notice that so far no use is
made of the fact that A is a principal ideal domain.)

Now suppose D is divisible. Consider the following diagram

A, ' )B
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We have to show the existence of fl: B--+D such that /3µ = a. To
simplify the notation we consider p as an embedding of a submodule A
into B. We look at pairs (A,, a) with A S A; C B, aj: Aj-*D such that
aJIA = a. Let 0 be the set of all such pairs. Clearly 0 is nonempty, since
(A, a) is in d.. The relation (A;, a)5 (Ak, ak) if A; c Ak and aklaj = ai
defines an ordering in P. With this ordering 0 is inductive. Indeed,
every chain (A;, 05), j e J has an upper bound, namely (U A;, U a)
where UAW is simply the union, and Ua is defined as follows: If a e UA;,
then a e Ak for some k e J. We define U+a,(a) = ak(a). Plainly U aj is well-
defined and is a homomorphism, and

(A,,a,):! (UA,,Ua)
By Zorn's Lemma there exists a maximal element (A, a) in 0. We shall
show that A = B, thus proving the theorem. Suppose A + B; then there
exists b e B with b 0 A. The set of A e A such that Ab e A is readily seen
to be an ideal ofA. Since A is a principal ideal domain, this ideal is generated
by one element, say A0. If A0 + 0. then we use the fact that D is divisible
to find c e D such that a(A0 b) = A c. If 20 = 0, we choose an arbitrary c.
The homomorphism a may now be extended to the module A generated
by A and b, by setting &(a + A b) = a() + A c. We have to check that this
definition is consistent. If 2b e A, we have &(A b) = Ac. But A = l; A0 for some

E A and therefore A b = l; 20 b. Hence

b) 1 c=Ac.
Since (A, a) < (A, &), this contradicts the maximality of (A, a), so that
A = B as desired. Q

Proposition 7.2. Every quotient of a divisible module is divisible.

Proof. Let e : D--» E be an epimorphism and let D be divisible.
For e e E and 0+ 2 E A there exists d c- D with s(d) = e and d' e D with
Ad'=d. Setting e' = e(d') we have 2 e' = As(d') = e(2 d') = s(d) = e. 0

As a corollary we obtain the dual of Corollary 5.3.

Corollary 7.3. Let A be a principal ideal domain. Every quotient of an
injective A-module is injective. 0

Next we restrict ourselves temporarily to abelian groups and prove
in that special case

Proposition 7.4. Every abelian group may be embedded in a divisible
(hence injective) abelian group.

The reader may compare this Proposition to Proposition 4.3, which
says that every A-module is a quotient of a free, hence projective, A-
module.

Proof. We shall define a monomorphism of the abelian group A
into a direct product of copies of Q/Z. By Proposition 6.3 this will
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suffice. Let 0 + a e A and let (a) denote the subgroup of A generated by a.
Define a : (a)-+Q2/7 as follows: If the order of a e A is infinite choose
0 $ a(a) arbitrary. If the order of a e A is finite, say n, choose 0+a(a)
to have order dividing n. Since Q2/71 is injective, there exists a map

A--+ Q2/7 such that the diagram

(a),---+ A

a

QT

is commutative. By the universal property of the product, the Na define
a unique homomorphism/3: A- H (Q 171)a.Clearly#isamonomorphism

since /3a(a) + 0 if a + 0. Q

aeA
a*O

For abelian groups, the additive group of the integers 71 is projective
and has the property that to any abelian group G + 0 there exists a non-
zero homomorphism p : 7-+G. The group Q2/71 has the dual properties;
it is injective and to any abelian group G + 0 there is a nonzero homo-
morphism y,: G-+Q2/7L. Since a direct sum of copies of 71 is called free,
we shall term a direct product of copies of Q/71 cofree. Note that the two
properties of 7L mentioned above do not characterize 71 entirely. Therefore
"cofree" is not the exact dual of "free", it is dual only in certain respects.
In Section 8 the generalization of this concept to arbitrary rings is
carried through.

Exercises:

7.1. Prove the following proposition: The A module I is injective if and only if
for every left ideal J C A and for every A-module homomorphism a : J--+I the
diagram J--*A

aI

I

may be completed by a homomorphism f : A--+I such that the resulting triangle
is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

7.2. Let F--.A--.O be a short exact sequence of abelian groups, with F
free. By embedding F in a direct sum of copies of Q. show how to embed A
in a divisible group.

7.3. Show that every abelian group admits a unique maximal divisible subgroup.
7.4. Show that if A is a finite abelian group, then Hom7(A, Q/Z) = A. Deduce

that if there is a short exact sequence of abelian groups
with A finite, then there is a short exact sequence

7.5. Show that a torsion-free divisible group D is a Q-vector space. Show that
Hom7(A, D) is then also divisible. Is this true for any divisible group D?

7.6. Show that Q is a direct summand in a direct product of copies of Q/1L.
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8. Cofree Modules

Let A be a right A-module and let G be an abelian group. Regarding A
as an abelian group we can form the abelian group HomA(A, G) of
homomorphisms from A into G. Using the right A-module structure
of A we define in HomA(A, G) a left A-module structure as follows:

(2(p)(a)=cp(a2), aeA, AeA, q,eHomz(A,G).

We leave it to the reader to verify the axioms. Similarly if A is a left
A-module, HomA(A, G) acquires the structure of a right A-module.

Proposition 8.1. Let A be a left A-module and let G be an abelian group.
Regard HomA(A, G) as a left A-module via the right A-module structure
of A. Then there is an isomorphism of abelian groups

rl =17A: HomA(A, Hom7(A, G))=> HomA(A, G).

Moreover, for every A-module homomorphism a : A, B the diagram

HomA(B, HomA(A. G)) " * Hom7(B. G)

I- r (8.1)

HomA(A, HomA(A, G)) " . HomA(A, G)

is commutative. (In this situation we shall say that tj is natural.)

Proof. Let (p : A-+HomA(A. G) be a A-module homomorphism.
We define a homomorphism of abelian groups q' : A--*G by

p'(a) = ((p(a)) (1), ac-A.

Conversely, a homomorphism of abelian groups p: A-+G gives rise to
W : A-+ HomA(A, G) by (p'(a)) (A) = p(A a), aeA, A e A. Clearly p' is a
homomorphism of abelian groups. We have to show that tp' is a homo-
morphism of A-modules. Indeed. let 1' a A, then (p'(C a)) (.1) = W(Al; a);
on the other hand (1(yi (a))) (.1) _ l;) = l; a). Clearly,
and pi- p' are homomorphisms of abelian groups. Finally, we claim
((p')'= cp and (ip')' = W. Indeed, (p')'(a) = (y"'(a)) (1) = VY(a), and

(((p')'(a)) (A) = (p'(Aa) = (9(A a)) (1),
but

((p(Aa)) (1) = (A(cp(a))) (1) = ((p(a)) (12) = ((p(a)) (1) ,

since p is a A-module homomorphism. Thus we define i by setting
rl((p) = cp', and rl is an isomorphism. The naturality of rl, i.e. the com-
mutativity of the diagram (8.1). is evident. Notice that a* on the right
of the diagram (8.1) is a homomorphism of left A-modules. 0
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We now look at A* = Hom1(A, QJ7), which is made into a left
A-module using the right A-module structure of A. We claim that A*
has the property that to any nonzero A-module A there is a nonzero
homomorphism tp : A->A*. Indeed, any nonzero homomorphism of
abelian groups p : A-> Q/7L will correspond by Proposition 8.1 to a
nonzero tp : A_- A*. Also, it will follow from Theorem 8.2 below that
A* is injective (set G = (Q/7L). We therefore define

Definition. A A-module is cofree if it is the direct product of modules
A* = Hom7(A, (Q/7L). Note that this is consistent with the description
of Q/7L as a cofree group, since Homz (7L, Q/7L) = Q/7L.

Theorem 8.2. Let G be a divisible ahelian group. Then A= Hom7(A, G)
is an injective A-module.

Proof. Let p : A-+B be a monomorphism of A-modules, and let
a : homomorphism of A-modules. We have to show that there
exists fl: B-* A such that f3µ = a. To prove this, we remark that c : A-A
corresponds by Proposition 8.1 to a homomorphism of abelian groups
Y: A- G. Since G is injective, there exists fl': B-* G such that P' p = a'.
Under the inverse of rl in Proposition 8.1 we obtain a homomorphism of
A-modules fl: B-*A. Finally by the naturality of rl, the diagram

A) A ) B

A
is commutative. 0

We are now prepared to prove the dual of Proposition 4.3.

Proposition 8.3. Every A-module A is a submodule of a cofree, hence
injective, A-module.

Proof. Let 0 + a e A and let (a) denote the submodule of A generated
by a. By the remarks preceeding Theorem 8.2 there exists a nonzero
A-homomorphism a : (a)-> A*. Since A* is injective there exists Pa : A--* A*
such that the diagram

(a)te->A

A*

is commutative. By the universal property of the direct product the Pa define
a homomorphism fl: A-3 fl (Aa*), where Aa = A*. Clearly f3 is mono-

aEA
a*O

morphic. 0
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We conclude this section by dualizing Theorem 4.7.

Theorem 8.4. For a A-module I the following statements are equivalent:
(1) 1 is injective;
(2) for every exact sequence AFB `»C of A-modules the induced

sequence
0->HomA(C, I) ``-).Hom4(B, I)!``-.Hom4(A, I)--+0

is exact;
(3) if p : 1,--+B is a monomorphism, then there exists f : B-> I such that
= 'B;
(4) I is a direct summand in every module which contains I as sub-

module ;
(5) I is a direct summand in a cofree module.

The proof is dual to the proof of Theorem 4.7. For the step (3) (4)

one needs the dual of Lemma 4.6. The details are left to the reader. 0
Note that, to preserve duality, one should really speak of "direct

factor" in (4) and (5), rather than "direct summand". However, the two
notions coincide!

Exercises:

8.1. Complete the proof of Theorem 8.4.
8.2. Let A be a A-module and let G be a divisible abelian group containing A.

Show that we may embed A in an injective module by the scheme

A = HomA(A, A) S Homz(A, A) S Hom7(A, G).

(You should check that we obtain an embedding of A-modules.)
8.3. For any A-module A, let A* be the right A-module Homz(A, Q/7). Show

that A is naturally embedded in A**. Use this embedding and a free presenta-
tion of A* to embed A in a cofree module.

8.4. Suppose given O-- A-'I,-.J1-.O, with ],,I, injective.
Show that I, QJ2 = I2 Q J, . To what statement is this dual?

8.5. State a property of divisible modules which you suspect may not hold for
arbitrary injective modules.

9. Essential Extensions

In this section we shall show that to a given A-module A there exists
an injective module E containing A such that every injective module
containing A also contains an isomorphic copy of E. This property
will define E up to isomorphism. E is called the injective envelope of A.
We remark (see Exercise 9.5) that the dual of the injective envelope
("projective cover") does not exist in general.

Definition. A monomorphism p : AY- B is called essential if for any
submodule H of B, H l 0 implies Hn pA l 0. If A is regarded as a sub-
module of B then B is called an essential extension of A (see [12]).
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Examples. (a) As abelian group Q is an essential extension of Z.
(b) The module B = AQ C can never be an essential extension of A,

unless C=0. For CnA=0.
Note that if B is an essential extension of A, and C is an essential

extension of B, then C is an essential extension of A.

Proposition 9.1. B is an essential extension of A if and only if, for every
0$ b e B, there exists A e A such that A b e A and Ab + 0.

Proof. Let B be an essential extension of A, and let H be the submodule
generated by b e B. Since H+0 it follows that H n A $ 0, i.e. there
exists A e A such that 0+ Ab e A. Conversely, let H be a non-trivial
submodule of B. For 0 + h e H there exists , e A such that 0 + A h e A.
Therefore HnA+O, and B is an essential extension of A. 0

Let A be a submodule of a A-module M. Consider the set (P of essential
extensions of A, contained in M. Since A is an essential extension of itself,
0 is not empty. Under inclusion, 0 is inductive. Indeed, if {EJ}, jeJ,
is a chain of essential extensions of A contained in M, then it follows
easily from Proposition 9.1 that their union U EJ is again an essential

JEJ

extension of A contained in M. By Zorn's Lemma there exists a maximal
essential extension E of A which is contained in M.

Theorem 9.2. Let A be a submodule of the injective module I. Let E
be a maximal essential extension of A contained in I. Then E is injective.

Proof. First we show that E does not admit any non-trivial essential
monomorphism.

Let p: E--+X be an essential monomorphism. Since I is injective,
there exists a homomorphism 1; : X---).I completing the diagram

We show that is monomorphic. Let H be the kernel of . We then
have H S X and H n p E = 0. Hence ker = H = 0, for µ is essential. It
follows that l; X is an essential extension of A contained in I. Since E is
maximal, it follows that X = E.

Now consider the set P of submodules H C I such that H n E = 0.
Since 0 e ', P is non empty. it is ordered by inclusion and inductive.
Hence by Zorn's Lemma there exists a maximal submodule H of I
such that H n E = 0. The canonical projection n : 1-» I r' LI induces a
monomorphism o = n lE : E,I/H. We shall show that a is essential.
Let H/H be a non-trivial submodule of I/H, i.e. let H C H S I where the
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first inclusion is strict. By the maximality of H the intersection Hr )E
is non-trivial, hence H/HnaE is non-trivial. It follows that a is essential.
By the first part of the proof E admits no proper essential monomorphism,
whence it follows that o : E=> 1 /H is an isomorphism. The sequence
Fl,-+I -`"» E now splits by the embedding of E in I. Therefore E is
a direct summand in I and is injective by Proposition 6.3. 0

Corollary 9.3. Let Et, E2 be two maximal essential extensions of A
contained in injective modules 11, I. Then Et = E2 and every injective
module I containing A also contains a submodule isomorphic to Et. 0

Definition. E, is called the injective envelope of A.

Proof. Consider the diagram

E2

Since E2 is injective there exists : Et -+ E2 completing the diagram.
As in the proof of Theorem 9.2 one shows that is monomorphic. But
then E2, as an essential extension of A, is also an essential extension of Et,
which shows, again as in the proof of Theorem 9.2, that : Et - E2.
The proof of the second part is now trivial. 0

Exercises:

9.1. Compute the injective envelope of Z. Z,,, p prime, Z.
9.2. Show that if B. is an essential extension of A;, i = 1, 2, then B, ® B2 is an

essential extension of A, ® A2. Extend this to direct sums over any index set J.
9.3. Given any abelian group A, let T(A) be its torsion subgroup and F(A) = AlT(A).

Show that cp : A-->B induces T((p) : T(A)--+ T(B), F((p) : F(A)-.F(B), and that qp
is a monomorphism if and only if T((p) and F((p) are monomorphisms. Show
that the monomorphism tp is essential, if and only if T((p) and F((p) are essential.
Now suppose given

0---> T(A)---+A--. F(A)-.0

0-4 T(B)-+B-AF(B)--0

0-+ T(C)-+( - F( C)---.O

where A S C is to be regarded as fixed, and B is an essential extension of A.
Show that if T(B) and F(B) are maximal, so is B. Show that if B is maximal,
so is T(B), but that F(B) may fail to be maximal.
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Show that if C is divisible, so are 7(C) and F(C). What does this tell us
about the injective envelope of T(A), A and F(A)?

9.4. Give a procedure for calculating the maximal essential extension of A in B,
where B is a finitely generated abelian group.

9.5. Show that the dual of an injective envelope does not always exist. That is, given
a A-module A, we cannot in general find P `»A,P projective, such that, given
Q-"++A, Q projective, we may factor ry as Q `OP `+.A. (Hint: Take A=Z,
A= Z5.) Where does the dual argument fail?



II. Categories and Functors

In Chapter I we discussed various algebraic structures (rings, abelian
groups, modules) and their appropriate transformations (homomor-
phisms). We also saw how certain constructions (for example, the forma-
tion of HomA(A, B) for given A-modules A, B) produced new structures
out of given structures. Over and above this we introduced certain
"universal' constructions (direct sum, direct product) and suggested
that they constituted special cases of a general, and important, procedure.
Our objective in this chapter is to establish the appropriate mathematical
language for the general description of mathematical systems and of
mappings of systems, insofar as that language is applicable to homo-
logical algebra.

The language of categories and functors was first introduced by
Eilenberg and MacLane [13] to provide a precise description of the
processes involved in algebraic topology. Since then an independent
mathematical theory has grown up around the basic concepts of the
language and today the development, elaboration and application of this
theory constitute an extremely active area of mathematical research. It is
not our intention to give a treatment of this developing theory; the reader
who wishes to pursue the topic of categorical algebra is referred to the
texts [6, 18, 35, 37-39] for further reading. Indeed, the reader familiar
with the elements of categorical algebra may use this chapter simply as
a source of relevant facts, terminology and notation.

1. Categories

To define a category (E we must give three pieces of data:
(1) a class of objects A, B, C, ...,
(2) to each pair of objects A, B of (E. a set (l;(A, B) of morphisms from

A to B,
(3) to each triple of objects A, B, C of t, a law of composition

(E(A, B) x (l;(B, C)-* (l;(A, Q.

Before giving the axioms which a category must satisfy we introduce
some auxiliary notation: this should also serve to relate our terminology



1. Categories 41

and notation with ideas which are already very familiar. If f e I(A, B)
we may think of the morphism f as a generalized 'function'' from A to
B and write

f : A-->B or AFB;
we call f a morphism from the domain A to the codomain (or range) B.
The set CS (A, B) x E(B, C) consists, of course, of pairs (f, g) where f : A--* B,
g : B- C and we will write the composition off and gas g f or, simply, g f
The rationale for this notation (see the Introduction) lies in the fact that
if A, B, C are sets and f, g are functions then the composite function from
A to C is the function h given by

h(a) = g(f(a)), aeA.
Thus if the function symbol is written to the left of the argument
symbol one is naturally led to write h = fg. (Of course it will turn out
that sets, functions and function-composition do constitute a category.)

We are now ready to state the axioms. The first is really more of
a convention, the latter two being much more substantial.

A 1: The sets ((A1, B1), E(A2, B2) are disjoint unless A1= A2, B1= B2.

A 2: Given f : A--*B, g : B- C, h : C-+D, then

h(gf) = (hg) f (Associative law of composition).

A 3: To each object A there is a morphism 1A : A--+A such that, for
any f : A-*B, g : C--*A,

PA = f, lAg=g (Existence of identities).

It is easy to see that the morphism IA is uniquely determined by
Axiom A 3. We call lA the identity morphism of A, and we will often
suppress the suffix A, writing simply

fl=f, lg=g.

As remarked, and readily verified, the category ( of sets, functions and
function-composition satisfies the axioms. We often refer to the category
of sets S; indeed, more generally, in describing a category we omit
reference to the law of composition when the morphisms are functions
and composition is ordinary function-composition (or when, for some
other reason, the law of composition is evident), and we even omit
reference to the nature of the morphisms if the context, or custom, makes
their nature obvious.

A word is necessary about the significance of Axiom A 1. Let us
consider this axiom in S. It is standard practice today to distinguish
two functions if their domains are distinct, even if they take the same
values whenever they are both defined. Thus the sine function sin : IR-* R
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is distinguished from its extension sin : C--+C to the complex field.
However, the two functions

sin : IR->IR, sin :1R--*[-1, 1]

would normally be regarded as the same function, although we have
assigned to them different codomains. However we will see that it is useful
- indeed, essential - in homological algebra to distinguish morphisms
unless their (explicitly specified) domains and codomains coincide.

It is also crucial in topology. Suppose fl : X--* Y1, f2 : X--+ Y2 are two
continuous functions which in fact take the same values, i.e., f1 (x) = f2(x),
x e X. Then it may well happen that one of those functions is contractible
whereas the other is not. Take, as an example, X = S 1, the unit circle in
IIt2, f, the embedding of X in IR2 and f2 the embedding of X in IR2-(0).
Then f1 is contractible, while f2 is not, so that certainly fl and f2 should
be distinguished.

Notice also that the composition g f is only defined if the codomain
of f coincides with the domain of g.

We say that a morphism f : A->B in (E is isomorphic (or invertible)
if there exists a morphism g : B-->A in (E such that

gf=1A, fg=1B.

It is plain that g is then itself invertible and is uniquely determined by f;
we write g = f -1, so that

(f -1)-1 = f

It is also plain that the composite of two invertible morphisms is again
invertible and thus the relation

A - B if there exists an invertible f: A-3 B

(A is isomorphic to B) is an equivalence relation on the objects of the
category (E. This relation has special names in different categories (one-
one correspondence of sets, isomorphism of groups, homeomorphism of
spaces), but it is important to observe that it is a categorical concept.

We now list several examples of categories.
(a) The category CB of sets and functions;
(b) the category 2 of topological spaces and continuous functions;
(c) the category (fi of groups and homomorphisms;
(d) the category %b of abelian groups and homomorphisms;
(e) the category 13F of vectorspaces over the field F and linear trans-

formations;
(f) the category 6c of topological groups and continuous homo-

morphisms;
(g) the category 91 of rings and ring-homomorphisms;
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(h) the category 91 t of rings-with-unity-element and ring-homo-
morphisms preserving unity-element;

(i) the category U1 of left A-modules, where A is an object of 911,
and module-homomorphisms;

(j) the category JJ1; of right A-modules.
Plainly the list could be continued indefinitely. Plainly also each

category carries its appropriate notion of invertible morphisms and iso-
morphic objects. In all the examples given the morphisms are structure-
preserving functions; however, it is important to emphasize that the
morphisms of a category need not be functions, even when the objects
of the category are sets perhaps with additional structure. To give one
example, consider the category th of spaces and homotopy classes of
continuous functions. Since the homotopy class of a composite function
depends only on the homotopy classes of its factors it is evident that 1h
is a category - but the morphisms are not themselves functions. Other
examples will be found in Exercises 1.1, 1.2.

Returning to our list of examples, we remark that in examples c, d,
e, f, g, i,j the category E in question possesses an object 0 with the property
that, for any object X in E, the sets (E(X, 0) and (E(O, X) both consist of
precisely one element.

Thus in 6 and 21b we may take for 0 any one-element group. It is
easy to prove that, if (K possesses such an object 0, called a zero object,
then any two such objects are isomorphic and E(X, Y) then possesses
a distinguished morphism,

X-.O-> Y,

called the zero morphism and written OXY. For any f : W--+X, g : Y-tZ
in (£ we have

0XYf-OWYI g0XY-0xz
As with the identity morphism, so with the zero morphism OX Y, we will
usually suppress the indices and simply write 0. If E possesses zero objects
it is called a category with zero objects.

If we turn to example (a) of the category G then we notice that, given
any set X, CB(q, X) consists of just one element (where 0 is the empty set)
and CB(X, (p)) consists of just one element (where (p) is a one-element set).
Thus in S there is an initial object 0 and a terminal (or coinitial)
object (p), but no zero object. The reader should have no difficulty in
providing precise definitions of initial and terminal objects in a cate-
gory E, and will readily prove that all initial objects in a category E are
isomorphic and so, too, are all terminal objects.

The final notion we introduce in this section is that of a subcategory Eo
of a given category (K. The reader will readily provide the explicit defini-
tion; of particular importance among the subcategories of E are the full
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subcategories, that is, those subcategories Coo of lK such that

E0(A, B) = O=(A, B)

for any objects A, B of Eo. For example, `21b is a full subcategory of 6,
but 91 t is a subcategory of 9? which is not full.

Exercises:

1.1. Show how to represent an ordered set as a category. (Hint: Regard the
elements a, b, ... of the set as objects in the category, and the instances a _< b
of the ordering relation as morphisms a--+b.) Express in categorical language
the fact that the ordered set is directed [16]. Show that a subset of an ordered
set, with its natural ordering, is a full subcategory.

1.2. Show how to represent a group as a category with a single object, all mor-
phisms being invertible. Show that a subcategory is then precisely a subgroup.
When is the subcategory full?

1.3. Show that the category of groups has a generator. (A generator U of a category
t1 is an object such that if f, g : X-. Y in E, f $ g, then there exists u : U-+X
with fu $ gu.)

1.4. Show that, in the category of groups. there is a one-one correspondence between
elements of G and morphisms Z--+G.

1.5. Carry out exercises analogous to Exercises 1.3, 1.4 for the category of sets,
the category of spaces, the category of pointed spaces (i.e. each space has
a base-point and morphisms are to preserve base-points, see [21]).

1.6. Set out in detail the natural definition of the Cartesian product (E1 X (EZ of two

categories (Ell (E2
1.7. Show that if a category has a zero object, then every initial object, and every

terminal object, is isomorphic to that zero object. Deduce that the category
of sets has no zero object.

2. Functors

Within a category C we have the morphism sets (UX, Y) which serve
to establish connections between different objects of the category. Now
the language of categories has been developed to delineate the various
areas of mathematical theory; thus it is natural that we should wish to
be able to describe connections between different categories. We now
formulate the notion of a transformation from one category to another.
Such a transformation is called a functor; thus, precisely, a functor
F : (E--* Z is a rule which associates with every object X of ()= an object FX
of Z and with every morphism f in .(X, Y) a morphism F f in t (FX, F Y),
subject to the rules

F(fg) = (Ff) (Fg), F(lA) ='FA . (2.1)
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The reader should be reminded, in studying (2.1), of rules governing
homomorphisms of familiar algebraic systems. He should also observe
that we have evidently the notion of an identity functor and of the com-
position of functors. Composition is associative and we may thus pass
to invertible functors and isomorphic categories.

We now list several examples of functors. The reader will need to
establish the necessary facts and complete the descriptions of the functors.

(a) The embedding of a subcategory Co in a category E is a functor.
(b) Let G be any group and let GIG' be its abelianized group, i.e. the

quotient of G by its commutator subgroup G. Then &- GIG' induces
the abelianizing functor Abel: 0-+(f. Of course this functor may also
be regarded as a functor ((i--+2lb. This example enables us to exhibit.
once more, the importance of being precise about specifying the codomain
of a morphism. Consider the groups G = C3. the cyclic group of order 3
generated by t, say, and H = S3, the symmetric group on three symbols.
Let (p: G--+H be given by (p(t) =(I 2 3), the cyclic permutation. Let Ho
be the subgroup of H generated by (123) and let (po : G---- *Ho be given
by (po(t)=(123). It may well appear pedantic to distinguish go from (p
but we justify the distinction when we apply the abelianizing functor
Abel: 0--*6. For plainly Abel(G)=G, Abel(Ho)=Ho, Abel (90) = go,
which is an isomorphism. On the other hand, Ho is the commutator
subgroup of H, so that Abel (H) = H/Ho and so Abel ((p) = 0, the constant
homomorphism (or zero morphism) C2). Thus Abel (q) and
Abel((po) are utterly different!

(c) Let S be a set and let F(S) be the free abelian group on S as basis.
This construction yields the free functor F : Similarly there are
free functors a-++73t',,, etc.

(d) Underlying every topological space there is a set. Thus we get an
underlying functor U : 2--* 3. Similarly there are underlying functors
from all the examples (a) to (j) of categories (in Section 1) to CB. There
are also underlying functors 9 R , ' --2Ib, 91, 91 b, etc., in which
some structure is "forgotten" or "thrown away".

(e) The fundamental group may be regarded as a functor
where 2° is the category of spaces-with-base-point (see [21]). It may
also be regarded as a functor n : 2,°, --+ 0, where the subscript h indicates
that the morphisms are to be regarded as (based) homotopy classes of
(based) continuous functions. Indeed there is an evident classifying
functor Q : and then it factors as it =7Q.

(f) Similarly the (singular) homology groups are functors Z--+2I6
(or 'h--)'2lb).

(g) We saw in Chapter I how the set 931' (A, B) = may be
given the structure of an abelian group. If we hold A fixed and define
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931A(A,-):1l --*Ubby
9JlA (A, -) (B) = 9Jtl (A, B)

then 9J1A(A, -) is a functor. More generally, for any category (K and
object A of E, t(A, -) is a functor from ! to C. We say that this functor
is represented by A. It is an important question whether a given functor
(usually to (B) may be represented in this sense by an object of the
category.

In viewing the last example the reader will have noted an asym-
metry. We have recognized 9J1A (A, -) as a functor 931A'--+91b, but if
we look at the corresponding construct W(-, B) : 9Jll-+2t b, we see
that this is not a functor. For, writing F for 9JlA(-, B), then F sends
f : At-tA2 to F f : FA2-+FA,. This "reversal of arrows" turns up fre-
quently in applications of categorical ideas and we now formalize the
description.

Given any category (K. we may form a new category (l;°PP, the category
opposite to (I;. The objects of (l;°PP are precisely those of E, but

°PP(X, Y) = (I;(Y, X) . (2.2)

Then the composition in (l;°PP is simply that which follows naturally
from (2.2) and the law of composition in (E. It is trivial to verify that C°PP
is a category with the same identity morphisms as (I;, and that if (I has
zero objects, then the same objects are zero objects of (K°PP. Moreover,

((K°PP)°PP = c . (2.3)

Of course the construction of C°PP is merely a formal device. However
it does enable us to express precisely the contravariant nature of 931A(-, B)
or, more generally, (K(-, B), and to formulate the concept of categorical
duality (see Section 3).

Thus, given two categories E and T a contravariant functor from 1
to Z is a functor from C°PP to Z. The reader should note that the effective
difference between a functor as originally defined (often referred to as
a covariant functor) and a contravariant functor is that, for a contra-
variant functor F from (E to t, F maps (1= (X, Y) to Z(FY, FX) and
(compare (2.1)) F(fg) = F(g) F(f ). We give the following examples of
contravariant functors.

(a) E(-, B), for B an object in ci, is a contravariant functor from E
to G. Similarly. MA(-, B), 9J2;,(-, B) are contravariant functors from
9JlA. 9J1;, respectively to 21 b. We say that these functors are represented
by B.

(b) The (singular) cohomology groups are contravariant functors
Z-+2tb (or Zh-'2tb).

(c) Let A be an object of 912;, and let G be an abelian group. We saw
in Section 1. 8 how to give Hom1(A, G) the structure of a left A-module.
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Homg (-, G) thus appears as a contravariant functor from W' 1 to
Further examples will appear as exercises.

Finally we make the following definitions. Recall from Section 1 the
notion of a full subcategory. Consistent with that definition, we now
define a functor F : (E--+ Z as full if F maps ();(A. B) onto T(FA, FB) for
all objects A, B in E, and as faithful if F maps 1(A, B) injectively to
t'(FA, FB). Finally F is a full embedding if F is full and faithful and
one-to-one on objects. Notice that then F(11;) is a full subcategory of Z,
(in general, F(E) is not a category at all).

Exercises:

2.1. Regarding ordered sets as categories, identify functors from ordered sets to
ordered sets, and to an arbitrary category C. Also interpret the opposite
category. (See Exercise 1.1.)

2.2. Regarding groups as categories, identify functors from groups to groups. Show
that the opposite of a group is isomorphic to the group.

2.3. Show that the center is not a functor in any obvious way. Let 6epi be
the subcategory of 6 in which the morphisms are the surjections. Show that
the center is a functor 6eQ1->6. Is it a functor 6ep;-+6ep?

2.4. Give examples of underlying functors.
2.5. Show that the composite of two functors is again a functor. (Discuss both

covariant and contravariant functors.)
2.6. Let 0 associate with each commutative unitary ring R the set of its prime

ideals. Show that 0 is a contravariant functor from the category of commu-
tative unitary rings to the category of sets. Assign to the set of prime ideals
of R the topology in which a base of neighborhoods is given by the sets of
prime ideals containing a given ideal J, as J runs through the ideals of R.
Show that 45 is then a contravariant functor to Z.

2.7. Let F : (fl x (f2-. t be a functor from the Cartesian product (£1 x E2 to the
category t (see Exercise 1.6). F is then also called a bifunctor from ((C,, E2)
to Z. Show that, for each Cl e(El, F determines a functor Fc,:(l;2-+ D and,
similarly, for each C2 a (1;2, a functor Fc2: such that, if (pl : CI--+C1,
92: C2 - C2, then the diagram

F(C1, C2)
Fc,(a,)

F(Cl, C2)

Fc, (02) I I Fc, (q,2)

F(C1, CZ) FQ F(C,, CZ)

(*)

commutes. What is the diagonal of this diagram? Show conversely that if we
have functors Fe,: (f2-.T, Fc2: (ft-+I, indexed by the objects of (ElX2
respectively, such that Fc,(C2) = Fc2(CI) and (*) commutes, then these families
of functors determine a bifunctor G : Ei x (f2-. Z such that Gc, = Fe,, Gc2 = Fc2.

2.8. Show that (E(-, -) : t1,°P° x C-> G is a bifunctor.
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3. Duality

Our object in this section is to explain informally the duality principle
in category theory. We first give an example taken from Section I.6.
We saw there that the injective homomorphisms in SD1A are precisely the
monomorphisms, i.e. those morphisms p such that for all a.

pc =pf =a=/1. (3.1)

(The reader familiar with ring theory will notice the formal similarity
with right-regularity.) Similarly the surjective homomorphisms in 971,, are
precisely the epimorphisms in 97th, i.e. those morphisms s such that for
all a, /3

aE=/l8=> a=P. (3.2)

(The reader will notice that the corresponding concept in ring theory is
left-regularity.) Now given any category, we define a monomorphism p
by (3.1) and an epimorphism e by (3.2). It is then plain that, if cp is a morphism
in (l:, then (p is a monomorphism in C if and only if it is an epimorphism
as a morphism of (C°PP. It then follows from (2.3) that a statement about
epimorphisms and monomorphisms which is true in any category must
remain true if the prefixes "epi-" and "mono-" are interchanged and
"arrows are reversed". Let us take a trivial example. An easy argument
establishes the fact that if ptp is monomorphic then tp is monomorphic.
We may thus apply the "duality principle" to infer immediately that if

is epimorphic then W is epimorphic. Indeed, the two italicized state-
ments are logically equivalent - either stated for Cs implies the other for
VPP. It is superfluous to write down a proof of the second, once the
first has been proved.

It is very likely that the reader will come better to appreciate the
duality principle after meeting several examples of its applications.
Nevertheless we will give a general statement of the principle; this state-
ment will not be sufficiently formal to satisfy the canons of mathematical
logic but will, we hope, be intelligible and helpful.

Let us consider a concept rP (like monomorphism) which is mean-
ingful in any category. Since the objects and morphisms of °PP are those
of E, it makes sense to apply the concept W to (1;°PP and then to interpret
the resulting statement in (E. This procedure leads to a new concept WOPP
which is related to W by the rule (writing K(CS) for the concept' applied
to the category E)

W°PP((E) = c 2(C1r°PP) for any category (E.

Thus if W is the concept of monomorphism, c'°PP is the concept of epi-
morphism (compare (3.1), (3.2)). We may also say that ''PP is obtained
from ' by "reversing arrows". This "arrow-reversing" procedure may
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thus be applied to definitions, axioms, statements, theorems ..., and hence
also to proofs. Thus if one shows that a certain theorem 9 holds in any
category Z satisfying certain additional axioms A, B, ..., then theorem
9%-°PP holds in any category C satisfying axioms A°PP, B°PP, .... In par-
ticular if holds in any category so does °PP.

This automatic process of dualizing is clearly extremely useful and
convenient and will be much used in the sequel. However, the reader
should be clear about the limitations in the scope of the duality principle.
Suppose given a statement.Yo about a particular category Co. involving
concepts 'WO 1. . . . . `. ok expressed in terms of the objects and morphisms
of Eo. For example, Co may be the category of groups and go may be the
statement "A finite group of odd order is solvable". Now it may be pos-
sible to formulate a statement / about a general category CC, and concepts

so that are equivalent to Soo,%o1,...,`6,ok
respectively. We may then dualize 5), ce 1, ..., cek, and interpret the
resulting statement in the category (Co. Informally we may describe
92°PP((Co) as the dual of .o but two warnings are in order:

(i) The passage from go to .9° is not single-valued; that is, there
may well be several statements about a general category which specialize
to the given statement c/o about the category Likewise of course, the
concepts `62, , `'k may generalize in many different ways.

(ii) Even if 9o is provable in (Eo, ,°PP(Eo) may well be false in (Eo.
However, if 9' is provable, then this constitutes a proof of .o and of

Sa°PP((C0). (This does not prevent ,9°OPP((Eo) from being vacuous, of course;
we cannot guarantee that the dual in this informal sense is always
interesting!)

As an example, consider the statement bPo "Every A-module is the
quotient of a projective module". This is a statement about the category
(Co = 931. Now there is a perfectly good concept of a projective object
in any category E, based on the notion of an epimorphism. Thus (see
Section 10) a projective object is an object P with the property that,
given cp and E, P

e
I w

A ` )B
with E epimorphic, there exists 0 such that EO = V. We may formulate the
statement . for any category & whieh states that, given any object X
in C there is an epimorphism E : P projective. Then .9n(Zo)
is our original statement .o. We may now formulate .9°°PP which asserts
that, given any object X in (C there is a monomorphism u : with I
injective (here "injective" is the evident concept dual to "projective"; the
reader may easily formulate it explicitly). Then .°PP((Eo) is the statement
"Every A-module may be embedded in an injective module". Now it
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happens (as we proved in Chapter 1) that both V(C0) and 5P°PP(Co) are
true, but we cannot infer one from the other. For the right to do so would
depend on our having a proof of 9' - and, in general, 9' is false.

We have said that, if 9' is provable then, of course, 9'((Eo) and 9°PP((Eo)
are deducible. Clearly, though, this is usually too stringent a criterion;
in other words, this principle does not permit us to deduce any but the
most superficial of propositions about CO, since it requires some state-
ment to be true in any category. However, as suggested earlier, there is
a refinement of the principle that does lead to practical results. Suppose
we confine attention to categories satisfying certain conditions Q. Sup-
pose moreover that these conditions are self-dual in the sense that, if any
category (C satisfies Q, so does °PP, and suppose further that Eo satisfies
conditions Q. Suppose 9' is a statement meaningful for any category
satisfying Q and suppose that 9' may be proved. Then we may infer
both So(Eo) and 5o°PP(Eo). This principle indicates the utility of proving 9'
for the entire class of categories satisfying Q instead of merely for Co.
We will meet this situation in Section 9 when we come to discuss abelian
categories.

Exercises:

3.1. Show that "epimorphic" means "surjective" and that "monomorphic" means
"injective"
(i) in (B, (ii) in Z, (iii) in (5.

3.2. Show that the inclusion Z C Q is an epimorphism in the category of integral
domains. Generalize to other epimorphic non-surjections in this category.

3.3. Consider the underlying functor U : Z- (B. Show that j : X0-+X in Z is
a homeomorphism of X° into X if and only if it is a monomorphism and, for
any f : Y- X in Z, a factorization U(j) g0 = U(f) in C implies j f0 = f in 2
with go = U(fo). Dualize this categorical property of j and obtain a topological
characterization of the dual categorical property.

3.4. Define the kernel of a morphism (p : A-.B in a category with zero morphisms t1
as a morphism p : K-+ A such that (i) (p y = 0, (ii) if WW = 0, then ip = pug' and
w is unique. Identify the kernel, so defined, in 2tb and S. Dualize to obtain
a definition of cokernel in (E. Identify the cokernel in 2tb and (5. Let C° be
the category of sets with base points. Identify kernels and cokernels in V.

3.5. Generalize the definitions of kernel (and cokernel) above to equalizers (and
coequalizers) of two morphisms 911 1P2 : A--+B. A morphism p : E--+A is the
equalizer of 4'i, 92 if (i) (plu = c0214, (ii) if 91W = 4'2W then W = pug' and u)' is
unique. Exhibit the kernel as an equalizer. Dualize.

4. Natural Transformations

We come now to the idea which deserves to be considered the original
source of category theory, since it was in the (successful!) attempt to
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make precise the notion of a natural transformation that Eilenberg and
MacLane were led to introduce the language of categories and functors
(see [13]).

Let F, G be two functors from the category E to the category Z. Then
a natural transformation t from F to G is a rule assigning to each object X
in E a morphism tx : FX -+GX in Z such that, for any morphism
f : X-* Y in E, the diagram

FX x'-- GX

FfI I Gf
FY-`''-*GY

commutes. If tx is isomorphic for each X then t is called a natural equiv-
alence and we write F G. It is plain that then t-' : G _- F, where t-'
is given by (t-')X = (tx)-'. If t : F--+G, u : G-+H are natural transforma-
tions then we may form the composition ut : F-+H, given by (ut)x
= (ui) (tx); and the composition of natural transformations is plainly
associative. Let F : G : t -Cf be functors such that GF = 1:
FG ^ I : Z-+Z, where I stands for the identity functor in any category.
We then say that 1 and Z are equivalent categories. Of course, isomorphic
categories are equivalent, but equivalent categories need not be iso-
morphic (see Exercise 4.1). We now give some examples of natural trans-
formations; we draw particular attention to the first example which
refers to the first explicitly observed example of a natural transformation.

(a) Let V be a vector space over the field F, let V* be the dual vector
space and V* * the double dual. There is a linear map tv : V-' V* * given
by vi -+c where v(cp) = T (v), v c V, T e V*, V. a V**. The reader will verify
that z is a natural transformation from the identity functor I: TF --- *Z1,
to the double dual functor **: 23F- 23F. Now let 23F be the full sub-
category of 13F consisting of finite-dimensional vector spaces. It is then,
of course, a basic theorem of linear algebra that i, restricted to 23F, is
a natural equivalence. (More accurately, the classical theorem says that iv
is an isomorphism for each V in 23F.) The proof proceeds by observing
that V = V* if V is finite-dimensional. However, this last isomorphism
is not natural - to define it one needs to choose a basis for V and then
to associate with this basis the dual basis of V*. That is, the isomorphism
between V and V* depends on the choice of basis and lacks the canonical
nature of the isomorphism tv between V and V**.

(b) Let G be a group and let G/G' be its commutator factor group.
There is an evident surjection xG : G-+G/G' and K is a natural trans-
formation from the identity functor 6-+6 to the abelianizing functor
Abel : (5 --+ 6.



52 H. Categories and Functors

(c) Let A be an abelian group and let AF be the free abelian group
on the set A as basis. There is an evident surjection TA : AF-* A, which
maps the basis elements of AF identically, and T is a natural transforma-
tion from F U to I, where U : 2tb-+ is the underlying functor and
F: C-* Ub is the free functor.

(d) The Hurewicz homomorphism from homotopy groups to homol-
ogy groups (see e.g. [21]) may be interpreted as a natural transformation
of functors '0->2tb (or I,°,->2tb).

We continue with the following important remark. Given two cate-
gories E, T. the reader is certainly tempted to regard the functors E-->
as the objects of a new category with the natural transformations as
morphisms. The one difficulty about this point of view is that it is not
clear from a foundational viewpoint that the natural transformations
of functors form a set. This objection may be circumvented by
adopting a set-theoretical foundation different from ours (see [32]) or
simply by insisting that the collection of objects of E form a set; such
a category E is called a small category. Thus if E is small we may speak
of the category of functors (or functor category) from E to t which we
denote by yc or [E, T]. In keeping with this last notation we will denote
the collection of natural transformations from the functor F to the
functor G by [F, G].

We illustrate the notion of the category of functors with the follow-
ing example. Let E be the category with two objects and identity mor-
phisms only. A functor F: E-+T is then simply a pair of objects in Z,
and a natural transformation t : F--* G is a pair of morphisms in Z. Thus
it is seen that I' = [(, Z] is the Cartesian product of the category Z
with itself, that is the category T x Z in the notation of Exercise 1.6.

We close this section with an important proposition. We have seen
that, if A, B are objects of a category E, then QA, -) is a (covariant)
functor E- * C and E(-, B) is a contravariant functor E--+Z. If 0: B,--+B2
let us write 6* for E (A, 0) : t(A, B2), so that

6*((°) = Bcp , gyp : A-*B, ,

and if W : A2-*A, let us write W* for (E(tp, B) : E(A1, B)- (E(A2, B) so that

W*((p)=qpW , (p: A,-B.

These notational simplifications should help the reader to understand
the proof of the following proposition.

Proposition 4.1. Let z be a natural transformation from the functor
E(A, -) to the functor F from E to S. Then Th-+TA(lA) sets up a one-one
correspondence between the set [(E(A, -), F] of natural transformations
from (E(A, -) to F and the set F(A).
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Proof. We show first that T is entirely determined by the element
TA(1A) e F(A). Let qp : A->B and consider the commutative diagram

E(A, A)-" - E(A, B)

f TA

FA F.p

TB

tFB

Then TB(lp) = (TB) ((p*) (IA) = (F(p) (TA) (lA), proving the assertion. The pro-
position is therefore established if we show that, for any K a FA, the rule

TAp)=(F(p)(K), 9eCA,B), (4.1)

does define a natural transformation from S(A, -) to F. Let 0: B, ->B2
and consider the diagram

E(A, Bt) B=-' E(A, B2)

TB,
!TB,

FB1 Fe 1 FB2

We must show that this diagram commutes if TBI, TB2 are defined as in
(4.1). Now (TB2) 6*(W) = (TB2) (Oco) = F(ern) (K) = F(e) F(co) (K) = F(e) TB,(P)
for cp : A-*B1. Thus the proposition is completely proved. 0

By choosing F = (E(A', -) we obtain

Corollary 4.2. The set of morphisms t1(A', A) and the set of natural
transformations [((A, -), W', -)] are in one-to-one correspondence. the
correspondence being given by W --'tp*, tp : A'-'A.

Proof. If r is such a natural transformation, let W = TA(lA), so that
W: A'->A. Then, by (4.1) T is given by

TB((P)=(P*(W)=(PW =WNP)

Thus rB = W*. Of course W is uniquely determined by T and every W
does induce a natural transformation (E(A, - )-* (A', -). Thus the rule
THTA(lA) sets up a one-one correspondence, which we write
between the set of natural transformations (1= (A, and the
set .(A', A). 0

With respect to the correspondence we easily prove

Proposition 4.3. Let
Then if TF-a tp, T 'H tp', where V, : A'-+A, yi : A"--> A', we have

i T i- 4iptp' .

In particular T is a natural equivalence if and only if W is an isomorphism.

Proof. (T'T)B = (is) (T B) = tV *W * _ (WW')* 0
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Proposition 4.1 is often called the Yoneda lemma: it has many applica-
tions in algebraic topology and, as we shall see, in homological algebra.

If (E is a small category we may formulate the assertion of Corollary 4.2
in an elegant way in the functor category ac. Then (E(A, -) is seen
to be an embedding (called the Yoneda embedding) of °PP in V; and
Corollary 4.2 asserts further that it is a full embedding.

Exercises:

4.1. A full subcategory CO of (E is said to be a skeleton of (E if, given any object A
of (E, there exists exactly one object AO of Cro with AO = A. Show that every
skeleton of (E is equivalent to (E, and give an example to show that a skeleton
of (E need not be isomorphic to Cr. Are all skeletons of (E isomorphic?

4.2. Represent the embedding of the commutator subgroup of G in G as a natural
transformation.

4.3. Let F, G : Cr-Z, E : Q3-+(E, H : Z--+(i be functors, and let t : F--+G be a natural
transformation. Show how to define natural transformations tE: FE--+ GE,
and Ht: HF-+HG. and show that H(tE) = (Ht) E. Show that tE and Ht are
natural equivalences if t is a natural equivalence.

4.4. Let (E be a category with zero object and kernels. Let f : A--+B in (E with kernel
k : K-+A. Then f,: (-,A)-+(E(-, B) is a natural transformation of contra-
variant functors from (f to Go, the category of pointed sets. Show that
X"ker(f*)x is a contravariant functor from (E to Coo which is represented by
K, and explain the sense in which k* is the kernel of f*.

4.5. Carry out an exercise similar to Exercise 4.4 replacing kernels in (E by co-
kernels in (E.

4.6. Let 9f be a small category and let Y: 2C -+[s2[°PP, CB] be the Yoneda embedding
Y(A)=91(-,A). Let J:%-43 be a functor. Define R :'B-+[ 2T°PP , Cam] on
objects by R(B)=$Q-,B). Show how to extend this definition to yield
a functor R, and give reasonable conditions under which Y=RJ.

4.7. Let I be any set; regard I as a category with identity morphisms only. Describe
IV. What is ti' if I is a set with 2 elements?

5. Products and Coproducts; Universal Constructions

The reader was introduced in Section I.3 to the universal property of the
direct product of modules. We can now state this property for a general
category E.

Definition. Let {Xi}, i e 1, be a family of objects of the category
indexed by the set I. Then a product (X; pi) of the objects Xi is an
object X, together with morphisms pi : X-+X,, called projections, with
the universal property: given any object Y and morphisms fi : Y-+X,,
there exists a unique morphism f = { fi} : Y-+X with pi f = fi.

As we have said, in the category 91A of (left) A-modules, we may
take for X the direct product of the modules Xi (Section 1. 3). In the
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category C we have the ordinary Cartesian product, in the category 2
we have the topological product (see [21]).

We cannot guarantee, of course, that the product always exists in E.
However, we can guarantee that it is essentially unique - again the reader
should recall the argument in Section I.3.

Theorem 5.1. Let (X; pi), (X'; p;) both be products of the family {X,}, i el.
in E. Then there exists a unique isomorphism : X, X' such that p;t; = pi,
i e I.

Proof. By the universal property for X there exists a (unique) mor-
phism i : X'-*X such that pirl = p;. Similarly there exists a (unique)
morphism Z; : X-- X' such that p; =pi. Then

p=p=p11 for all i e I .

But by the uniqueness property of (X; pi), this implies that ql; =1.
Similarly q = 1. 0

Of course, the uniqueness of (X; pi) expressed by Theorem 5.1 is as
much as we can possibly expect. For if (X; pi) is a product and i : X'-.X,
then (X': pirl) is plainly also a product. Thus we allow ourselves to talk
of the product of the Xi. We may write X = [JXi, f = { fi}. By abuse we
may even refer to X itself as the product of the X,. If the indexing set is
I = (1, 2,..., n) we may write X = X 1 x X2 x . x X and f = { f1, f2, ...,

As we have said, such a product may not exist in a given category.
Moreover, it is important to notice that the universal property of the
product makes reference to the entire category. Thus it may well happen
that not only the question of existence of a product of the objects Xi but
even the nature of that product may depend on the category in question.
However, before giving examples, let us state a few elementary pro-
positions.

Proposition 5.2. Let E be a category in which E(X, Y) is non-empty
for all X, Y (e.g., a category with zero object). Then if fXi exists it

i

admits each Xi as a retract. Thus, in particular, each pi is an epimorphism.

Proof. In the definition of fl Xi, take Y = Xj, for a fixed j e I, and
i

f =1 : For i *j let fi be arbitrary. Then pp f =1 : Xj-.X, so that
Xi retracts through pp onto X. 0

Proposition 5.3. Given two families {Xi}, of objects of E, indexed
by the same indexing set I, then if the products fl Xi, fl Y exist, and if

i i

fi : X,--. Yi, i e I, there is a uniquely determined morphism

HA : fl Xi-f Yi
i i t
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such that

.(flf,)=f1P,

Moreover, if E admits products for all families indexed by I, then ] I is
a functor

Proof. The first assertion is merely an application of the universal
property of fl Y. The proof of the second is left to the reader. (It should

be clear what we understand by the category S ; see Exercise 4.7.) 0
If I = (1, 2, ..., n) we naturally write f, x f2 x x f, for F1 f;.

Proposition 5.4. Let f; : Z--> X;, h : W--+Z, g; : X;-* Y. i e 1. Then, if
the products in question exist,

(i) {fi}g={fg), (ii) (U 99 {f;}={g;f,}.

Proof. We leave the proof to the reader, with the hint that it is suf-
ficient to prove that each side projects properly onto the i-component
under the projection pi. 0

Proposition 5.5. Let E be a category in which any two objects admit
a product. Thus given objects X, Y. Z in E we have projections

p1:XxY-.X, q,:(XxY)xZ--*XxY,
p2: Xx Y--"' Y, q2: (X x Y)xZ-.Z.

Then ((X x Y) x Z; p, q, P2 q, q2) is the product of X, Y., Z.

Proof. Given f1 : f2 : W--+ Y, f3: W-+Z, we form g : W-. X x Y
such that pt9 = ft, P29=f2' We then form h: W-(X x Y) x Z such
that ql h = g, q2h = f3. Then pt qt h = ft, P2gt h = f2. It remains to prove
the uniqueness of h, so we suppose that pl ql h = pl qt h', P2 qt h = P2 qt h',
q2 h = q2 h'. One application of uniqueness (to X x Y) yields q1 h = q1 h';
and a second application yields h = h'. 0

Proposition 5.6. If any two objects in (I admit a product, so does any
finite collection of objects.

Proof. We argue by induction, using an obvious generalization of
the proof of Proposition 5.5. 0

Proposition 5.5 may be said also to exhibit the associativity of the
product. Thus, there are canonical equivalences

(X X Y)xZ=X X Y xZ?Xx(YxZ).

In an even stronger sense the product is commutative; for the very defini-
tion of X x Y is symmetric in X and Y.
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The reader has already met many examples of products (in G3, X, Zk,
(i, MA, for example). There are, of course, many other examples familiar
in mathematics. We now give a few examples to show what care must
be taken in studying products in arbitrary categories.

Examples. (a) In the category GB (2) of two-element sets, no two
objects admit a product. For let B = (b1, b2), C = (Cl, C2) be two such sets
and let us conjecture that (D; P1, P2) is their product, D = (d1, d2). This
means that, given A = (a1, a2), f : A->B, g : A-->C, there exists (a unique)
h : A--3 D with p1 h = f, p2 h = g. Now pl must be surjective since we may
choose f surjective; similarly P2 must be surjective. Without real loss of
generality we may suppose pt (di) = bi, p2(di) = ci, i = 1, 2. Now if f (A) = (b1),
g(A) = (c2), we have a contradiction since h must miss d1 and d2. Notice
that the assertion of this example is not established merely by remarking
that the cartesian product of B and C is a 4-element set and hence not
in S (2).

(b) Consider the family of cyclic groups 7Lpk, of order pk. k = 1.2....,
where p is a fixed prime. Then

(i) in the category of cyclic groups no two groups of this family have
a product;

(ii) in the category of finite abelian groups the family does not have
a product;

(iii) in the category of torsion abelian groups, the family has a product
which is not the direct product;

(iv) in the category of abelian groups, and in the category of groups,
the direct product is the product.

We now prove these assertions.

(i) If (7L.; q1, q2) is the product of 7Lpk, 7LP, then, as in the previous
example, one immediately shows that q1, q2 are surjective. Suppose k >_ 1,
then m = pkn and we may choose generators a, Nl, Q2 of 74.7LPk, 7LP, so
that qi(a) = f i, i =1, 2. Given ft = I : pk. f2 = 0: 7LPk-37L , sup-
pose f (f 1) = sa, where f = { fl, f2}. Then s -1 modpk, s - 0 modp' which
is absurd.

(ii) If (A; qk, k = 1, 2, ...) were the product of the entire family, then,
again, each qk would be surjective. Thus the order of A would be divisible
by pk for every k, which is absurd. (This argument shows, of course, that
the family has no product even in the category of finite groups.)

(iii) Let T be the torsion subgroup of the direct product P of the
groups 7Lpk. By virtue of the role of P in (6 it is plain that (T; qk) is the
product in the category of torsion abelian groups, where qk is just the
restriction to T of the projection

(iv) Well-known.
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We now turn briefly to coproducts. The duality principle enables us
to make the following succinct definition:

Definition. Let {Xi}, i a I, be a family of objects of the category E
indexed by the set 1. Then (X; qi) is a coproduct of the objects X i in L
if and only if it is a product of the objects Xi in Vpp.

This definition means, then, that in Cs, qi : Xi-+X and given morphisms
fi : Xi-+ Y there exists a unique f : X--* Y with fqi = fi. The morphisms
qi : Xi-+X are called injections. We write X = JJ Xi, f = < fib, and if

i

1= (1, 2, ..., n), then X = X, IL X2 IL ... 1L f = <ft,f2, ...,f,>. We
need not state the duals of Proposition 5.2 through 5.6, leaving their
enunciation as an exercise for the reader. We mention, however, a few
examples.

Examples. (a) In G the coproduct is the disjoint union with the evident
injections q,.

(b) In . the coproduct is the disjoint union with the natural topology.

(c) In X° the coproduct is the disjoint union with base points
identified.

(d) In 6 the coproduct is the free product with the evident injections
qi, see [36].

(e) In MA the coproduct is the direct sum. In this case we shall write
instead of JL. We leave it to the reader to verify these assertions.

Exercises:

5.1. Let (f, t be categories admitting (finite) products. A functor F : (E-+ D is said
to be product-preserving if for any objects Al, A2 of (f, (F(A1 x A2); Fpl, Fp2)
is the product of FAl and FA2 in Z. Show that in the list of functors given
in Section 2, b), d), e), g) are product-preseving, while c). f) are coproduct-
preserving.

5.2. Show that a terminal (initial) object may be regarded as a (co-) product over
an empty indexing set.

5.3. Show that A is the product of Al and A2 in (f if and only if (E(X, A) is the
product of QX, Al) and (f(X, A2) in C for all X in tf. (To make this statement
precise, one should, of course, mention the morphisms pl and p2.) Give a
similar characterization of the coproduct.

5.4. Let C be a category with zero object and finite products. A group in tf is a pair
(A, m), where A is an object of C and m : A x A-+A in (f, subject to the axioms:

G 1: (Associativity) m(m x 1) = m(1 x m);
G2: (7wo-sided unity) m{1, 0} =1=m {0,1);
G 3: (7ivo-sided inverse) There exists a : A-+A such that

m{1,a}=0=m(a,1).
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In other words the following diagrams are commutative

AxAxA'"x'iAxA AxA A"o'1j-AxA

A x A m 'A

A x A A '-A x A

jA

Show that a group in G is just a group in the usual sense. Show that (A, m)
is a group in t if and only if t (X, A) is a group (in (B) for all X in (l; under
the obvious induced operation m*. Show that, if B is an object of (C such that
(C(X, B) is a group for all X in (C and if f : X -±Y in I induces a homomorphism
f * : (C(Y, B)-+(C(X, B), then B admits a unique group structure m in (C such
that m* is the given group structure in t (X, B).

5.5. Show that if (A, m) satisfies G 1 and the one-sided axioms

G2R: m{1, 0} =1;
G3R: There exists a : A--+A such that m{1, a} = 1;
then (A, m) is a group in (E. Show also that a is unique. (Hint: Use the argument
of Exercise 5.4.)

5.6. Formulate the condition that the group (A, m) is commutative. Show that
a product-preserving functor sends (commutative) groups to (commutative)
groups.

5.7. Define the concept of a cogroup. the dual of a group. Show that in 91b (MA)
every object is a cogroup.

5.8. Let (C be a category with products and coproducts. Let f;J : X;- Y. in E, i e I,
jeJ. Show that <{fjj}lEJ>;eI={<fiJ>jaI})EJ:11Xj-'fl Y. Hence, if K_ has

jeJ
a zero object, establish a natural transformation from Jj to fl.

iel

6. Universal Constructions (Continued); Pull-backs and Push-outs

We are not yet ready to say precisely what is to be understood by
a universal construction. Such a formulation will only become possible
when we are armed with the language of adjoint functors (Section 7).
However, we now propose to introduce a very important example of
a universal construction and the reader should surely acquire an under-
standing of the essential nature of such constructions from this example
(together with the examples of the kernel, and its dual, the cokernel; see
final remark in Section I. 1).

It must already have been apparent that a basic concept in homo-
logical algebra, and, more generally, in category theory, is that of a corn-
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mutative diagram, and that the most fundamental of all commutative
diagrams is the commutative square

spa = W/3 . (6.1)

There thus arises the natural question. Given qp. W in (6.1). is there
a universal procedure for providing morphisms a, /3 to yield a com-
mutative square? Of course, the dual question arises just as naturally, and
may be regarded as being treated implicitly in what follows by the applica-
tion of the duality principle. Explicitly we will only consider the question
as posed and we immediately provide a precise definition.

Definition. Given cp : W : B->X in C, a pull-back of (gyp, W) is
a pair of morphisms a : Y--+A, /3: Y-->B such that spa =W/3, and (6.1)
has the following universal property: given y : Z---),A, 6: Z--+B with
spy = WS, there exists a unique l; : Z-+Y with y = a C, 6 = /3Z.

(6.2)

Just as for the product, it follows readily that, if a pull-back exists, then
it is essentially unique. Precisely, if (a', /3') is also a pull-back of (cp, W),
a': Y'->A, /3': Y'--+B, then there exists a unique equivalence w: Y--+Y'
such that a' w = a, /3'co Thus we may permit ourselves to speak of the
pull-back of cp and W.

We write (Y; a, a) for the pull-back of qp and W. Where convenient we
may abbreviate this to (a, /3) or to Y. We may also say that the square
in (6.2) is a pull-back square.

Notice that the uniqueness of 5 in (6.2) may be expressed by saying
that {a, /3} : Y-A x B is a monomorphism, provided that A x B exists
in CE. In fact, there is a very close connection between pull-backs and
products of two objects. On the one hand, if C has a terminal object T
and if -p : A-> T, W : B-> T are the unique morphisms then the pull-back
of p and W consists of the projections pl : A x B-*A, P2: A x B--+B. On
the other hand we may actually regard the pull-back as a product in
a suitable category. Thus we fix the object X and introduce the category
t/X of E-objects over X. An object of Cs/X is a morphism x : K--+X in (E
and a morphism o : in (E/X is a morphism a : K--+L in CI making
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the diagram

commutative, 2a = K. Now let J = spa = tpf be the diagonal of the square
(6.2). Then the reader may easily prove

Proposition 6.1. (A; a, f3) is the product of (p and ip in C/X. 0

This means that a, fi play the roles of Pt, P2 in the definition of
a product, when interpreted as morphisms a: A-*qp, f3: A--+W in CIX.

From this proposition we may readily deduce, from the propositions
of Section 5, propositions about the pull-back and its evident generaliza-
tion to a family, instead of a pair, of morphisms in (F with codomains X.
We will prove one theorem about pull-backs in categories with zero
objects which applies to the categories of interest in homological algebra.
We recall first (Exercise 3.4) how we define the kernel of a morphism
Q : K-i-L in a category with zero objects by means of a universal property.
We say that p : J-±K is a kernel of a if (i) ay = 0 and (ii) if aT = 0 then T
factorizes as T = pTO, with To unique. As usual. the kernel is essentially
unique; we (sometimes) call J the kernel object. Notice that p is monic,
by virtue of the uniqueness of TO.

Theorem 6.2. Let (6.1) be a pull-back diagram in a category t with zero
object. Then

(i) if (J, p) is the kernel of f3, (J, aµ) is the kernel of cp;
(ii) if (J, v) is the kernel of (p, v may be factored as v = a p where (J, p)

is the kernel of f3.

Note that (ii) is superfluous if we know that every morphism in (F has
a kernel. We -show here, in particular, that Q has a kernel if and only if lp
has a kernel, and the kernel objects coincide.

Proof. (i)
J = J

Set v = ap. We first show that v is monomorphic; for p and {a, f3} are
monomorphic, so {a, f3} p ={v,0}: J-A x B is monomorphic and hence,
plainly, v is monomorphic. Next we observe that coy = cpaµ = W flu = 0.
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Finally we take r : Z-> A and show that if (pT = 0 then T = vt0 for some
T0. Since wO = 0, the pull-back property shows that there exists a : Z- Y
such that a6 = T, fla = 0. Since (J, p) is the kernel of Ji, a = er0i so that
T = a/LTO = VTQ.

(ii) Since cp v = 0 we argue as in (i) that there exists p : J-* Y with
a p = v, aµ = 0. Since v is a monomorphism, so is p and we show that
(J, p) is the kernel of J3. Let fir = 0, T : Z- Y. Then gpcT = w/3T = 0, so

aT = vT0 = a,vT0. But J3T = JipT0 = 0, so that, {a, J3} being a mono-
morphism, T =µT0. 0

In Chapter VIII we will refer back to this theorem as a very special
case of a general result on commuting limits. We remark that the intro-
duction of A x B in the proof was for convenience only. The argument
is easily reformulated without invoking A x B.

As examples of pull-backs, let us consider the categories CB, Z, 0.
In S, let (p, w be embeddings of A, B as subsets of X ; then Y = A n B and
a, J3 are also embeddings. In X we could cite an example similar to that
given for Cam; however there is also an interesting example when cp, say,
is a fibre-map. Then /3 is also a fibre-map and is often called the fibre-map
induced by w from cp. (Indeed, in general, the pull-back is sometimes
called the fibre-product.) In (5 we again have an example similar to that
given for Cam; however there is a nice general description of Y as the sub-
group of A x B consisting of those elements (a, b) such that sp(a) = w(b).

The dual notion to that of a pull-back is that of a push-out. Thus, in
(6.1), (gyp, w) is the push-out of (a, fl) in (i= if and only if it is the pull-back
of (a, fl) in °'". The reader should have no difficulty in formulating an
explicit universal property characterizing the push-out and dualizing the
statements of this section. If a, Q are embeddings (in S or Z) of Y = A n B
in A and B, then X = Au B. In (5 we are led to the notion of free product
with analgamations [36].

We adopt for the push-out notational and terminological conventions
analogous to those introduced for the pull-back.

Exercises:

6.1. Prove Proposition 6.1.
6.2. Given the commutative diagram in C

Al --!i-+ A, A,

IV1 1Q2

103

Bl t B2 B2 B3
show that if both squares are pull-backs, so is the composite square. Show
also that if the composite square is a pull-back and z2 is monomorphic, then
the left-hand square is a pull-back. Dualize these statements.
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6.3. Recall the notion of equalizer of two morphisms cpl, T2 : A-> B in E (see
Exercise 3.5). Show that if (E admits finite products then (l; admits pull-backs
if and only if (E admits equalizers.

6.4. Show that the pull-back of
A

10

O- B
in the category (E with zero object 0 is essentially just the kernel of (p. Generalize
this to

A

1-P

Cw.B

where , is to be regarded as an embedding.
6.5. Identify the push-out in CB, % and URA.
6.6. Show that the free module functor (B ' JJlA preserves push-outs. Argue

similarly for the free group functor.
6.7. Show that, in the category MA, the pull-back square

is also a push-out if and only if <02, fi> : A2 ®Bi B2 is surjective.
6.8. Formulate a "dual" of the statement above - and prove it. Why is the word

"dual' in inverted commas?

7. Adjoint Functors

One of the most basic notions of category theory, that of adjoint functors,
was introduced by D. M. Kan [30]. We will illustrate it first by an
example with which the reader is familiar from Chapter I. Let F : Cro-i IIA
be the free functor, which associates with every set the free A-module
on that set as basis; and let be the underlying functor which
associates with every module its underlying set. We now define a trans-
formation, natural in both S and A,

rl = r1SA:93WFS, A)-»(S, GA)

associating with a A-module homomorphism tp : FS---),A the restriction
of 'p to the basis S of FS. The reader immediately sees that the universal
property of free modules (Proposition 1.4.2) is expressed by saying that
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rl is an equivalence. Abstracting from this situation we make the fol-
lowing definition:

Definition. Let F : E--> Z, G : 'r -,E be functors such that there is a
natural equivalence

rl =rlxr: Z(FX, Y)- -+E(X, GY)

of functors VPP x Z ->C. We then say that F is left adjoins to G, G is
right adjoint to F, and write rl : F -1 G. We call rl the adjugant equivalence
or, simply, adjugant.

In the example above we have seen that the free functor F: 5-MA
is left adjoint to the underlying functor G : W1A C. The reader will
readily verify that the concept of a free group (free object in the category
of groups) and the concept of a polynomial algebra over the field K
(free object in the category of commutative K-algebras) may also be
formulated in terms of a free functor left adjoint to an underlying functor.
From this, one is naturally led to a generalization of the concept of a
free module (free group, polynomial algebra) to the notion of an object in
a category which is free with respect to an "underlying" functor.

The theory of adjoint functors will find very frequent application in
the sequel; various facts of homological algebra which were originally
proved in an ad hoc fashion may be systematically explained by the use
of adjoint functors. We now give some further examples of adjoint
functors.

(a) In Proposition 1.8.1 we have considered the functor G : 2ib--,SJJl,,
defined by

GC = Homa(A, C), C in %b,

where the (left) A-module structure in GC is given by the right A-module
structure of A. We denote by F : SJJ1A-*2ib the underlying functor,
which forgets the A-module structure. Proposition 1.8.1 then asserts
that there is a natural equivalence

q : Homn(A, GC)- Homa(FA, C)

for A in LJte and C in Sib. Thus F is left adjoint to G and rl-' : F-iG is
the adjugant.

(b) Given a topological Hausdorff space X. we may give X a new
topology by declaring F S X to be closed if Fn K is closed in the original
topology for every compact subset K of X. Write XK for the set X
furnished with this topology. Plainly XK is a Hausdorff space and
the obvious map XK-, X is continuous. Also, given f : X --, Y, a continuous
map of Hausdorff spaces, then f : XK-, YK is also continuous. For if
F is closed in YK and if L is compact in X, then

f-'Fr)L= f-'(FnfL)r)L
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is closed in X, so that f -'F is closed in XK. We call a Hausdorff space
a Kelley space if its closed sets are precisely those sets F such that FnK
is closed for every compact K. If X is a Kelley space then X = XK; and
XK is a Kelley space for every Hausdorff space X. Summing up, we have
the category .5 of Hausdorff spaces, the category R of Kelley spaces, the
functor K : given by K(X) = XK. and the embedding functor
E : R-S,. The facts adduced show that E H K.

We will give later a theorem (Theorem 7.7) which provides additional
motivation for studying adjoint functors. However, we now state some
important propositions about adjoint functors.

Proposition 7.1. Let F : (E-Z, F': Z --*(E, G : Z--+(E, G' : e--+Z be
functors and let q : F -1 G, rl' : F' H G' be adjugants. Then q" : F' F -I G G',
where rl" = rl rl'.

We leave the proof as an exercise. 9
Next we draw attention to the relation which makes explicit the

naturality of rl. We again refer to the situation F -1 G. Then this
relation is

rl (f (p Fa) = G/3 a, (7.1)

for all a : X'-. X, co : FX --> Y. fl : Y--> Y'.

In particular, take Y = FX, P= 1Fx, and set Ex = rl (1Fx) : X -+GFX.
Then (7.1) shows that E is a natural transformation, E : 1-> GF. We call E
the front adjunction or unit. Similarly take X = GY, and set

SY=rI-t(1Gr):FGY,Y.

Again (7.1) shows that 6 is a natural transformation, 6: FG--1, which we
call the rear adjunction or counit. Further, (7.1) implies that

F `*FGF6F F, G -& -G GFGG-5 G

are identity transformations,

bF=FE=1, Gb EG=1. (7.2)

For rl (SFx FEx) = Yl (5Fx) Ex = Ex = rl (1 Fx); and the second relation in
(7.2) is proved similarly. Notice also that (7.1) implies that rl is determined
by E, and that l; = rl- t is determined by S, by the rules

rlkp)=Gcp - Ex, for cp:FX-*Y,

(w)=r1 for p:X-*GY.
(7.3)

We now prove the converse of these results.

Proposition 7.2. Let F : CE-+t, G : Z--* (Ebe functors and let e : 1-> GF,
S : FG--.1 be natural transformations such that bF : FE = 1, G6 EG = 1.
Then tl : t (FX, Y)-* (X, G Y), defined by rl((p) = Gp - Ex, for p : FX -+ Y,
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is a natural equivalence, so that rl : F -i G. Moreover, E, 6 are the unit and
counit of the adjugant rl.

Proof. First,'i is natural. For

rl(Q`
cp.Fa)=G(/3 cp- Fa) EX.

= G/3 - Gcp GFa ex,

= G1 Gcp EX o t, since a is natural
=Gf, rl(gp)-a.

Define i; by (W) = 8Y FW, for W : X -GY. Again, l; is natural and we
will have established that rl : F H G if we show that l; is inverse to q.
Now if cp : FX -. Y, then

r!((p) = by Fr!((p)
= by - FGcp - FEX

= cO 6FX FEX , since S is natural

= cp, by (7.2).

Thus l;rl = I and similarly rll; =1. Finally we see that if e', S' are the unit
and counit of q, then

6=ri(1FX)=1GFX EX=EX,
and

oY=b(1GY)=SY 1FGY=SY 0

Proposition 7.3. Suppose F H G. Then F determines G up to natural
equivalence and G determines F up to natural equivalence.

Proof. It is plainly sufficient to establish the first assertion. Suppose
then that q : F H G, rl' : F H G'. Consider the natural equivalence of
functors

7-1
ry'

(E(-, GY)-t(F-, G'Y).

By the dual of Corollary 4.2 and Proposition 4.3 such an equivalence
is induced by an isomorphism O : G Y-*G' Y. Since rl' U-' is natural
in Y, it readily follows that 0 is a natural equivalence. 0

We remark that if e, 6, e', S' are unit and counit for rl, rl', then

eY=rl'rl-'(1GY)=tl'(5)=G'((Y)` EGY
or, briefly,

9=G'S, EG. (7.4)

It then immediately follows that the inverse 9 of 6 is given by

9=GS'osG'. (7.5)
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Proposition 7.4. Under the same hypotheses as in Proposition 7.3, with
0, 0 defined as in (7.4), (7.5), we have

(i) OF,E=E'; 6-FO=B';
(ii) O - rl((p) = rj (q ), for any p : FX-> Y
Conversely, let I: F -AG and let 0: G--->G' be a natural equivalence.

Then q': F G', where 6Y q((p). Moreover, if E and 6 are the unit
and counit for ry, then E' and d', the unit and counit for tl', are given by (i)
above.

Proof. (i) OF -E=G'6F-E'GF ,E
= G'6F G'FE is', by the naturality of E',

=E'.
(5 F9=(5 FGS',FEG'

= X- SFG' FEG', by the naturality of 6,

=S'.
(ii) 6Y = rl(cp) = Oy, Gcp ° Ex

= G'(p 0FX EX , by the naturality of 0

=G'cp=EX, by(i).

= 11'(ip) .

The proof of the converse is left as an exercise to the reader. Q

Proposition 7.5. If F : (-+ t is full and faithful and if F -1 G, then the
unit E : 1--p GF is a natural equivalence.

Proof. Let S : FG-> 1 be the counit. Then (5F: FGF-+F. Since F
is full and faithful we may define a transformation o : GF-> 1 by

Fox=SFX

and it is plain that o is natural. We show that o is inverse to E. First,
Fo FE = of . Fe = 1, so that o -- e = 1, since F is faithful. Second, if n
is the adjugant, then

n-1(Ex ` ox) = Fox. by (7.2) and (7.3),

= 6FX

-fl_1(1GFX)

Thus E o = 1 and the proposition is proved. 0
Proposition 7.6. If F : - Z is a full embedding and if F-H G, then

there exists G' with F H G' where the unit E : 1-> G'F is the identity.
Proof. We construct the functor G' as follows

G'(Y)=G(Y) if YOImF,
G'F(X) = X.
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For fl: Y1-. Y2

G'(Jl)=G(fl) if Y1iY20lmF,
=F-1(Q) if Y1,Y2eImF.

=G(f) e if Y1elmF, Y20ImF,
=o G(fl) if Y10ImF, Y2eImF,

where ois inverse toe as in Proposition 7.5. A straightforward computation
shows that G' is a functor.

We now define transformations 0 : G-* G', 9: G', G by

01 =1G1, if YOImF,

=oX if Y=FX;
Br= 1Gr if YO 1mF,

=ex if Y=FX.

Again it is easy to show that 0, 9 are natural and they are obviously
mutual inverses. Thus, by Proposition 7.4, F H G' and the counit for this
adjunction is given by

eX = BFX EX = QX EX = 1X , so that E'=I. 0

The reader should notice that where F H G with GF = 1 and e = 1.
then the adjointness is simply given by a counit h : FG--). 1, satisfying

SF=I, Gb=1.

We close this section by relating adjoint functors to the universal
constructions given in previous sections. The theorem below will be
generalized in the next section.

Theorem 7.7. If G : t -- (E has a left adjoint then G preserves products,
pull-backs and kernels.

Proof. We must show that if {X; p.} is the product of objects Y,
in T, then {GY; G(p;)} is the product of the objects G(Y,) in (E. Suppose
given f; : X --> G Y;. Let g : F H G with inverse l;. Then c(f;) : FX -> Y;
so that there exists a unique g : FX -* Y with pig = l; (f;). Then

G(pi) 7(g)=17(pig)=fi

Moreover rl(g) is the unique morphism f such that G(pi) f = f;; for
every f' : X ->GY is of the form f' = ?I (g') and g is uniquely determined
by pig = c(.f,)

Next we look at pull-backs. Given a pull-back

Y a A
161 10
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in Z, we assert that G YG GA
GPI

I G(p

GB- -*GX

is a pull-back in (E. So suppose given y : Z-+GA, 6: Z-> GB in t with
Gtp y = Gtp : 6. Applying , we have 9 - 1; (y) = V' (5). Thus there
exists a unique g : FZ-> Y such that a, o = (y), fl o = (8). Applying
ri, G(a) ry(o) = y, G(fl) ti(o) = 6, and, as for products, ii(o) is the unique
morphism satisfying these equations

We leave the proof that G preserves kernels to the reader. 0

Exercises:

7.1. Prove Proposition 7.1.
7.2. Establish that G' in Proposition 7.6 is a functor.
7.3. Show that if G : has a left adjoint, then G preserves equalizers. Deduce

that G then preserves kernels.
7.4. Let m2Ib be the full subcategory of +Ub consisting of those abelian groups A

such that mA = 0. Show that mWlb admits kernels, cokernels, arbitrary products
and arbitrary coproducts. Let E: m2lb- 1tb be the embedding and let
F: Ub-.ms?Xb be given by F(A)=A/mA. Show that F-IE.

7.5. Show that it is possible to choose, for each A-module M, a surjection
P(M) -*M, where P(M) is a free A-module, in such a way that P is a functor
from TIA to the category Re of free A-modules and eM is a natural transfor-
mation. If E :1 is the embedding functor, is there an adjugant rl : E-t P
such that a is the counit?

7.6. Let (t bea category with products and let D : bethe functor D(A) = A x A.
Discuss the question of the existence of a left adjoint to D, and identify it,
where it exists, in the cases Cr = Cam, Ct = Z, (E = Z', (E _ (5, E _ VA. What can
we say in general?

8. Adjoint Functors and Universal Constructions

Theorem 7.7 established a connection between adjoint functors and
universal constructions. We now establish a far closer connection which
will enable us finally to give a definition of the notion of universal con-
struction ! At the same time it will allow us to place Theorem 7.7 in a
far more general context.

As our first example of a universal construction we considered the
case of a product. We recall that we mentioned in Proposition 5.3 that
the construction of a product over the indexing set I could be regarded
as a functor (FI-*CC. Now there is a constant functor (or diagonal functor)
P : (E, V, given by P(B) = {Bi}, i e I, where B, = B for all i e I. Suppose
P-I G and let S : PG-' 1 be the counit of the adjunction. Then if {Xi}
is an object of V, 6 determines a family of morphisms pi : G({Xi})-*X,.
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Proposition 8.1. The product of the objects X; is (X; pi) where
X = G({Xi}).

Proof. Given fi : Y-* Xi, we have a morphism f = {f} : P(Y) {Xi}.
Then ?I(f) is a morphism Y-X such that, by (7.3),

6 -P(rj(f))=f

But this simply means that pi rl(f) = fi for all i. Moreover the equations
S P(g)=f determines g, since then, again by (7.3), g = rl(f ). 0

Thus we see that the product is given by a right adjoint to the constant
functor P: &-+V, and the projections are given by the counit of the
adjunction. Plainly the coproduct is given by a left adjoint to the constant
functor P, the injections arising from the unit of the adjunction. We
leave it to the reader to work out the details.

Generalizing the above facts, we define a universal construction
(corresponding to a functor F) as a left adjoint (to F) together with the
counit of the adjunction, or as a right adjoint (to F) together with the
unit of the adjunction. Quite clearly we should really speak of universal
and couniversal constructions. However, we will adopt the usual con-
vention of using the term "universal construction" in both senses.

We now give a couple of examples, to show just how universal
constructions, already familiar to the reader, turn up as left or right
adjoints. We first turn to the example of a pull-back.

Let Q be the category represented by the schema

that is, Q consists of three objects and two morphisms in addition to
the identity morphisms. We may write a functor Q-' as a pair (gyp, tp)
in E and represent it as

A

1 47

B 4,+X

There is a constant functor F from (E to the functor category tS which
associates with Z the diagram
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Notice that a morphism (y. 6): F(Z)-*(cp. W) in t1 is really nothing but
a pair of morphisms y : Z-+A, 8 : Z-->B in E such that the square

B w X

commutes. Now let F H G and let n : be the counit of the
adjunction.

Proposition 8.2. n : FG(cp, W)--+(q o, W) is the pull-back of (tp, W).

Proof. Let G((p, W) = Y. Then n : F(Y)--i(9, W) is a pair of morphisms
a : Y--+A, #: Y--+B such that W a =W/J. Moreover, if (y, 6): F(Z)--+((p, W),
then q = q (y, 6): Z- Y satisfies, by (7.3)

it F(q)=(y,b),

that is, a - q = y. /3 - q = S. Moreover the equation it F(C) = (y, S) determines
C as q (y, 8). 0

We remark that in this case (unlike that of Proposition 8.1) F is a
full embedding. Thus we may suppose that the unit e for the adjunction
F--AG is the identity. This means that the pull-back of F(Z) consists of
(lz, li). To see that F is a full embedding, it is best to invoke a general
theorem which will be used later. We call a category 13 connected if,
given any two objects A, B in $ there exists a (finite) sequence of objects
At, A2, ..., A. in t such that At = A, A = B and, for any i, 1<_ i<_ n -1,
f (Ai, A;+,)u $(Ai+,, Ai) + O. This means that we can connect A to B
by a chain of arrows, thus:

A--+.+- .--+ ...+- .->B

Theorem 8.3. Let t be a small connected category and let F : Cs-40
be the constant functor. Then F is a full embedding.

Proof. The point at issue is that F is full. Let f : X -> Y in Cs and let
P, Q be objects of fit. We have a chain in $

and hence must show that, given a commutative diagram

X-t + X +-I-X X t -X

Y-1--+ Y +--I -y- -,+y
in E, then f'=f; but this is obvious. 0
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Notice that an indexing set I, regarded as a category, is not connected
(on the contrary, it is discrete) unless it is a singleton. On the other hand,
directed sets are connected, so that our remarks are related to the
classical theory of inverse limits (and by duality, direct limits). The reader
is referred to Chapter VIII, Section 5, for details.

It is clear that the push-out is a universal construction which turns
up as a left adjoint to the constant functor F : E*V°". Plainly also the
formation of a free A-module on a given set is a universal construction
corresponding to the underlying functor U : which turns up
as left adjoint to U.

We now discuss in greater detail another example of a universal
construction which turns up as a left adjoint and which is of considerable
independent interest: the Grothendieck group. Let S be an abelian
semigroup. Then S x S is also, in an obvious way, an abelian semigroup.
Introduce into S x S the homomorphic relation (a. b) - (c. d) if and only
if there exists ueS with a+d+u=b+c+u.

This is plainly an equivalence relation; moreover, (S x S);' - = Gr(S)
is clearly an abelian group since

[a, b] + [b, a] = [a + b, a + b] = [0, 0] = 0,

where square brackets denote equivalence classes. Further there is a
homomorphism ti : S--*Gr(S), given by :(a) = [a, 0], and i is injective if
and only if S is a cancellation semigroup.

It is then easy to show that i has the following universal property.
Let A be an abelian group and let o : S-*A be a homomorphism. Then
there exists a unique homomorphism 6 : Gr(S)-->A such that 5'z= o,

S `>Gr(S)
° I ° (8.1)

A4

Finally, one readily shows that this universal property determines
Gr(S) up to canonical isomorphism; we call Gr(S) the Grothendieck
group of S.

We now show how to express the construction of the Grothendieck
group in terms of adjoint functors. Let 9tb be the category of abelian
groups, let 21 bs be the category of abelian semigroups and let E : `21 b, 21 bs
be the embedding (which is. of course, full). Suppose that F-IE and let
i : 1-+EF be the unit of the adjunction. Then the reader may readily
show that F(S) is the Grothendieck group of S, that is coincides with i
in (8.1). and that F = q` (u)(Q) - note that a in (8.1) is strictly a morphism
S,E(A) in +21bs.

The precise formulation of the notion of a universal construction
serves to provide a general explanation of the facts asserted in Theorem
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7.7. Given a functor F : (E T and a small category I there is an obvious
induced functor FP : E$-> Z$. The reader will readily prove the following
lemmas.

Lemma 8.4. If F H G, then F$ H G$. 0

Lemma 8.5. If P : E-+E$ is the constant functor (for any 0., then
the diagram

commutes. 0

We infer from Propositions 7.1, 7.3 and Lemmas 8.4, 8.5 the following
basic theorem.

Theorem 8.6. Let F: &-> t and F H G. Further let P H R (for
P : &-- CVO and P : Z--+ V). Then there is a natural equivalence GR-+R G*'
uniquely determined by the given adjugants. 0

This theorem may be described by saying that R commutes with
right adjoints. In Chapter 8 we will use the terminology "limit" for such
functors R right adjoint to constant functors. Its proof may be summed
up in the vivid but slightly inaccurate phrase: if two functors commute
so do their (left, right) adjoints. The percipient reader may note that
Theorem 8.6 does not quite give the full force of Theorem 7.7. For Theorem
7.7 asserts for example that if a particular family { Y;} of objects of Z
possess a product, so does the family {G Y;} of objects of &1; Theorem 8.10,
on the other hand, addresses itself to the case where the appropriate
universal constructions are known to exist over the whole of both cate-
gories. The reader is strongly advised to write out the proof of Theorem
8.6 in detail.

Exercises:

8.1. Write out in detail the proofs of Lemma 8.4, Lemma 8.5 and Theorem 8.6.
8.2. Express the kernel and the equalizer as a universal construction in the precise

sense of this section.
8.3. Give examples of Theorem 8.6 in the categories S. 6 and 931A.
8.4. Let S be an abelian semigroup. Let F(S) be the free abelian group freely

generated by the elements of S and let R(S) be the subgroup of F(S) generated
by the elements

a+b-(a+b),a,beS;
here we write + for the addition in F(S) and + for the addition in S. Establish
a natural equivalence

Gr(S) = F(S)IR(S).
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8.5. Show that if S is a (commutative) semiring (i.e., S satisfies all the ring axioms
except for the existence of additive inverses), then Gr(S) acquires, in a natural
way, the structure of a (commutative) ring.

8.6. Show how the construction of the Grothendieck group of a semigroup S,
given in Exercise 8.4 above, generalizes to yield the Grothendieck group of
any small category with finite coproducts.

8.7. The Birkhoff-Witt Theorem asserts that every Lie algebra g over the field K
may be embedded in an associative K-algebra Ug in such a way that the
Lie bracket [x, y] coincides with xy - yx in U g, x, y e g, and such that to
every associative K-algebra A and every K-linear map f : g---+A with

f [x, y] =1' (x) .f (y) - J (y) f (x) , x, y e g ,

there exists a unique K-algebra homomorphism f*: Ug-+A extending f.
Express this theorem in the language of this section.

8.8. Consider in the category E (for example, C, 2tb, 972,,, (tii) the situation

Co " CI, D CZ,_.,... C; in LT.

Set lim C. = n C, and lim C, = U Ci, regarding the yi as embeddings. What

are the universal properties satisfied by Jim Ci and lim Ci? Describe lim as a
right adjoint, and lim as a left adjoint, to a constant functor. Use this description
to suggest appropriate meanings for lim Ci and Jim C, if (1; = 9R and each
yi is epimorphic.

9. Abelian Categories

Certain of the categories we introduced in Section 1 possess significant
additional structure. Thus in the categories 21b, 931'A, 931" the morphism
sets all have abelian group structure and we have the notion of exact
sequences. We proceed in this section to extract certain essential features
of such categories and define the important notion of an abelian category:
much of what we do in later chapters really consists of a study of the
formal properties of abelian categories. It is a very important fact
about such categories that the axioms which characterize them are
self-dual, so that any theorem proved about abelian categories yields
two dual theorems when applied to a particular abelian category such
as fit;,.

In fact, in a very precise sense, module categories are not so special
in the totality of abelian categories. A result, called the full embedding
theorem [37, p. 151] asserts that every small abelian category may be
fully embedded in a category of modules over an appropriate ring, in
such a way that exactness relations are preserved. This means, in effect,
that, in any argument involving only a finite diagram, and such notions
as kernel, cokernel, image, it is legitimate to suppose that we are operating
in a category of modules. Usually, the point of such an assumption is to
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permit us to suppose that our objects are sets of elements, and to prove
statements by "diagram-chases" with elements. The full embedding
theorem does not permit us, however, to "argue with elements" if an
infinite diagram (e.g., a countable product) is involved.

We begin by defining a notion more general than that of an abelian
category.

Definition. An additive category 21 is a category with zero object
in which any two objects have a product and in which the morphism
sets 21 (A, B) are abelian groups such that the composition

21(A, B) x 921(B, C)-+91(A, C)
is bilinear.

Apart from the examples quoted there are, of course, very many
examples of additive categories. We mention two which will be of
particular importance to us.

Examples. (a) A graded A-module A (graded by the integers) is a
family of A-modules A = (A}, n a Z. If A. B are graded A-modules, a
morphism (p: A-* B of degree k is a family of A-module homomorphisms
{(p.: n a Z. The category so defined is denoted by Wl . We
obtain an additive category if we restrict ourselves to morphisms of
degree 0. (The reader should note a slight abuse of notation: If 7L is
regarded as the discrete category consisting of the integers, then Wl is
the proper notation for the category with morphisms of degree 0.)

(b) We may replace the grading set 7L in Example (a) by some other
set. In particular we will be much concerned in Chapter VIII with
modules graded by Z x 71; such modules are said to be bigraded. If A
and B are bigraded modules, a morphism cp : A-B of bidegree (k, I)
is a family of module homomorphisms {cp m : The
category so defined is denoted by xz If we restrict the morphisms
to be of bidegree (0, 0) we obtain an additive category.

Notice that, although M', W1z x z are not additive, they do admit
kernels and cokernels. We will adopt the convention that kernels and
cokernels always have degree 0 (bidegree (0, 0)). If we define the image
of a morphism as the kernel of the cokernel, then, of course, these
categories also admit images (and coimages!).

Abelian categories are additive categories with extra structure.
Before proceeding to describe that extra structure, we prove some
results about additive categories. We write Al Q+ A2 for the product of
Al and A2 in the additive category 21. Before stating the first proposition
we point out that the zero morphism of 21(A. B). in the sense of Section 1,
is the zero element of the abelian group 21(A. B), so there is no confusion
of terminology.

Our first concern is to make good our claim that the axioms are,
in fact, self-dual. Apparently there is a failure of self-duality in that
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we have demanded (finite) products but not coproducts. We show that
actually we can also guarantee the existence of coproducts. We prove
the even stronger statement:

Proposition 9.1. Let it={1,0}: Al-A1([ A2, i2 = {0,1):A2-'A1Q+A2.
Then (A1 (@ A2; i1, i2) is the coproduct of A 1 and A2 in the additive cat-
egory W.

We first need a basic lemma.

Lemma 9.2. i1p1+i2P2=1 :A1(A2-A1$$A2.

Proof. Now p1(i1 p1 +i2p2) = p1 i1 p1 + p2 i2P2 = P1, since p, i1 = 1,
p1 i2 = 0. Similarly p2(i1 p1 +'2P2) = P2. Thus, by the uniqueness property
of the product, i1 P1 + i2p2 = 1. 0

Proof of Proposition 9.1. Given (pi: Ai->B. i = 1. 2. define

<1P1, 4P2> ='PiP1 + 42P2 : Al Q+ A2-*B .

Then <<Pi, 92> i1 = ((Pi Pt + 4'2P2) i1 =1Pl P1 i1 + 92P2 i1 = (q1, and similarly
<91, 92> i2 = 92. We establish the uniqueness of <91 I 92> by invoking
Lemma 9.2. For if Bit = 91, Bi2 =1 P2, then

0=B(i1P1+i2P2)=Bi1P1 +Bi2P2=(PiP1+4'2P2=<4'1,4'2> 0

We use the term sum instead of cu product in the case of an additive
category. Of course, sums only coincide with products in an additive
category if a finite number of objects is involved. We know from the
example of 21b that they do not coincide for infinite collections of objects.

Proposition 9.3. Given

A (T-42 B Ei C - v. a> , D,

we have
<y, b> {(p, tp) = y(p +btp

Proof.

<y, b> IT, tp} _ (YP1 + 42) icP,tp} = YP1 IT, y,} + 42 {cp, y.,}

=YtP+btp. 0

This proposition has the following interesting corollary.

Corollary 9.4. The addition in the set 21 (A, B) is determined by the
category 21.

P r o o f . If 1P1,9P2:A-B then 41+42=<41,42> {1, 1}. 0
We may express this corollary as follows. Given a category with zero

object and finite products, the defining property of an additive category
asserts that the "morphism sets" functor 2X°D° x 21 -+ l'7 may be lifted
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to 2Ib, 2IICb

to

where U is the "underlying set" functor. Then Corollary 9.4 asserts
that the lifting is unique. We next discuss functors between additive
categories. We prove

Proposition 9.5. Let F:11--+43 be a functor from the additive category
21 to the additive category 93. Then the following conditions are equivalent:

(i) F preserves sums (of two objects) ;
(ii) F preserves products (of two objects) :

(iii) for each A. A' in W. F: 21(A, FA') is a homomorphism.

Proof. This is not quite trivial since we are required to show
that F<1, 0> = <1, 0> and F<0,1> = <0, 1>. Thus we must show that
F(O) = 0 and for this it is plainly sufficient to show that F maps zero
objects to zero objects. Let 0 be a zero object of W. Then plainly, for any
A in 2I, A is the sum of A and 0 with 1A and 0 as canonical injections.
Thus if B = F(0), then FA is the sum of FA and B, with injections 1FA
and fi = F(0). Consider 0: FA--+B and 1 : B--+B. There is then a (unique)
morphism 0 : FA-'B such that 01=0, B/3 =1. Thus 1 = 0 : B--->B so
that B is a zero object.

That (ii) . (i) now follows by duality.
(i) - (iii) If (p1, (p2 : A-'A' then 01 + 402 = <<p1, q'2> (1, 1), so that

F(gg1+(p2)=<F(p1,F(p2> {t. 1) .

=Fcp1 +Fp2 .

since F preserves sums and products,

(iii) (ii) To show that F preserves products we must show that

{Fp1, Fp2} : F(A1 O+ A2)--.FAKE FA2

is an isomorphism. We show that

F(i1) PI + F(i2) P2 : FAI ®FA2 -'F(A1 p+ A2)

is inverse to (F p1, Fp2}. For

{Fpl, FP2} (F(i1) PI +F(i2) P2) = {Fp1. FP2} F(i1) PI + {Fp1. Fp2} F(i2)P2

= {F(P1i1),F(P2i1)}PI+{F(P1i2),F(P2i2))P2

= { 1, 0} p1 + {0, 1 } p2 , since F(0) = 0 ,

= iIP1 +'2P2
=1;



78 II. Categories and Functors

and

(F(it) pt +F(i2) P2) {Fpl, Fp2} = F(it) pl {Fpt, Fp2} +F(i2) P2 {Fpl. Fp2}

=Fi1Fpt +Fi2Fp2
= F(it pt + i2 p2) , since F satisfies (iii),

=1. 0

We call a functor satisfying any of the three conditions of Proposition
9.5 an additive functor. Such functors will play a crucial role in the
sequel. However in order to be able to do effective homological algebra
we need to introduce a richer structure into our additive categories;
we want to have kernels, cokernels and images. Recall that kernels, if
they exist, are always monomorphisms and (by duality) cokernels are
always epimorphisms. In an additive category a monomorphism is
characterized as having zero kernel, an epimorphism as having zero
cokernel.

Definition. An abelian category is an additive category in which
(i) every morphism has a kernel and a cokernel;

(ii) every monomorphism is the kernel of its cokernel; every epi-
morphism is the cokernel of its kernel;

(iii) every morphism is expressible as the composite of an epimorphism
and a monomorphism.

The reader will verify that all the examples given of additive categories
are, in fact, examples of abelian categories. The category of finite abelian
groups is abelian; the category of free abelian groups is additive but
not abelian. We will be content in this section to prove a few fundamental
properties of abelian categories and to define exact sequences. Notice
however that the concept of an abelian category is certainly self-dual.

Proposition 9.6. Given cp : A--+B in the abelian category 2t, we may
develop from c the sequence

(Sq,) K,"-*A ",.I B C,

where tp = vtl, µ is the kernel of tp, a is the cokernel of cp, g is the cokernel
of u, and v is the kernel of s. Moreover, the decomposition of'9 as a composite
of an epimorphism and a monomorphism is essentially unique.

We first prove a lemma.

Lemma 9.7. Suppose vq and g have the same kernel and q is an epi-
morphism. Then v is a monomorphism.

Proof. Use property (iii) of an abelian category to write v = oa,
with a epimorphic, o monomorphic. Then vtl = oarl and if u is the kernel
of ail, then p is the kernel of oarl = vtl and hence also of q. Thus p is the
kernel of aq and of, so that, by property (ii), arl and q are both cokernels
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of p. This means that there exists an isomorphism in 2i, say co, such
that ail = coq, so that a = co. Thus a is an isomorphism so that v is a
monomorphism. p

Proof of Proposition 9.6. Let p be the kernel of cp and let q be the
cokernel of It. Since cpp = 0, cp = vq. Since y is the kernel of q, Lemma 9.7
assures us that v is a monomorphism. If k; is the cokernel of q o, then s
is the cokernel of v (since q is an epimorphism), so v is the kernel of E
and the existence of S , is proved.

Finally if cp = vrl = vt q1, with q, q1 epimorphic, v, v1 monomorphic,
then ker cp = ker q = ker q t so that q t = coq for some isomorphism co
and then v = vt co. Q

We leave to the reader the proof of the following important corollary.

Corollary 9.8. If the morphism a in the abelian category 21 is a
monomorphism and an epimorphism, then it is an isomorphism. 0

We have shown that the sequence S., is, essentially, uniquely
determined by the morphism cp. It is, of course, easy to show that the
association is functorial in the sense that, given the commutative diagram

A --L-+ B

I. I #

A'--'-'" B'

there is a commutative diagram

K , '" A -"-»I °->B C

jK Ia It ,Is IzK'+A' , - I'>B'-B'-j, C'

cp=vq, cp'=V'rl'.

For since we construct p, p' as kernels and then q, rl'; e, s' as cokernels,
we automatically obtain morphisms K, 1, such that p'x = ap, q'a = iq,
E 'fl = As, and the only point at issue is to show that Vi = /3v. But

v'1q=v'q'a=cp'a=fig = furl,

and so, since q is epimorphic, Vi = fv.
Definition. A short exact sequence in the abelian category 2I is

simply a sequence
µ _ E

in which p is the kernel of E, and a is the cokernel of p.
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A long exact sequence in the abelian category 21 is a sequence
Wn w +1

<Pn = NnEm µn monomorphic, en epimorphic. where, for each n. µn is the
kernel of c,+ t (and En+ t is the cokernel of µn).

Exercises:

9.1. Consider the commutative diagram

A-BBC

A'--07-+B'-w. C'

in the abelian category W. Show, that if A aw,. B'-W-i' C' is exact and fi is a
monomorphism, then A_+B_C' is exact. What is the dual of this?

9.2. Show that the square
AFB

A' B'

in the abelian category 91 is commutative if and only if the

A <-4"'P> , B'

is differential, i.e., <-(p',13> {a, rp} = 0. Show further that
(i) the square is a pull-back if and only if {a, (p} is the kernel of <-cp', fl>,
(ii) the square is a push-out if and only if < - (p', /3> is the cokernel of {a, (P).

9.3. Call the square in Exercise 9.2 above exact if the corresponding sequence
is exact. Show that if the two squares in the diagram

A "B W C

B'BC'
are exact, so is the composite square.

9.4. In the abelian category 91 the square

A "B

is a pull-back and the square
A -B

j
lai

A'-,-+ B'
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is a push-out. Show (i) that there exists co: B'I B' such that wp1= /3, coq = (p',
and (ii) that the second square above is also a pull-back.

9.5. Let 2I be an abelian category with arbitrary products and coproducts. Define
the canonical sum-to-product morphism w : A., and prove that it

is not true in general that co is a monomorphism.
9.6. Let 2I be an abelian category and E a small category. Show that the functor

category 2I' is also abelian. (Hint: Define kernels and cokernels component-
wise).

9.7. Give examples of additive categories in which (i) not every morphism has a
kernel. (ii) not every morphism has a cokernel.

9.8. Prove Corollary 9.8. Give a counterexample in a non-abelian category.

10. Projective, Injective, and Free Objects

Although our interest in projective and injective objects is confined,
in this book, to abelian categories, we will define them in an arbitrary
category since the elementary results we adduce in this section will
have nothing to do with abelian, or even additive, categories. Our
principal purpose in including this short section is to clarify the cat-
egorical connection between freeness and projectivity. However,
Proposition 10.2 will be applied in Section IV.12, and again later in
the book.

The reader will recall the notion of projective and injective modules
in Chapter [. Abstracting these notions to an arbitrary category, we are
led to the following definitions.

Definition. An object P of a category E is said to be projective if
given the diagram p

A E-»

in E with c epimorphic, there exists y' with Eye = gyp. An object J of t is
said to be injective if it is projective in E°PP.

Much attention was given in Chapter I to the relation of projective
modules to free modules. We now introduce the notion of a free object in
an arbitrary category.

Definition. Let the category ( be equipped with an underlying
functor to sets, that is, a functor U : CB which is injective on morphisms,
and let Fr--I U. Then, for any set S, Fr(S) is called the free object on S
(relative to U).

After the introduction to adjoint functors of Sections 7 and 8. the
reader should have no difficulty in seeing that Fr(S) has precisely the
universal property we would demand of the free object on S. We will
be concerned with two questions: (a) are free objects projective, (b) is



82 11. Categories and Functors

every object the image of a free (or projective) object? We first note the
following property of the category of sets.

Proposition 10.1. In C3 every object is both projective and injective. 0

We now prove
Proposition 10.2. Let F : CK-+ Z and F H G. If G maps epimorphisms

to epimorphisms, then F maps projectives to projectives.

Proof. Let P be a projective object of E and consider the diagram,
in Z, F(P)

I -P

A `»B
Applying the adjugant, this gives rise to a diagram

P
I

OP)

GA GB

in (, where, by hypothesis, Gs remains epimorphic. There thus exists
w' : P-. GA in (Kwith G e W'= ri (cp), so that e tp = cp, where tl (tp) = V'. 0

Corollary 10.3. If the underlying functor U : CK-4 CB sends epimorphisms
to surjections then every free object in (E is projective. 0

This is the case, for example, for 2[b, 93'A- (5: the hypothesis is false,
however, for the category of integral domains, where, as the reader may
show, the inclusion 7L S Q is an epimorphism (see Exercise 3.2).

We now proceed to the second question and show

Proposition 10.4. Let Fr H U, where U : (E-4 Cro is the underlying
functor. Then the counit S : FrU(A)-+A is an epimorphism.

Proof. Suppose a, Y: A-+B and a , 6 = a' 6. Applying the adjugant
we find U(a) = U (a'). But U is injective on morphisms so a =Y. 0

Thus every object admits a free presentation by means of the free
object on its underlying set and this free presentation is a projective
presentation if U sends epimorphisms to surjections.

Proposition 10.5. (i) Every retract of a projective object is projective.
(ii) If U sends epimorphisms to surjections, then every projective

object is a retract of a free (projective) object.

Proof. (i) Given P± Q, oo' = 1, P projective, and

Q

r
A--* B ,
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choose W : P,A so that Etp' = cpg and set ip = W' a. Then

(ii) Since S is an epimorphism it follows that if A is projective there
exists a : A-+Fr U(A) with ba = 1. Note that, even without the hypothesis
on U, a projective P is a retract of FrU(P); the force of the hypothesis
is that then FrU(P) is itself projective. 0

Proposition 10.6. (i) A coproduct of free objects is free.
(ii) A coproduct of projective objects is projective.

Proof. (i) Since Fr has a right adjoint, it maps coproducts to co-
products. (Coproducts in S are disjoint unions.)

(ii) Let P = Jj P , Pi projective, and consider the diagram

P

1
A `-»B

Then cp = <(pi>, (pi : Pi-+B and, for each i, we have tpi : Pi-+A with
sip, = (pt. Then if i' = <tpi>, we have sip = (p. Notice that, if the morphism
sets of C are non-empty then if P is projective so is each Pi by Proposition
10.5 (i). 0

We shall have nothing to say here about injective objects beyond
those remarks which simply follow by dualization.

Exercises:

10.1. Use Proposition 1. 8.1 to prove that if A is free as an abelian group, then
every free A-module is a free abelian group. (Of course, there are other
proofs!).

10.2. Verify in detail that Fr(S) has the universal property we would demand of
the free object on S in the case E = (6.

10.3. Deduce by a categorical argument that if Cs = (5, then Fr(Su T) is the free
product of Fr(S) and Fr(T) if Sn T = 0.

10.4. Dualize Proposition 10.5.
10.5. Show that Z C Q is an epimorphism (i) in the category of integral domains,

(ii) in the category of commutative rings. Are there free objects in these
categories which are not projective?

10.6. Let A be a ring not necessarily having a unity element. A (left) A-module
is defined in the obvious way, simply suppressing the axiom 1 a= a. Show
that A, as a (left) A-module, need not be free!



III. Extensions of Modules

In studying modules, as in studying any algebraic structures, the standard
procedure is to look at submodules and associated quotient modules.
The extension problem then appears quite naturally: given modules A, B
(over a fixed ring A) what modules E may be constructed with submodule
B and associated quotient module A? The set of equivalence classes of
such modules E, written E(A, B), may then be given an abelian group
structure in a way first described by Baer [3]. It turns out that this group
E(A, B) is naturally isomorphic to a group Exte(A, B) obtained from A
and B by the characteristic, indeed prototypical, methods of homological
algebra. To be precise. ExtA(A. B) is the value of the first right derived
functor of HomA(-, B) on the module A, in the sense of Chapter IV.

In this chapter we study the homological and functorial properties of
ExtA (A, B). We show, in particular, that ExtA(-, -) is balanced in the
sense that ExtA(A, B) is also the value of the first right derived functor
of HomA(A, -) on the module B. Also, when A =7L, so that A, B are
abelian groups, we indicate how to compute the Ext groups; and prove a
theorem of Stein-Serre showing how, for abelian groups of countable
rank, the vanishing of Ext(A, 71) characterizes the free abelian groups A.

In view of the adjointness relation between the tensor product and
Hom (see Theorem 7.2), it is natural to expect a similar theory for the
tensor product and its first derived functors. This is given in the last
two sections of the chapter.

1. Extensions

Let A, B be two A-modules. We want to consider all possible A-modules E
such that B is a submodule of E and E/B -=A. We then have a short
exact sequence

A

of A-modules; such a sequence is called an extension of A by B. We shall
say that the extension B.--+E1-»A is equivalent to the extension
B-+E2-»A if there is a homomorphism l; : E1->E2 such that the
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diagram

14

B- E2-»A
is commutative. This relation plainly is transitive and reflexive. Since
is necessarily an isomorphism by Lemma 1.1.1, it is symmetric, also.

The reader will notice that it would be possible to define an equiv-
alence relation other than the one defined above: for example two
extensions E1, E2 may be called equivalent if the modules E1, E2 are
isomorphic, or they may be called equivalent if there exists a homo-
morphism : E1->E2 inducing automorphisms in both A and B. In our
definition of equivalence we insist that the homomorphism : E1->E2
induces the identity in both A and B. We refer the reader to Exercise 1.1
which shows that the different definitions of equivalence are indeed
different notions. The reason we choose our definition will become clear
with Theorem 1.4 and Corollary 2.5.

We denote the set of equivalence classes of extensions of A by B by
E(A, B). Obviously E(A, B) contains at least one element: The A-module
ApB, together with the maps 1B, 7[A, yields an extension

(1.1)

The map 1A : A-*AE B satisfies the equation 1tA lA =1A and the map
nB : AQ+ B-+B the equation nB 1B =1B. Because of the existence of such
maps we call any extension equivalent to (1.1) a split extension of A by B.

Our aim is now to make E(-, -) into a functor; we therefore have
to define induced maps. The main part of the work is achieved by the
following lemmas.

Lemma 1.1. The square Y-A
Js 1-P (1.2)

BMX
is a pull-back diagram if and only if the sequence

O-+Y ta.aL AQ+ B < T> X
is exact.

Proof. We have to show that the universal property of the pull-back
of ((p,tp)is the same as the universal property of the kernel of <qO, -tp>.
But it is plain that two maps y : Z--+A and S : Z-*B make the square

Z" )A
jo jc

B'P X
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commutative if and only if they induce a map {y, S} : Z->A (DB such
that <(p, -W> ° {y, S} = 0. The universal property of the kernel asserts the
existence of a unique map C: Z-+ Y with {a, f3} - C = {y, S}. The universal
property of the pull-back asserts the existence of a unique map i : Z--' y
with a v C = y and f3 t; = S. 0

Lemma 1.2. If the square (1.2) is a pull-back diagram, then
(i) f3 induces kera-*kery);

(ii) if ip is an epimorphism, then so is a.

Proof. Part (i) has been proved in complete generality in Theorem
11.6.4. For part (ii) we consider the sequence 0- Y- A (D B X
which is exact by Lemma 1.1. Suppose a e A. Since w is epimorphic there
exists b e B with (pa = tpb, whence it follows that (a, b) e ker <cp, - p>
= im {a, f3} by exactness. Thus there exists y e Y with a = ay (and b = fty).
Hence a is epimorphic. 0

We now prove a partial converse of Lemma 1.2 (i).

Lemma 1.3. Let

B>-E' *A'

B, )E ' -WA

be a commutative diagram with exact rows. Then the right-hand square is
a pull-back diagram.

Proof. Let

be a pull-back diagram. By Lemma 1.2 s is epimorphic and cp induces
an isomorphism kere = B. Hence we obtain an extension

BHP-»A'.

By the universal property of P there exists a map t4 : E'->P, such that
cp C = , e l; = V. Since C induces the identity in both A' and B, l; is an
isomorphism by Lemma 1.1.1. 0

We leave it to the reader to prove the duals of Lemmas 1.1, 1.2, 1.3.
In the sequel we shall feel free to refer to these lemmas when we require
either their statements or the dual statements.



1. Extensions 87

Let a : A'---+A be a homomorphism and let "»A be a repre-
sentative of an element in E(A, B). Consider the diagram

Ea !' '

I-
B K )E "oA

where (E"; v', ) is the pull-back of (a, v). By Lemma 1.2 we obtain an
extension BCE" -+A'. Thus we can define our induced map

a* : E(A, B)-+E(A', B)

by assigning to the class of B-->E-»A the class of Plainly
this definition is independent of the chosen representative

We claim that this definition of E(a, B) = a* makes E(-, B) into a
contravariant functor. Indeed it is plain that for a = 'A : the induced
map is the identity in E(A, B). Let a': A"--+A' and a : A'-A. In order
to show that E(a a', B) = E(a', B) - E(a, B), we have to prove that in the
diagram

where each square is a pull-back, the composite square is the pull-back
of (v, a a'). But this follows readily from the universal property of the
pull-back.

Now let /3: B---)-B' be a homomorphism, and let B-E again
be a representative of an element in E(A. B). We consider the diagram

B'' )E A

B'...._K:. Es

where (Er : K'. ) is the push-out of (fl. K). The dual of Lemma 1.2 shows
that we obtain an extension B'>-Efi--+*A. We then can define

/3* : E(A, B')
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by assigning to the class of Br-+E the class of As
above one easily proves that this definition of E(B, fl) _ /3* makes E(A, - )
into a covariant functor. Indeed, we even assert:

Theorem 1.4. E(-, -) is a bifunctor from the category of A-modules
to the category of sets. It is contravariant in the first and covariant in the
second variable.

Proof. It remains to check that /*a* =a*/i* : E(A, B)-+E(A'. B').
We can construct the following (3-dimensional) commutative diagram,
using pull-backs and push-outs.

B E A

\B Ea II A,

s ;

B' = Ep A

B'- (Ea)e A,

(Ep)a

We have to show the existence of (E)p->(Ep)a such that the diagram
remains commutative. We first construct E'->(EO)a satisfying the
necessary commutativity relations. Since Ea->E--+E,-*A coincides
with Ea->A'-*A, we do indeed find Ea-*(Es)a such that Ea-+ (E,)a--.EE
coincides with E--+E--+E, and coincides with E'-+A'.
It remains to check that coincides with
By the uniqueness of the map into the pull-back it suffices to check that
B-- Ea-*(Ep)a-+Es coincides with B-+B'--+(E,)--+E, and B--+E'
-->(Ep)a->A' coincides with B-+B'->(E,)a->A', and these facts follow
from the known commutativity relations. Since B--+ E--+ (EO)a coincides
with B-+B'->(Ep)a we find (E)p _ (Ep)a such that
coincides with B'-*(E,)a and coincides with Ea-*(Es)a.
It only remains to show that (Ea),->(Ep)a--+A' coincides with (P)p--+A'.
Again, uniqueness considerations allow us merely to prove that B'-+(Ea)s
-+(Es)a-*A' coincides with and
coincides with Ea-->(Ea)P->A'. Since these facts, too, follow from the
known commutativity relations, the theorem is proved. Q

Exercises:

1.1. Show that the following two extensions are non-equivalent
Z,OZ ..'Z31 7 _ ) _ _ 3

where p = p' is multiplication by 3, e(1) = I (mod 3) and E'(1) = 2 (mod 3}
1.2. Compute E(Zp, Z), p prime.
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1.3. Prove the duals of Lemmas 1.1, 1.2, 1.3.
1.4. Show that the class of the split extension in E(A, B) is preserved under the

induced maps.
1.5. Prove: If P is projective, E(P, B) contains only one element.
1.6. Prove: If I is injective, E(A, I) contains only one element.
1.7. Show that E(A. B1 Q+ B2) - E(A. B1) x E(A. B2). Is there a corresponding

formula with respect to the first variable?
1.& Prove Theorem 1.4 using explicit constructions of pull-back and push-out.

2. The Functor Ext

In the previous section we have defined a bifunctor E(-, -) from the
category of A-modules to the categories of sets. In this section we shall
define another bifunctor ExtA(-, -) to the category of abelian groups,
and eventually compare the two.

A short exact sequence R+P-LoA of A-modules with P projective
is called a projective presentation of A. By Theorem 1.2.2 such a presenta-
tion induces for a A-module B an exact sequence

Homn (A, B)>- , HomA(P, B)-1-* HomA (R, B). (2.1)

To the modules A and B, and to the chosen projective presentation of A
we therefore can associate the abelian group

Ext'l (A, B) = coker (,u*: HomA (P, B)-i Home (R, B)).

The superscript s is to remind the reader that the group is defined
via a particular projective presentation of A. An element in Ext;l (A, B)
may be represented by a homomorphism cp : R--+B. The element rep-
resented by cp : R-*B will be denoted by [cp] a Ext'A(A, B). Then
[c1] = [92] if and only if p1 -cp2 extends to P.

Clearly a homomorphism fl: B--+ B' will map the sequence (2.1) into
the corresponding sequence for F. We thus get an induced map

Ext;l (A, B)-+ Ext;l (A, B'), which is easily seen to make Ext;l (A, - )
into a functor.

Next we will show that for two different projective presentations of A
we obtain the "same" functor. Let R'-P'-"A' and RAP `»A be
projective presentations of A', A respectively. Let a : A'--* A be a homo-
morphism. Since P' is projective, there is a homomorphism it : P'-,P,
inducing a : R'-*R such that the following diagram is commutative:

R' ' >F A'

R, R ,P

We sometimes say that it lifts a.
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Clearly it. together with a, will induce a map

it* : ExtA(A, B)->Ext"(A', B)

which plainly is natural in B. Thus every it gives rise to a natural trans-
formation from Ext;l (A, -) into Ext" (A', -). In the following lemma we
prove that this natural transformation depends only on a :A'--+ A and
not on the chosen it : P'-+P lifting x.

Lemma 2.1. 7t* does not depend on the chosen 7r: P'->P but only on
a:A'-*A.

Proof. Let ici : P'->P, i= 1, 2, be two homomorphisms lifting a and
inducing ai : R'-->R, so that the following diagram is commutative for
i=1,2

R) A )P E .- A

Consider it1 - 7r2; since itl, it2 induce the same map a : A'->A, it1 - it2
factors through a map z : P'--+R, such that 7t 1- 7r2 = p r. It follows that
01 - 02 = rp'. Thus, if tp : R->B is a representative of the element
[tp] a Ext;l (A, B), we have i CtP] = CtP 61] = CtP c2 + tp c2]

70 [T]. 0
To stress the independence from the choice of it we shall call the

natural transformation (a; P', P) : Ext;l (A, - )-> Ext; (A', -),instead of 7t*.
Let a' : A"-iA' and a : A'--+A be two homomorphisms and R"-->P"-»A",
R'>--+P'-»A', R--+P->A projective presentations of A", A', A re-
spectively. Let 7r': P"---P' lift a' and it : P'--+P lift a. Then it n : P"->P
lifts a c a'; whence it follows that

(a';P",P'),(a;P',P)=(cccx';P", P). (2.2)

Also, we have
(1A; PIP) = 1 . (2.3)

This yields a proof of

Corollary 2.2. Let RAP--»A and R'>-.P'-4A be two projective
presentations of A. Then

(lA;P',P): Ext'A(A, -)--+ Ext'(A, -)

is a natural equivalence.

Proof. Let 7r: P---).P' and 7r': P'->P both lift lA : A--->A. By formulas
(2.2) and (2.3) we obtain (lA; P, P') (1A; P', P)=(1A; P, P) =1 : Ext'A(A, -)
-> Ext; (A, -). Analogously, (lA; P', P) ° (1A; P, P') =1, whence the asser-
tion.

0
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By this natural equivalence we are allowed to drop the superscript s
and to write, simply, ExtA (A, B).

Of course, we want to make ExtA(-, B) into a functor. It is obvious
by now that given a : A'-*A we can define an induced map a* as follows:
Choose projective presentations R'>-P'-4 A' and R-P-A of A', A
respectively, and let a* = (a; P', P) : Ext' (A, B)--+Ext;, (A', B). Formulas
(2.2), (2.3) establish the facts that this definition is compatible with the
natural equivalences of Corollary 2.2 and that ExtA(-, B) becomes a
(contravariant) functor. We leave it to the reader to prove the bi-
functoriality part in the following theorem.

Theorem 2.3. ExtA (- , -) is a bifunctor from the category of A-
modules to the category of abelian groups. It is contravariant in the first,
and covariant in the second variable. 0

Instead of regarding ExtA(A, B) as an abelian group, we clearly can
regard it just as a set. We thus obtain a set-valued bifunctor which -
for convenience - we shall still call ExtA(-, -)-

Theorem 2.4. There is a natural equivalence of set-valued bifunctors
q : E(A, B)=> Exte (A, B).

Proof. We first define an isomorphism of sets

E(A, B)-=* ExtA (A, B) ,

natural in B, where R -1-).P--* A is a fixed projective presentation of A.
We will then show that q is natural in A.

Given an element in E(A, B), represented by the extension BCE ''» A,
we form the diagram

R>- .P ` »A
y

BCE
The homomorphism y' : R-> B defines an element [tp] a Ext' (A, B)
= coker(p* : HomA(P, B)-+HomA(R, B)). We claim that this element
does not depend on the particular cp : P--+E chosen. Thus let qpi : P->E,
i =1, 2, be two maps inducing tpi : R-. B, i = 1, 2. Then p 1 - 92 factors
through r : P--+B, i.e., cp1 KT. It follows that y)1 -tp2 = T U, whence
11P1]_[W2+Tit] _[W2]

Since two representatives of the same element in E(A, B) obviously
induce the same element in Exti1(A, B), we have defined a map q : E(A, B)
->Ext'1(A, B). We leave it to the reader to prove the naturality of q with
respect to B.

Conversely, given an element in Exti1(A,B), we represent this element
by a homomorphism w : R-*B. Taking the push-out of (tp, µ) we obtain
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the diagram R, 8 ` »A

B ._K..,E ...v....

By the dual of Lemma 1.2 the bottom row is an extension.
We claim that the equivalence class of this extension is independent of
the particular representative y : R->B chosen. Indeed another repre-
sentative V: R--+B has the form W'= p + zµ where i : P--+B. The reader
may check that the diagram

R, 8)P `»A

lw
jQ

II

B}-" »A

with q' = cp + icz is commutative. By the dual of Lemma 1.3 the left hand
square is a push-out diagram, whence it follows that the extension we
arrive at does not depend on the representative. We thus have defined
a map

Ext;,(A, B)->E(A, B)

which is easily seen to be natural in B.
Using Lemma 1.3 it is easily proved that q, are inverse to each other.

We thus have an equivalence

q : E(A, B)-*Ext'(A, B)

which is natural in B.
Note that q might conceivably, depend upon the projective presenta-

tion of A. However we show that this cannot be the case by the following
(3-dimensional) diagram, which shows also the naturality of q in A.RP A

aI ;,
I A'

4 1 II

+: A'

Ea is the pull-back of E--+A and A'--+A. We have to show the existence
of homomorphisms cp : P'-.Ea. p : R'-*B such that all faces are com-
mutative. Since the maps P'->E->A and P'-.A'-.A agree they define
a homomorphism qp : P',E, into the pull-back. Then cp induces
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W : R'-.B, and trivially all faces are commutative. (To see that R'--).R--+B
coincides with W, compose each with B->E.) We therefore arrive at a
commutative diagram

E(A, B) "°-)E(A', B)
T4

Ext;, (A, B) a' Ext" (A', B)

For A' = A, a = lA this shows that q is independent of the chosen pro-
jective presentation. In general it shows that tl and are natural in A. 0

Corollary 2.5. The set E(A. B) of equivalence classes of extensions has
a natural abelian group structure.

Proof. This is obvious, since ExtA(A, B) carries a natural abelian
group structure and since q : E(-, - )- * ExtA (-, -) is a natural
equivalence. 0

We leave as exercises (see Exercises 2.5 to 2.7) the direct description
of the group structure in E(A. B). However we shall exhibit here the
neutral element of this group. Consider the diagram

R P ` -,A

11 1. II

BCE
The extension E---»A represents the neutral element in E(A. B)
if and only if W : R-*B is the restriction of a homomorphism T : P-*B,
i.e., if W =,rµ. The map (cp - iT)µ : R---+E therefore is the zero map. so
that cp - KT factors through A, defining a map Q : A--+E with qp - KT = QE.
Since v(cp -,T) = v, a is a right inverse to v. Thus the extension
splits. Conversely if BCE--HA splits, the left inverse of is is a map E--+B
which if composed with 9 : P->E yields T.

We finally note

Proposition 2.6. If P is projective and I injective, then ExtA (P, B) = 0
= ExtA(A, I) for all A-modules A, B.

Proof. By Theorem 2.4 ExtA(P, B) is in one-to-one correspondence
with the set E(P, B), consisting of classes of extensions of the form
B->E-»P. By Lemma 1.4.5 short exact sequences of this form split
Hence E(P, B) contains only one element, the zero element. For the other
assertion one proceeds dually. 0

Of course, we could prove this proposition directly, without involving
Theorem 2.4.
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Exercises:

2.1. Prove that Ext4 ( - , -) is a bifunctor.
2.2. Suppose A is a right r-left A-bimodule. Show that ExtA (A, B) has a left-T-

module structure which is natural in B.
2.3. Suppose B is a right r-left A-bimodule. Show that ExtA (A, B) has a right

F-module structure, which is natural in A.
2.4. Suppose A commutative. Show that ExtA (A, B) has a natural (in A and B)

A-module structure.
2.5. Show that one can define an addition in E(A, B) as follows: Let B-+E1-»A,

B-E2-»A be representatives of two elements 1, 2 in E(A, B). Let
AB : B--+B( BB be the map defined by AB(b) = (b, b), b e B, and let PA : A p A-+A
be the map defined by VA(al, a2) = a1 + a2, a1, a2 e A. Define the sum 1 + 2 by

1 + 2 = E(AB, PA) (B(DBS-,El ®E2-»A®A) .

2.6. Show that if al, a2 : A'-+A, then

(al + a2)* = all + a2 : E(A, B)-. E(A', B),

using the addition given in Exercise 2.5. Deduce that E(A. B) admits additive
inverses (without using Theorem 2.4).

2.7. Show that the addition defined in Exercise 2.5 is commutative and associative
(without using Theorem 2.4). [Thus E(A, B) is an abelian group.]

2.8. Let be the evident exact sequence. Construct its inverse in
E(Z4, Z4).

2.9. Show the group table of E(Z8, Z12).

3. Ext Using Injectives

Given two A-modules A, B, we defined in Section 2 a group ExtA (A, B)
by using a projective presentation R-4P `»A of A:

ExtA (A, B) = coker (p* : HomA (P, B)-+HomA (R, B)) .

Here we consider the dual procedure: Choose an injective presentation
of B, i.e. an exact sequence B -'1-5-S with I injective, and define the group
Ext (A, B) as the cokernel of the map r)* : HomA (A, I)- HomA (A, S).
Dualizing the proofs of Lemma 2.1, Corollary 2.2, and Theorem 2.3 one
could show that ExtA(A, B) does not depend upon the chosen injective
presentation, and that ExtA(-, -) can be made into a bifunctor, co-
variant in the second, contravariant in the first variable. Also, by
dualizing the proof of Theorem 2.4 one proves that there is a natural
equivalence of set-valued bifunctors between E(-, -) and ExtA (-, - ).

Here we want to give a different proof of the facts mentioned above
which has the advantage of yielding yet another description of E(-, -).
In contrast to ExtA(-, -) and ExtA(-, -), the new description will
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be symmetric in A and B. Also, this proof establishes immediately that
ExtA (A, B) and BxtA (A, B) are isomorphic as abelian groups. First let
us state the following lemma, due to J. Lambek (see [32]).

Lemma 3.1. Let
A' --'-+I A- A"

I q
E' V rz 10 (3.1)

B' e- B 2 B"

be a commutative diagram with exact rows. Then 9 induces an isomorphism

0: ker Ba2/(kera2+kercp)- *(imcpnimfl1)/imcpa1 .

Proof. First we show that (p induces a homomorphism of this kind.
Let x e kerOa2 ; plainly q x e imtp. Since O= O x2 x= f 2 cp x, cp x e im f 1.
Ifxekera2,thenxeimal,andcpxeimlpal.Ifxekertp,cpx=O.Thus0
is well-defined. Clearly 0 is a homomorphism. To show it is epimorphic,
let y e imp n imp,. There exists x e A with cp x = y. Since

ea2X=$2( X=#2Y=0,

x e kerOa2. Finally we show that 0 is monomorphic. Suppose x e ker0a2,
such that pxeim1, i.e. for some zeA'. Then x=alz+t,
where t e ker(p. It follows that x e kera2 +ker(p. 0

To facilitate the notation we introduce some terminology.

Definition. Let E be a commutative square of A-modules

We then write
ImE = imcpnim fl/im(pa ,

Ker E = ker cp a/ker a + ker p .

With this notation Lemma 3.1 may be stated in the following form:
If the diagram (3.1) has exact rows, then q induces an isomorphism

0:

Proposition 3.2. For any projective presentation RAP `»A of A and
any injective presentation B>4J-4*S of B, there is an isomorphism

a : Ext;l (A, B)- Ext;l (A, B).
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Proof. Consider the following commutative diagram with exact rows
and columns

HomA(A, B)>--+Hom4(A, I)-+Hom4lA, S)--+Ext'(A, B)

Homn(P, B) Home(P, I)-+Homn(P,

1

'4
1

'3
1

Homo (R, B) -> Hom4 (R, I)- Hom4 (R, S)

Ext' (A, B) ) 0

The reader easily checks that KerE1= Ext'(A, B) and KerE5 = Ext;l(A, B).
Applying Lemma 3.1 repeatedly we obtain

Ext"(A, B) = KerE1 = ImE2 = KerE3 = ImE4 = KerE5 = Ext'(A, B) . 0

Thus for any injective presentation of B, Ext;l (A, B) is isomorphic to
Ex t' (A, B). We thus are allowed to drop the superscript v and to write
Extn(A, B). Let #: B-+B' be a homomorphism and let B'-Y4 I'---o S' be
an injective presentation. It is easily seen that if r : I-*I' is a map inducing
$ the diagram (3.2) is mapped into the corresponding diagram for
B'SI'--H S'. Therefore we obtain an induced homomorphism

fi* : Extra (A, B)-* Exte (A, B')

which agrees via the isomorphism defined above with the induced
homomorphism a* : Exte (A, B)-> Exte (A, B').

Analogously one defines an induced homomorphism in the first
variable. With these definitions of induced maps Exte (-, -) becomes
a bifunctor, and a becomes a natural equivalence. We thus have

Corollary 3.3. Ext4 (-, -) is a bifunctor, contravariant in the first,
covariant in the second variable. It is naturally equivalent to Extra(-, -)
and therefore to E(-, -). 0

We sometimes express the natural equivalence between Extra (-, - )
and Extra (-, -) by saying that Ext is balanced.

Finally the above proof also yields a symmetric description of Ext
from (3.2), namely:

Corollary 3.4. Exte (A, B) = Ker E3. 0

In view of the above results we shall use only one notation, namely
Exte(-, -) for the equivalent functors E(-, -), Extra(-, -), ExtA-, -).
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Exercises:

3.1. Show that, if A is a principal ideal domain (p.i.d.). then an epimorphism
fl: B--» B' induces an epimorphism I* : Exte (A, B)-. Exte (A, B'). State and
prove the dual.

3.2. Prove that Ext7(A, Z) * 0 if A has elements of finite order.
3.3. Compute Extz(Zm, Z), using an injective presentation of Z.
3.4. Show that Ext7(A, Ext7(B, C)) = Extz(B, Extz(A, C)) when A, B, C are finitely-

generated abelian groups.
3.5. Let the natural equivalences rl:E(-, -)-.Ext4(-, -) be defined by Theo-

rem 2.4. a: Ext,,(-. -)-+Ext4(-. -) by Proposition 3.2. and

q : E(-, -)-,Exte(-, -)

by dualizing the proof of Theorem 2.4. Show that a j = ?I-

4. Computation of some Ext-Groups

We start with the following

Lemma 4.1. (i) Exte
1O

Ai, B t = n ExtA (A;, B),
I

(ii) Extn (A, F[
Bi)

= r[ Exte (A, Ba) .
I i

Proof. We only prove assertion (i), leaving the other to the reader.
For each i in the index set we choose a projective presentation
R;, +P;-»A; of A;. Then Q Rim Q R,-» A. is a projective presenta-

tion of A,. Using Proposition 1.3.4 we obtain the following com-

mutative diagram with exact rows

Home(OAi,B1, Hom4(QP,,B)-*Hom4(QR;,B)-»ExtA/QA..B)

It lr F
fl Hom,i(Ai, B) r-, fl HomA(Pi, B)-. fl HomA(Ri, B)-» [l ExtA(Ai, B)

whence the result. 0

The reader may prefer to prove assertion (i) by using an injective
presentation of B. Indeed in doing so it becomes clear that the two
assertions of Lemma 4.1 are dual to each other.

In the remainder of this section we shall compute Extz(A, B) for A, B
finitely-generated abelian groups. In view of Lemma 4.1 it is enough to
consider the case where A, B are cyclic.
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To facilitate the notation we shall write Ext(A, B) (for Exta(A, B))
and Hom (A, B) (for Hom? (A, B)), whenever the groundring is the ring
of integers.

Since Z is projective, one has

Ext(Z, Z) = 0 = Ext(Z, Zq)

by Proposition 2.6. To compute Ext (Zr, Z) and Ext (Zr, Zq) we use the
projective presentation

Z' 1, )Z E »Zr

where p is multiplication by r. We obtain the exact sequence

Hom (Z4. Z), ) Horn (Z. Z)--H' Hom (Z. Z)--+Ext(Z4. Z)

I, It It
0) ) z "` +Z

Since.u* is again multiplication by r we obtain

Z , . .

Also the exact sequence

Hom (Zr, Zq)>---> Hom (Z, Zq)- - Hom (Z, Zq)» Ext (Zr, Zq)

It F F
Z(r.8)

/i

yields, since p* is multiplication by r,

EXt (Zr, Z9) - Z(r, q)

where (r, q) denotes the greatest common divisor of r and q.

Exercises:

4.1. Show that there are p non-equivalent extensions Zp>--.E-*Zp for p a prime,
but only two non-isomorphic groups E, namely ZppZJ and Zp:. How does
this come about?

4.2. Classify the extension classes [E], given by

Zm -.E-»Z

under automorphisms of Z. and Z,,.
4.3. Show that if A is a finitely-generated abelian group such that Ext (A, Z) = 0,

Hom (A. Z) = 0, then A = 0.
4.4. Show that Ext (A, Z) = A if A is a finite abelian group.
4.5. Show that there is a natural equivalence of functors Hom(-, (WZ) - Ext(-, Z)

if both functors are restricted to the category of torsion abelian groups.
4.6. Show that extensions of finite abelian groups of relatively prime order split.
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5. Two Exact Sequences

Here we shall deduce two exact sequences connecting Hom and Ext.
We start with the following very useful lemma.

Lemma 5.1. Let the following commutative diagram have exact rows.

A --" B ' ) C--'O

la 10 ly
0-->A'-"B' --" C'

Then there is a "connecting homomorphism" co : kery-+cokera such that
the following sequence is exact:

ker(x"-+ker#------+kery )cokery. (5.1)

If p is monomorphic, so is µ,k : if E' is epimorphic, so is E*

Proof. It is very easy to see - and we leave the verification to the
reader - that the final sentence holds and that we have exact sequences

kera '-"-* kerfi =ikery,

cokera-"' -*coker fi"-*cokery .

It therefore remains to show that there exists a homomorphism
w : "connecting" these two sequences. In fact, to is defined
as follows.

Let c e kery, choose b E B with Eb = c. Since Efib = y Eb = y c = 0
there exists a' a A' with fib = u' a'. Define w(c) = [a'], the coset of a' in
cokera.

We show that co is well defined, that is. that co(c) is independent of the
choice of b. Indeed, let b e B with ET = c, then b = b + pa and

fi(b+pa)=fib +p'aa.

Hence Y= a' + aa, thus [a] = [a']. Clearly co is a homomorphism.
Next we show exactness at kery. If c e kery is of the form Eb for

b e kera, then 0 = fib = p' a', hence a' = 0 and w(c) = 0. Conversely, let
c e kery with w(c) = 0. Then c = Eb, ib = p' a' and there exists a e A with
as = a'. Consider b = b -pa. Clearly ET = c, but

fib=ab-fµa=fib-p'a'=0,
hence c e kery is of the form Eb with b e kera.

Finally we prove exactness at cokera'. Let w(c) = [a] a cokera. Thus
c = eb, fib = p' a', and u' [a'] = [p' a'] = [fib] = 0. Conversely, let
[a]a coker a with p' [a'] = 0. Then p' a' = f i b f o r some b e B and
c = Eb a kery. Thus [a]= w(c). 0
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For an elegant proof of Lemma 5.1 using Lemma 3.1, see Exercise 5.1.
We remark that the sequence (5.1) is natural in the obvious sense:

If we are given a commutative diagram with exact rows

0

D E--->F --> 0
A C .0

E' F'

0 C'

we obtain a mapping from the sequence stemming from the front diagram
to the sequence stemming from the back diagram.

We use Lemma 5.1 to prove

Theorem 5.2. Let A be a A-module and let B' >B- *B" be an exact
sequence of A-modules. There exists a "connecting homomorphism"
w : Homa (A. B")-> Exta (A. B') such that the following sequence is exact
and natural

O-* Hom4 (A, B') w` Homa (A, B)--* + Homa (A, B")
w ) ExtA (A, B') -" > Exta (A, B) w' > ExtA (A, B") .

(5.3)

This sequence is called the Hom-Ext-sequence (in the second variable).

Proof. Choose any projective presentation R>4P `»A of A and
consider the following diagram with exact rows and columns

HomA(A, B') w' >HomA(A, B) Y'.-> HOMA (A, B")

0->HomA(P, B')->HomA (P, B) f Homa (P, B")-*0

l 1 1
0 ) Homa (R, B )-. HomA (R, B)--> Hom,i (R, B")

I w I
w*

I
ExtA (A, B') ExtA (A, B) ExtA (A, B")

The second and third rows are exact by Theorem 1.2.1. In the second
row W,: Homa (P, B)-*HomA(P, B") is epimorphic since P is projective
(Theorem 1.4.7). Applying Lemma 5.1 to the two middle rows of the
diagram we obtain the homomorphism w and the exactness of the
resulting sequence.
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Let a : be a homomorphism and let R' - P'-»A' be a pro-
jective presentation of A'. Choose 7C:P'->P and a:R'->R such that
the diagram

R'--->P'-HA'

F lit I.R-->P-»A
is commutative. Then a, 7v. a induce a mapping from diagram (5.4)
associated with R>-iP--*A to the corresponding diagram associated
with R'>--+P'-+.A'. The two middle rows of these diagrams form a
diagram of the kind (5.2). Hence the Hom-Ext sequence corresponding
to A is mapped into the Hom-Ext sequence corresponding to A'. In
particular -- choosing a ='A : A->A - this shows that co is independent
of the chosen projective presentation.

Analogously one proves that homomorphisms which make
the diagram

B'>-, B-» B"

F' 1° IV
C"-.C 'C"

commutative induce a mapping from the Hom-Ext sequence associated
with the short exact sequence B'--+B--+>B" to the Hom-Ext sequence
associated with the short exact sequence C'.-+C,C". In particular the
following square is commutative.

HomA(A, B") w) ExtA(A, B')

1P., Ip

HomA(A, C") w , ExtA(A, C')

This completes the proof of Theorem 5.2. 0
We make the following remark with respect to the connecting homo-

morphism w: HomA(A, B")-+ExtA(A, B') as constructed in the proof of
Theorem 5.2. Given a : A--+ B" we define maps 7v, a such that the diagram

Rr- P-»A

B''. " , B- ' , B"

is commutative. The construction of co in diagram (5.4) shows that
w(a) = [a] e ExtA (A, B'). Now let E be the pull-back of (W, a). We then
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have a map 7r': such that the diagram

R -P-----o A

B'---*

?---+>B"

is commutative. By the definition of the equivalence

l; : Ext,i (A, B')- E(A, B')

in Theorem 2.4 the element [a] is represented by the extension
B'---+E --- *).A.

We now introduce a Hom-Ext-sequence in the first variable.

Theorem 5.3. Let B be a A-module and let A'»A A" be a short
exact sequence. Then there exists a connecting homomorphism

w : HomA(A', B)

such that the following sequence is exact and natural

0- Hom,,(A", B)- P _ HomA(A, B) Hom, (A', B) (5.5)
- ExtA (A", B)- - ExtA (A, B) m" . ExtA (A', B) .

The reader notes that, if Ext is identified with Ext, Theorem 5.3
becomes the dual of Theorem 5.2 and that it may be proved by proceeding
dually to Theorem 5.2 (see Exercises 5.4, 5.5). We prefer, however, to give
a further proof using only projectives and thus avoiding the use of
injectives. For our proof we need the following lemma, which will be
invoked again in Chapter IV.

Lemma 5.4. To a short exact sequence A'--4A-4*A" and to projective
presentations E : P'--,*A' and s" : P"-»A" there exists a projective
presentation s : P* A and homomorphisms i : P'-P and n : P-*P" such
that the following diagram is commutative with exact rows

Proof. Let P=P'Q+P", let i : P'---+ P'@ P" be the canonical injection,
it: P' Q P"-' P" the canonical projection. We define a by giving the
components. The first component is cpe' : P'-+A; for the second we use
the fact that P" is projective to construct a map x : P"->A which makes
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the triangle

commutative, and take x as the second component of e. It is plain that
with this definition the above diagram commutes. By Lemma 1.1.1 E is
epimorphic. 0

Proof of Theorem 5.3. Using Lemma 5.4 projective presentations
may be chosen such that the following diagram is commutative with short
exact middle row R'-+R > R"

iii
P ")> P"

A'>- `-Aw »A"

By Lemma 5.1 applied to the second and third row the top row is short
exact, also. Applying Hom,, (-, B) we obtain the following diagram

Homn (A", B) ... '...> Hom,, (A, B) .....'...> Homn (A', B)

I I I
O-Hom,,(P", B)=.Hom4(P. B) `' *Hom4(P', B)->O

I

0-> Hom4 (R", B)-> Hom4 (R, B)-> Hom (R', B)

Ext4 (A", B) ...w'.., Ext4 (A, B) Exte (A', B)

By Theorem 1.2.2 the second and third rows are exact. In the second row
1* : Hom4(P, B)->Hom4(P', B) is epimorphic since P = P' pP", so
Homn (P' ED P", B) ? Homn (P', B) E Home (P", B). Lemma 5.1 now yields
the Hom-Ext sequence claimed. As in the proof of Theorem 5.2 one shows
that co is independent of the chosen projective presentations. Also, one
proves that the Hom-Ext sequence in the first variable is natural with
respect to homomorphisms fl: B---+B' and with respect to maps y', y, y"
making the diagram A'---+ A"

commutative. 0
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If we try to describe the connecting homomorphism

co : Home (A'. B)-> ExtA (A". B)

in terms of extensions, it is natural to consider the push-out E of a : A'--+ B
and cp : A'-+A and to construct the diagram

A'-->A-9*A"

B - E-=1 A"
We then consider the presentation R">--*P"---oA" and note that the map
x : P"--+ A constructed in the proof of Lemma 5.4 induces a such that the
diagram R">- * P" -- A"

A'---+ A -»A"

is commutative. Now the definition of co(a) in diagram (5.6) is via the
map o : R"-* B which is obtained as o = ai in

R>-*P'(DP"-f!--,P' --"A'

I
R"

But by the definition of e : P' (D P"->A in Lemma 5.4, the sum of the two
maps R-»R" ° *A', 0 )A

*A'>4' A

is zero. Hence a = - z, so that the element - co(a) _ [ - z] is represented
by the extension B,+E-»A".

Corollary 5.5. The A-module A is projective if and only if ExtA(A. B) = 0
for all A-modules B.

Proof. Suppose A is projective. Then 1: A=>A is a projective
presentation, whence ExtA (A, B) = 0 for all A-modules B. Conversely,
suppose ExtA (A, B) = 0 for all A-modules B. Then for any short exact
sequence B'>-*B-»B" the sequence

0-*HomA(A, B')-*HomA(A, B)-*HomA(A, B")-+0

is exact. By Theorem 1.4.7 A is projective. 0
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The reader may now easily prove the dual assertion.

Corollary 5.6. The A-module B is injective if and only if Extn(A, B) = 0
for all A-modules A. 0

In the special case where A is a principal ideal domain we obtain

Corollary 5.7. Let A be a principal ideal domain. Then the homo-
morphisms tp* : Extra (A, B)- Ext4 (A, B") in sequence (5.3) and

tp* : Extra (A, B)- * Exte (A', B)

in sequence (5.5) are epimorphic.

Proof. Over a principal ideal domain A submodules of projective
modules are projective. Hence in diagram (5.4) R is projective; thus

tp* : Home (R, B)-. Homo (R, B")

is epimorphic, and hence tp* : Ext4(A, B)--*Ext4(A, B") is epimorphic.
In diagram (5.6), R" is projective. Hence the short exact sequence
R'.--+R-"R" splits and it follows that q * : Hom4(R, B)-->Hom4(R', B)
is epimorphic. Hence tp* : ExtA (A, B)-> Exte (A', B) is epimorphic. 0

We remark, that if A is not a principal ideal domain the assertions
of Corollary 5.7 are false in general (Exercise 5.3).

Exercises:

5.1. Consider the following diagram kerp ' kery

I
r,

I
A " - co

I. 1fi 11

I
cokera- -+coker(i

with all sequences exact. Show that with the terminology of Lemma 3.1 we
have ImE1= cokers*, Ker24 = kerµ*. Show Imp', = KerE4 by a repeated
application of Lemma 3.1. With that result prove Lemma 5.1.

5.2. Given A-+B-4C (not necessarily exact) deduce from Lemma 5.1 (or prove
otherwise) that there is a natural exact sequence

0--+ ker a-+ker pa--/ ker p-+ coker a- coker pa --+coker #--+0 .

5.3. Show that if R is not projective there exists a module B with Exte (R, B) + 0.
Suppose that in the projective presentation RAP-Z A of A the module R is
not projective. Deduce that rp* : ExtA(P, B)->Ext4(R, B) is not epimorphic.
Compare with Corollary 5.7.
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5.4. Prove Theorem 5.3 by using the definition of Ext by injectives and interpret
the connecting homomorphism in terms of extensions. Does one get the same
connecting homomorphism as in our proof of Theorem 5.3?

5.5. Prove Theorem 5.2 using the definition of Ext by injectives. (Use the dual of
Lemma 5.4.) Does one get the same connecting homomorphism as in our proof
of Theorem 5.2?

5.6. Establish equivalences of ExtA and Ex-t using (i) Theorem 5.2, (ii) Theorem 5.3.
Does one get the same equivalences?

5.7. Evaluate the groups and homomorphisms in the appropriate sequences (of
Theorems 5.2, 5.3) when

(i) is B is Z4;
(ii) is B 1S Z4;

(iii) A is Z4, is
(iv) A is Z4, is 0-+Z4--sZ8pZ2--+Z4-'0:
(v) is B is Z.

5.8. For any abelian group A, let

mA={beAIb=ma,anA),
,,,A={aeAIma=0).
Am=A/mA.

Show that there are exact sequences

0-+Ext (mA, Z)-- Ext(A, Z)-+ Ext(mA, Z)-+0 ,

0-'Hom(A,Z)-+Hom(mA,Z)--'Ext(Am,Z)-sExt(A,Z)-+Ext(mA. Z) 0.

and that Hom (A, Z) = Hom (mA, Z).
Prove the following assertions:

(i) A = 0 if and only if Ext(A, Z)m = 0;
(ii) if Am = 0 then Ext (A. Z) = 0:

(iii) if mExt (A, Z) = 0 = Hom (A, Z), then A. = 0.
Give a counterexample to show that the converse of (ii) is not true.
(Hint: an abelian group B such that mB = 0 is a direct sum of cyclic groups.)

6. A Theorem of Stein-Serre for Abelian Groups

By Corollary 5.5 A is projective if and only if ExtA (A, B) = 0 for all
A-modules B. The question naturally arises as to whether it is necessary
to use all A-modules B in ExtA (A, B) to test whether A is projective;
might it not happen that there exists a small family of A-modules B;
such that if ExtA (A, B,) = 0 for every B. in the family, then A is projective?
Of course, as is easily shown, A is projective if ExtA (A, R) = 0 where
Rt--+P-»A is a projective presentation of A, but our intention is that the
family B. may be chosen independently of A.

For A =Z and A finitely-generated there is a very simple criterion
for A to be projective (i.e. free): If A is a finitely generated abelian group,
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then A is free if' and only if* Ext (A, Z) = 0. This result immediately follows
by using the fundamental theorem for finitely-generated abelian groups
and the relations Ext (Z, Z) = 0, Ext (7L, Z) = Z, of Section 4. Of course,
if A is free, Ext (A, Z) = 0 but it is still an open question whether, for all
abelian groups A, Ext (A, 7L) = 0 implies A free. However we shall prove
the following theorem of Stein-Serre:

Theorem 6.1. If A is an abelian group of countable rank, then
Ext (A, Z) = 0 implies A free.

Let us first remind the reader that the rank of an abelian group A,
rank A, is the maximal number of linearly independent elements in A.
For the proof of Theorem 6.1 we shall need the following lemma.

Lemma 6.2. Let A be an abelian group of countable rank. If every
subgroup of A of finite rank is free, then A is free.

Proof. By hypothesis there is a maximal countable linearly inde-
pendent set T = (a 1, a2, ..., an, ...) of elements of A. Let An be the subgroup
of A consisting of all elements a e A linearly dependent on (a1, a2, ..., an),
i.e. such that (a1, a2, ..., a, a) is linearly dependent. Since A is torsionfree,
A0 = 0. Plainly An -I CA, and, since T is maximal, A = U An. Since An

n

has finite rank n, it is free of rank n; in particular it is finitely-generated;
hence An/An _ 1 is finitely-generated, too. We claim that 1 is
torsionfree. Indeed if for a e A the set (a1, a2, ..., an_ 1, ka) is linearly
dependent, k *O, then (a1, a2, ..., an_ 1, a) is linearly dependent, also.
As a finitely-generated torsionfree group, AjAn _ 1 is free. Evidently its
rank is one. Hence AjAn _ 1 is infinite cyclic. Let bn + An _ 1, bn e An, be a
generator of An/An _ 1. We claim that S = (b1, b2, .... bn, ...) is a basis

n

for A. Indeed, S is linearly independent, for if Y k1 bi = 0, kn + 0, then
i=1

kn bn + An _ 1= An which is impossible since An/An is infinite cyclic
on bn + An as generator. Also. S generates A; since A= U An it is

plainly sufficient to show that (b1, ..., bn) generate An, and this follows
by an easy induction on n. 0

Proof of Theorem 6.1. We first make a couple of reductions. By
Lemma 6.2 it suffices to show that every subgroup A' of finite rank is
free. Since Ext (A, Z) = 0 implies Ext (A', Z) = 0 by Corollary 5.6, we have
to show that for groups A of finite rank, Ext (A, 71) = 0 implies A free-
If A" is a finitely-generated subgroup of A with Ext (A, 7L) = 0 it follows
that Ext (A", Z) = 0 and hence, by the remark at the beginning of the
section, A" is free. Since A is torsionfree if and only if every finitely
generated subgroup of A is free, it will be sufficient to show that for any
group A of finite rank which is not free but torsionfree, Ext (A, 7L) + 0.
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Consider the sequence and the associated sequence

Hom (A, L) --4 Hom (A, Q)- Horn (A, Q2/L)-» Ext (A, L) .

We have to prove that rl* is not epimorphic; we do that by showing that
card (Hom (A, Q2/L)) > card (Hom (A, Q2)).

Let (a1, ..., an) be a maximal linearly independent set of elements
of A. Let AO be the subgroup of A generated by (a1..... an). By hypothesis
AO is free. Since A is not free. Ao + A.

Since every homomorphism from A into Q is determined by its
restriction to A0, and since every homomorphism from AO to Q extends
to A, we obtain

card (Hom (A, Q2)) = card (Hom (Ao, Q)) = Ko = No

Take b 1 e A - AO and let k 1 >_ 2 be the smallest integer for which k 1 b 1 C -AO.
Let Al be the subgroup generated by a1, a2, ..., an, b1. By hypothesis Al
is free. But A 1 $ A, since A is not free. Take b2 e A - A1. Let k2 >_ 2 be the
smallest integer with k2 b2 e A1. Let A2 be generated by (a1, a2.... ,a,,, b1, b2).
A2 is free, but A2 + A since A is not free. Continuing this way we obtain
a sequence of elements of A, b1, b2, ..., bm, ..., and a sequence of integers
kl, k2, ..., km, ..., each of them > 2, such that km is the smallest positive
integer with km bm a A.-, where A.-, is the subgroup of A generated by
(a1, a2, ..., a,,, b1, b2, ..., bm_ 1); bm 0 Am_ 1. Let A = U A. Since every

n

homomorphism from A,, into Q2/L may be extended to a homomorphism
from A to @/7L one has

card (Hom (A, QZ'L)) > card (A,,,, @/7L) .

But card (Hom (A., Q? 71)) = No k1 k2 = 21t°. For one has No homo-
morphisms TO: AO-QZ/L, k1 ways of extending cpo to (p1: Al-*Q)/7L, k2
ways of extending (p1 to T2: A2-.Q2/7L, etc. We have shown that

card (Hom (A, Q2)) < card Hom (A, ") .

Hence Ext (A, 7L) $ 0. 0

From the proof of Theorem 6.1 one sees that card (Ext (A, 7L)) = 2K0
if A is of finite rank and not free but torsionfree. For our argument
shows that card (Hom (A, W)) >_ 2'°; but if A is torsionfree of finite
(or even countable) rank it is countable, hence the cardinality of the set
of all functions from A to Q2/7L is 2N°; so that

card (Hom (A, (2,/'L)) = 2'0

It follows that card (Ext (A, Z)) = 2x°.
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Exercises:

6.1. Show that if A is torsionfree, Ext(A,Z) is divisible, and that if A is divisible,
Ext(A,Z) is torsionfree. Show conversely that if Ext(A,Z) is divisible, A is
torsionfree and that if Ext (A, Z) is torsionfree and Hom (A, Z) = 0 then A is
divisible. (See Exercise 5.8.)

6.2. Show that Ext(Q, Z) is divisible and torsionfree, and hence a Q-vector space.
(Compare Exercise 2.4.) Deduce that Ext(QZ, Z) = lR, Hom(Q, Q/Z) = IR.
Compute Ext(IR,Z).

6.3. Show that Ext(@/Z, Z) fits into exact sequences

0-.Z-. Ext (Q/Z, Z)--+lR--+O ,

0-. Ext (Q/Z, Z)--+IR--+Q/Z--+O .

6.4. Show that the simultaneous equations Ext (A, Z) = 0, Hom (A, Z) = 0 imply
A =0.

6.5. Show that the simultaneous equations Ext (A, Z) = Q, Horn (A, Z) = 0 have
no solution. Generalize this by replacing Q by a suitable Q-vector space.
What can you say of the solutions of Ext (A. Z) = R Hom (A. Z) = 0?

7. The Tensor Product

In the remaining two sections of Chapter III we shall introduce two
functors: the tensor product and the Tor-functor.

Let A again be a ring, A a right and B a left A-module.

Definition. The tensor product of A and B over A is the abelian group,
A (DAB, obtained as the quotient of the free abelian group on the set
of all symbols a ® b, a e A, b e B, by the subgroup generated by

(a1+a2)®b-(al®b+a2(Db),a1,a2eA,be B;

a®(b1+b2)-(a®bl+a®b2),ae A,bl,b2eB;

aA®b-a®2b,aeA,beB,A,eA.

In case A = Z we shall allow ourselves to write A ® B for A ®z B. For
simplicity we shall denote the element of A ®A B obtained as canonical
image of a ® b in the free abelian group by the same symbol a ® b.

The ring A may be regarded as left or right A-module over A. It is
easy to see that we have natural isomorphisms (of abelian groups)

A®,B-B, A®AA-z- A

given by A®b"2b and a®..%-->a2.
For any a : A---* A' we define an induced map a* : A®AB- +A'®AB

by a* (a (Db) = (aa) ®b, a e A, be B. Also, for #:B--+B' we define



110 III. Extensions of Modules

Q*:A®AB--*A®AB' by f3*(a®b)=a®(/3b), aeA, be B. With these
definitions we obtain

Proposition 7.1. For any left A-module B, -(DAB: 9. -+`2Lb is a
covariant functor. For any right A-module A, A ®A - : MA1 -> Ub is a
covariant functor. Moreover, - ®A - is a bifunctor.

The proof is left to the reader. 0
If a : A-->A' and fl: B-+B' are homomorphisms we use the notation

a®f3=a* f*=f*a* : A®,B-*A'®,B'.

The importance of the tensorproduct will become clear from the
following assertion.

Theorem 7.2. For any right A-module A, the functor A ®A - : 971;,-*2Cb
is left adjoint to the functor HomZ(A, -):21b-*97t;,.

Proof. The left-module structure of Hom7(A, -) is induced by the
right-module structure of A (see Section [.8). We have to show that there
is a natural transformation, such that for any abelian group G and any
left A-module B

q: HomZ (A (&A B, G)-z+ Home (B, HomZ (A, G)).

Given rP : A ®A B- G we define ,(cp) by the formula

((,((p)) (b)) (a) = rp(a (& b)

Given ip : B-*HomZ (A, G) we define q(W) by (Il p)) (a (&b) = (ip(b)) (a).
We claim that ?I, q are natural homomorphisms which are inverse to
each other. We leave it to the reader to check the necessary details. 0

Analogously we may prove that - ®A B : IR -+91b is left adjoint to
Hom7(B. -) : 9Cb-->971'A, where the right module structure of Hom7(B, G)
is given by the left module structure of B. We remark that the tensor-
product-functor A ®A - is determined up to natural equivalence by the
adjointness property of Theorem 7.2 (see Proposition 11.7.3); a similar
remark applies to the functor - ®A B.

As an immediate consequence of Theorem 7.2 we have

Proposition 7.3. (i) Let {B,}, j e J, be a family of left A-modules and
let A be a right A-module. Then there is a natural isomorphism

A®,((@ (A
`jeJ / jeJ

(ii) If B' B--B"-*0 is an exact sequence of left A-modules, then
for any right A-module A, the sequence

A ® A B' " * A ®A B fl" A ®A B",0

is exact.
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Proof. By the dual of Theorem 11.7.7 a functor possessing a right
adjoint preserves coproducts and cokernels. 0

Of course there is a proposition analogous to Proposition 7.2 about
the functor - ®AB for fixed B. The reader should note that, even if /3'
in Proposition 7.3 (ii) is monomorphic, /3* will not be monomorphic in
general: Let A =7L, A = Z2, and consider the exact sequence Z>+Z-"Z2
where p is multiplication by 2. Then

p*(n®m)=n®2m=2n®m=0®m=0,

n e Z2, m e Z. Hence µ* : Z2 ®7L- +7L2 ®7L is the zero map, while
Z2®Z Z2

Definition. A left A-module B is called flat if for every short exact
sequence A'-'- A `» A" the induced sequence

0-*A' ®AB-->O

is exact. This is to say that for every monomorphism p : A'->A the
induced homomorphism µ* : A' ®e B-*A (DAB is a monomorphism. also.

Proposition 7.4. Every projective module is flat.

Proof. A projective module P is a direct summand in a free module.
Hence, since A ®A - preserves sums, it suffices to show that free modules
are flat. By the same argument it suffices to show that A as a left module
is flat. But this is trivial since A ®AA = A. 0

For abelian groups it turns out that "flat" is "torsionfree" (see
Exercise 8.7). Since the additive group of the rationals Q is torsionfree
but not free, one sees that flat modules are not, in general, projective.

Exercises:

7.1. Show that if A is a left F-right A-bimodule and B a left A-right E-bimodule
then A ®AB may be given a left F-right E-bimodule structure.

7.2. Show that, if A is commutative, we can speak of the tensorproduct A ®AB
of two left (!) A-modules, and that A®AB has an obvious A-module structure.
Also show that then A®AB=B®AA and (A (DA B)®AC-A ®A (B ®A C) by
canonical isomorphisms.

7.3. Prove the following generalization of Theorem 7.2. Let A be a left F-right
A-bimodule, B a left A-module and C a left T-module. Then A®AB can be
given a left F-module structure, and Homr(A, C) a left A-module structure.
Prove the adjointness relation

n : Homr(A ®AB, C)-z+ Hom4 (B, Homr(A, Q.

7.4. Show that, if A, B are A-modules and if ai®bi = 0 in A ®AB, then there are

finitely generated submodules A0 S A, Bo S B such that a, a A0, bi a Bo and
Y_ai®bi=0 in Aa®Bo.
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7.5. Show that if A, B are modules over a principal ideal domain and if a e A,
b e B are not torsion elements then a ® b + 0 in A ®A B and is not a torsion
element.

7.6. Show that if A is a finitely generated module over a principal ideal domain
and if A (DA A = 0, then A = 0. Give an example of an abelian group G $ 0 such
that G®G=0.

7.7. Let A x B be the cartesian product of the sets underlying the right A-module A
and the left A-module B. For G an abelian group call a function f : A x B--zG
bilinear if

.f(a1+a2,b)=.f(a1,b)+.f(a2,b), a1,a2eA, beB;

.f(a,b1 +b2)=.f(a,b1)+1(a,b2), aeA, b1,b2eB;
f(aA,b)=f(a,2b), aeA, beB, AeA.

Show that the tensor product has the following universal property. To every
abelian group G and to every bilinear map f : A x B--+ G there exists a unique
homomorphism of abelian groups

g:A B--+G such that f (a, b) = g(a b)

7.8. Show that an associative algebra (with unity) over the commutative ring A
may be defined as follows. An algebra A is a A-module together with A-module
homomorphisms p : A ®AA- +A and t : A--IA such that the following diagrams
are commutative

A®AA---1A,-=A®AA A®AA®AA- 1--A

1101 I 11 11®n 11®µ
liz

A®AA A, U A®AA A(DAA )A.

(The first diagram shows that rl(lA) is a left and a right unity for A, while the
second diagram yields associativity of the product.) Show that if A and B are
algebras over A then A®AB may naturally be made into an algebra over A.

7.9. An algebra A over A is called augmented if a homomorphism e : A-+A of
algebras is given. Show that the group algebra KG is augmented with
e : KG--+K defined by e(x) = 1, x e G. Give other examples of augmented
algebras.

8. The Functor Tor

Let A be a right A-module and let B be a left A-module. Given a projective
presentation R, --P-*A of A we define

TorE (A. B) = ker(p* : R ®, B-P (DA B).

The sequence

0-*TorE (A, B)--+R (DAB--+P ®,B-*A (DAB--+O
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is exact. Obviously we can make Tore (A, -) into a covariant functor by
defining, for a map fl: B-* B', the associated map

TorE (A, B)->TorA (A, B')

to be the homomorphism induced by I3: R ®AB-+R ®AB'.
To any projective presentation S-4 --ao B of B we define

Torn (A, B) = ker (v : A (DA S-i A ®A Q) .

With this definition the sequence

0- >Torn(A, B) --+A ®AS--+ A ®AQ--+A ®AB--0

is exact. Clearly, given a homomorphism a : A-->A', we can associate a
homomorphism a* : Torn (A, B)-Torn (A', B), which is induced by
a : A ®AS-+A' ®AS. With this definition Torn(-, B) is a covariant
functor.

Proposition 8.1. If A (or B) is projective, then

TorE (A, B) = 0 = Torn (A, B).

Proof. Since A is projective, the short exact sequence R.4P-»A
splits, i.e. there is K : P--> R with Kµ =1R. Hence

and consequently p ®1 is monomorphic. Thus TorE (A, B) = 0.
If A is projective. A is flat by Proposition 7.4. Hence

0-->A ®AS-*A ®AQ--.A ®AB-->O

is exact. Thus Torn (A, B) = 0. The remaining assertions merely inter-
change left and right. 0

Next we will use Lemma 5.1 to show that To-r-4 Aand TorE denote
the same functor. Again let RAP E»A and S,4Q-*B be projective
presentations. We then construct the commutative diagram

0----+ Tore' (A, B)

R ®A S ) R ®A Q-» R (DA B

I E3

0 )P®AS rP®AQ-+* P(&AB

t
Ei

y 12

Torn(A,B) )A®AS A®AQ A®AB
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By a repeated application of Lemma 3.1 we obtain

Tor,, (A, B) = Im E, - Ker E2 = [m E3 = Ker E4 = Im ES = Tor, (A, B).

Now let R'"+P"»A' be a projective presentation of A' and a : A-+A'
a homomorphism. We can then find cp : P-+P' and p : R--' R' such that
the following diagram commutes:

R,-U) P E yA

R' = P'--' )) A'

These homomorphisms induce a map from the diagram (8.1) into the
diagram corresponding to the presentation Consequently
we obtain a homomorphism

Tor, (A, B)-=. Tor1(A, B)--Tor,, (A', B)=-)Tor"(A', B)

which is visibly independent of the choice of cp in (8.2). Choosing a =1"
we obtain an isomorphism Tor,(A, B)=>Tor, (A, B)=+TorE (A, B).

Collecting the information obtained, we have shown that there is a
natural equivalence between the functors Tor, (A, -) and Tor, (A, - ),
that we therefore can drop the subscript E, writing Tor" (A, -) from now
on; further that Tor"(-, B) can be made into a functor. which is equiv-
alent to Ti'(o-, B) for any rl. We thus can use the notation Tor"(A, B)
for Tor,, (A. B), also. We finally leave it to the reader to show that
Tor" (-, -) is a bifunctor. The fact that TorA(_, -) coincides with
Tor"(-, -) is sometimes expressed by saying that Tor is balanced.

Similarly to Theorems 5.2 and 5.3, one obtains

Theorem 8.2. Let A be a right A-module and B'-B--.B" an exact
sequence of left A-modules, then there exists a connecting homomorphism
w : Tor" (A. B")-->A ®AB' such that the following sequence is exact:

Tor"(A, B') '* Tor"(A, B) "" iTor"(A, B")-- A ®AB'
(8.3)

K. .A(D"B ' )Apx"B"-*O.

Theorem 8.3. Let B be a left A-module and let A',!+A Lo A" be an
exact sequence of right A-modules. Then there exists a connecting homo-
morphism w : Tor^ (A", B such that the following sequence is
exact:

Tor" (A', B) Tor" (A, B) ' Tor" (A", BY-P, A' ®A B

" AQx"B ° A"Q"B-+° (8.4)

Proof. We only prove Theorem 82; the proof of Theorem 8.3 may
be obtained by replacing Tor by Tor. Consider the projective presentation
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R,!'+P `++A and construct the diagram:

Tor`' (A, B') .-...-> Tor' (A, B) * TorA (A, B)

I

R®,t B' -* R®AB

0-+P (&AB' P ®4 B

R ®A B"-+0

P ®e B"-+0

I

A®AB' ..........., A®,,B A®AB'

By applying Lemma 5.1 we obtain the asserted sequence. 0
We remark that like the Hom-Ext sequences the sequences (8.3) and

(8.4) are natural. Notice that by contrast with the two sequences involving
Ext we obtain only one kind of sequence involving Tor, since A, B play
symmetric roles in the definition of Tor.

Corollary 8.4. Let A be a principal ideal domain. Then the homo-
morphisms ic,, : Tor A (A, B')-+TorA (A, B) in sequence (8.3) and

x* : TorA(A', B)-+Tor`t(A, B) in sequence (8.4) are monomorphic.

Proof. By Corollary 1.5.3 R is a projective right A-module, hence the
map K* : R ®AB'-+R ®AB in diagram (8.5) is monomorphic, whence
the first assertion. Analogously one obtains the second assertion. 0

Exercises:

8.1. Show that, if A (or B) is flat, then Tor(A, B) = 0.
8.2. Evaluate the exact sequences (8.3), (8.4) for the examples given in Exercise 5.7

(i), ..., M.
8.3. Show that if A is a torsion group then A = Tor(A, @/Z); and that, in general,

Tor(A, tQ/Z) embeds naturally as a subgroup of A. Identify this subgroup.
M. Show that if A and B are abelian groups and if T(A), T(B) are their torsion

subgroups, then Tor(A, B) = Tor (T(A), T(B)).

Show that m Tor(A, B) = 0 if m T(A) = 0.
8.5. Show that Tor is additive in each variable.
8.6. Show that Tor respects direct limits over directed sets.
8.7. Show that the abelian group A is flat if and only if it is torsion-free.
8.8. Show that A' is pure in A if and only if A' ®G-+A ®G is a monomorphism

for all G (see Exercise I.1.7).
8.9. Show that Tor' (A, B) can be computed using a flat presentation of A; that

is, if R 4P `..A with P flat, then
Tor" (A, B) = ker(p* : R (DA B-.P ®A B) .
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In this chapter we go to the heart of homological algebra. Everything
up to this point can be regarded as providing essential background for
the theory of derived functors, and introducing the special cases of
ExtA(A, B), TorA(A, B). Subsequent chapters take up more sophisticated
properties of derived functors and special features of the theory in various
contexts* (cohomology of groups, cohomology of Lie algebras).

The basic definitions and properties of derived functors are given in
this chapter. Given an additive functor F : 2t 0 from the abelian cate-
gory 2I to the abelian category 93, we may form its left derived functors

2I--+ 23, n > 0, provided 91 has enough projectives, that is, provided
every object of 2I admits a projective presentation. Thus the theory is
certainly applicable to the category 9JiA. We may regard as a
"function" depending on the "variables" F and A. where A is an object
of 2C; there are then two basic exact sequences. one arising from a varia-
tion of A and the other from a variation of F. We may. in particular.
apply the theory to the tensor product; thus we may study
where FB : 2JlA 2tb is given by FB(A) = A ©AB, for fixed B in 2J1A, and

where GA : 2JMA-- 91b is given by GA(B) = AOA B, for fixed A in
MA. The two exact sequences then come into play to establish the natural
isomorphism, for these two functors,

resulting in the balanced definition of TorA(A, B).
Similarly. we may form right derived functors of F: W--),!Q3 if A has

enough injectives. We apply the resulting theory to Hom; thus we study
where FB:2JlA_2Cb is the contravariant functor given by

FB(A) = HomA(A, B) for fixed B in 2JiA, and where GA : S9RA--+2Cb
is the (covariant) functor given by GA(B) = HomA(A, B) for fixed A in W.
Again we may prove with the help of the two basic exact sequences that

thus obtaining the balanced definition of Extt(A. B).
* Chapter VIII is somewhat special in this respect. in that it introduces a new

tool in homological algebra, the theory of spectral sequences.
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We also take up the question of how to define derived functors
without using projective or injective resolutions. First we show that
Ext" (A, B) may be described in terms of n-extensions of A by B, gener-
alizing the isomorphism E(A, B) = ExtA(A, B) of Chapter III. Then we
show that, for any right exact functor F : 21- , the left derived functors
of F may be characterized in terms of natural transformations into Ext;
more precisely, one may give the collection [F, Ext ;(A, -)] of natural
transformations from F to ExtA(A, -) an abelian group structure and it
is then isomorphic to The question of characterizing derived
functors reappears in Chapter IX in a more general context.

The chapter closes with a discussion of the change-of-rings functor
which is especially crucial in the cohomology theory of groups and
Lie algebras.

1. Complexes

Let .1 be a fixed ring with 1. We remind the reader of the category W1
of graded (left) modules (Example (a) in Section 11. 9). An object M in 9R?
is a family ne7l, of A-modules. a morphism (p : M->M' of degree p
is a family {cp : n e 7L, of module homomorphisms.

Definition. A chain complex C = over A is an object in 9nz,
together with an endomorphism 8: C->C of degree - 1 with 88=0. In
other words we are given a family n e 7L, of A-modules and a family
of A-module homomorphisms JO.: C,, n-1 }, n e7L, such that 0:

C: -*Cn+1 ' C. 8n

The morphism 8 (as well as its components is called the differential
(or boundary operator).

A morphism of complexes or a chain map cp : C-+D is a morphism of
degree 0 in 9112, such that p8 = ijcp where a denotes the differential in D.
Thus a chain map cp is a family {(p.: n e 7L, of homomorphisms
such that, for every n, the diagram

C a'
Imo,

(1.1)

D.a D -1
is commutative. For simplicity we shall suppress the subscripts of the
module homomorphisms 8 and cp when the meaning of the symbols is
clear: so. for example. to express the commutativity of (1.1) we shall
simply write p 8 = i p. We will usually not distinguish notationally
between the differentials of various chain complexes, writing them all as 8.
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The reader will easily show that the collection of chain complexes
over A and chain maps forms an abelian category. Also. if F :
is an additive covariant functor and if C = is a chain complex
over A, then FC = is a chain complex over A'. Thus F induces
a functor on the category of chain complexes.

We shall now introduce the most important notion of homology. Let
C = a chain complex. The condition 88 = 0 implies that
im8n+1 S n e7L. Hence we can associate with C the graded module

H(C)= where H(C)= n e Z .

Then H(C) is called the (n-th) homology module of C. (Of course
if A=7L we shall speak of the (n-th) homology group of C.) By diagram
(1.1) a chain map cp : C---+D induces a well defined morphism. of degree
zero, H(q) = cp* : H(C)-+H(D) of graded modules. It is clear that, with
this definition, H(-) becomes a functor, called the homology functor,
from the category of chain complexes over A to the category of graded
A-modules. Also, each is a functor into 931A.

Often, in particular in applications to topology, elements of C,, are
called n-chains; elements of ker8 are called n-cycles and kera is written

elements of im8n+1 are called n-boundaries and im81 is
written B. = Two n-cycles which determine the same element in

are called homologous. The element of determined by the
n-cycle c is called the homology class of c, and is denoted by [c].

It will be clear to the reader that given a chain complex C a new
chain complex C' may be constructed by replacing some or all of the
differentials 0,,: C 4 C _ 1 by their negatives -0,,: C

C and C' are isomorphic in the category of chain complexes and
that Z(C) =Z(C'), B(C) = B(C'), H(C) = H(C'). Thus, in the homology
theory of chain-complexes, we are free, if we wish, to change the signs
of some of the differentials.

We finally make some remarks about the dual notion.

Definition. A cochain complex C = {C", S"} is an object in 93 ?z
with an endomorphism S : C---+C of degree + 1 with SS = 0. Again S is
called the differential (or coboundary operator). Morphisms of cochain
complexes or cochain maps are defined analogously to chain maps. Given
a cochain complex C=10,6"' we define its cohomology module
H(C) _ {H"(C)} by

H"(C) = kera"/imd"' , n e Z.

With the obvious definition of induced maps, H(-) then becomes a
functor, the cohomology functor. In case of a cochain complex we will
speak of cochains, coboundaries, cocycles, cohomologous cocycles, co-
homology classes.
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Of course the difference between the concepts "chain complex" and
"cochain complex" is quite formal, so it will be unnecessary to deal with
their theories separately. Indeed, given a chain complex C = {C 8"} we
obtain a cochain complex D = {D", 8"} by setting D" = C_", S" = 8_".
Conversely given a cochain complex we obtain a chain complex by this
procedure.

Examples. (a) Let A, B be A-modules and let R P `o A be a pro-
jective presentation of A. We define a cochain complex C of abelian groups
as follows:

O--+Hom,,(P, B) -*HomA(R, B)---+O

u

0--. co s0

and C" = 0 for n + 0, 1. We immediately deduce

H° (C) = Homo (A, B) ,

H' (C) = ExtA (A, B),

H"(C)=O.n+0.1.

Consequently we obtain the groups HomA(A, B), ExtA(A, B) as coho-
mology groups of an appropriate cochain complex C. In Section 7 and 8
this procedure will lead us to an important generalisation of Exte(A, B).

(b) Let BNI "»S be an injective presentation of B and form the
cochain complex C', where C'" = 0, n + 0, 1, and

0-*Homa(A, I)-Hom4(A, S)-*0

II 1
0->(C)°60 (')1 0

One obtains
H°(C') = Homo (A, B),

H'(C') = Ext4(A, B),

H"(C') = 0, n + 0, I.

(c) Let A be a left A-module and B a right A-module. Take a pro-
jective presentation R>-'-P-4.A of A and form the chain complex D,

O-B®4R--`--+B®,,P--+0

11 al II

0 -S DI D°--+O .
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We easily see that

Ho(D)=AOOAB,

H, (D) = Tor^(A, B),

=0. n+0. 1.

In Section 11 this procedure will be generalized.
(d) We obtain yet another example by starting with a projective

presentation of B and proceeding in a manner analogous to example (c).
The homology of the complex D' so obtained is

Ho(D') = A DAB ,

H1(D')=Tor^(A, B),

H,,(D')=0.nr0.1.

The reader should note that in all four of the above examples the ho-
mology does not depend on the particular projective or injective presen-
tation that was chosen. This phenomenon will be clarified and gener-
alized in Sections 4, 5.

We conclude with the following warning concerning the notations.
Although we have so far adopted the convention that the dimension
index n appears as a subscript for chain complexes and as a superscript
for cochain complexes. we may at times find it convenient to write the n
as a subscript even in cochain complexes. This will prove particularly
convenient in developing the theory of injective resolutions in Section 4.

Exercises:

1.1. Show that if C is a complex of abelian groups in which each C. is free, then
Z. and B. are also free, and that Z. is a direct summand in Cn.

1.2. Given a chain map (p: C--.D, construct a chain complex as follows:

En=Cn-i OD.,
8(a,b)=(-da,(pa+db), aeCn_1,beDn.

Show that E = (En, (jn) is indeed a chain complex and that the inclusion D c E
is a chain map.
Write E = E(4p), the mapping cone of V. Show how a commutative diagram
of chain maps

C --"--+D

induces a chain map E((p)-*E((p') and obtain in this way a suitable functor
and a natural transformation.

1.3. Verify that the category of chain complexes is an abelian category.
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1.4. Show that Z,, B. depend functorially on the complex.
1.5. Let C be a free abelian chain complex with C. = 0, n < 0, n > N. Let '0 be the

rank of C. and let p be the rank of H,(C). Show that
N N

Y_ (-1)nen= Y (-1)npn-
n=0 n=0

1.6. Given a chain complex C of right A-modules, a left A-module A and a right
A-module B, suggest definitions for the chain complex C®AA, and the cochain
complex HomA(C. B).

2. The Long Exact (Co)Homology Sequence

We have already remarked that the category of (co)chain complexes is
abelian. Consequently we can speak of short exact sequences of (co)chain
complexes. It is clear that the sequence A»B-'e-HC of complexes is short
exact if and only if 0-*A C,,-+0 is exact for all n e Z.

Theorem 2.1. Given a short exact sequence A-- B--»C of chain com-
plexes (cochain complexes) there exists a morphism of degree - 1 (degree
+ 1) of graded modules w : H(C)->H(A) such that the triangle

H(A)" >H(B)

\_ /I -
H(C)

is exact. (We call (9 the connecting homomorphism.)

Explicitly the theorem claims that, in the case of chain complexes,
the sequence

...*', Hn(A)' - Hn(B)' . Hn(C) '- Hn-t (A)-- --- (2.1)

and, in the case of cochain complexes, the sequence

'P* ,Hn(B)..H"(C) w^ .H"+t(A)--*... (2.2)

is exact.
We first prove the following lemma.

Lemma 2.2. 8,,: induces
a coker t (C).

Proof. Since im 8 +1 S ker 8 and im a c ker 8 the differential 8
induces a map a as follows:

coker 7n+1= C ; im 8 1 .

One easily computes kerc = kerb,,/im a,, 1= H (C) and

coker 0
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Proof of Theorem 2.1. We give the proof for chain complexes only,
the proof for cochain complexes being analogous. We first look at the
diagram

0- ker8n --* ker8n

An, m, i Bn w ++Cn

I ?n 1 en 1 en

An-1,m13 Bn-1 w-,-C'_1

t
coker0n-*coker. -*coker8, ->0

By Lemma 111. 5.1 the sequence at the top and the sequence at the bottom
are exact. Thus by Lemma 2.2 we obtain the diagram

H1(A) -+ HH(B)-- H.(C)

0-+ker8n_1 -+ker8n_llker8n_1

t t t
Hn-1(A) - H.-,(B)

'
H.-1(C)

Applying Lemma III. 5.1 again we deduce the existence of

wn : H1(C)-Hn(A)

such that the sequence (2.1) is exact. 0
If we recall the explicit definition of wn, then it is seen to be equivalent

to the following procedure. Let c e Cn be a representative cycle of the
homology class [c] e H1(C). Choose b e Bn with W(b) = c. Since (sup-
pressing the subscripts) W8b = 8Wb = 8c = 0 there exists a e An_ 1 with
cpa=8b. Then cp8a=8cpa=88b=0. Hence a is a cycle in Z.-,(A) and

therefore determines an element [a] e Hn _ 1(A). The map con is defined by
wn[c] = [a].

We remark that the naturality of the ker-coker sequence of Lemma
III. 5.1 immediately implies the naturality of sequences (2.1) and (2.2).
If we are given a commutative diagram of chain complexes

A *-B --»C

III
A'> -+B'-» C'
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with exact rows, the homology sequence (2.1) will be mapped into the
homology sequence arising from A' -.B'-»C', in such a way that the
diagram is commutative.

Examples. (a) Let R>i.F `-»A be a free presentation of the abelian
group A, and let be an exact sequence of abelian groups.
We form the cochain complexes

C: 0 ----.Hom (F, B') -EL. Hom (R. B') -+0

1 s-l P'I
C : (F, B) --'Hom (R, B) ---+0

C" : O-3Hom(F, B")-A=+Hom (R, B")-0

Since F and R are free abelian both columns of the diagram are short
exact, i.e. C' is a short exact sequence of cochain complexes.
By Theorem 2.1 we obtain an exact sequence in cohomology

B') B) *O".Hom(A, B")u+

-D' . Ext(A, B') -l= Ext(A, B) -a". Ext(A, B")

The reader may compare the above sequence with the sequence in
Theorem III. 5.2.

(b) For a short exact sequence of abelian groups and
an abelian group B, we choose an injective presentation of B. Proceeding
analogously as in example (a) we obtain the sequence of Theorem [II. 5.3.

Both sequences will be generalised in Sections 7, 8.

Exercises:

2.1. Use Theorem 2.1 to associate with a chain map V: C-*D an exact sequence

... --> H.(C)-- H -1(C)-.. .

[Hint: Use-the exact sequence D. Deduce that H(E((p))=0 if
and only if rp* : H(C)=.H(D). Show that the association proved above is
functorial.

2.2. Using a free presentation of the abelian group A and Theorem 2.1, deduce the
sequence

O--.Tor(A, G')--.Tor(A, G)--.Tor(A,

associated with the short exact sequence G'.-->G-»G" (see Theorem III. 8.2.).
2.3. Let

0- C' --. C-. C"-0
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be a map of short exact sequences of chain complexes. Show that if any two
of , (p, rp" induce isomorphisms in homology, so does the third,

2.4. Given a short exact sequence of chain complexes A-"+B K »C in an arbitrary
abelian category, prove the existence of a long exact homology sequence of
the form (2.1).

3. Homotopy

Let C, D be two chain complexes and gyp. W : C--+D two chain maps.
It is an important and frequently arising question when cp and ip induce
the same homomorphism between H(C) and H(D). To study this problem
we shall introduce the notion of homotopy; that is, we shall describe
a relation between q and y, which will be sufficient for

cp* = V,k : H(C)--+ H(D).

On the other hand, the relation is not necessary for rp,k = V,k, so that the
notion of homotopy does not fully answer the above question; it is
however most useful because of its good behavior with respect to chain
maps and functors (see Lemmas 3.3, 3.4). In most cases where one is able
to show that cp* = V, this is proved as a consequence of the existence
of a homotopy. in particular in all the cases we are concerned with in
this book. We deal here with the case of chain complexes and leave to
the reader the easy task of translating the results for cochain complexes.

Definition. A homotopy E : q'-' between two chain maps gyp, V: C---+D
is a morphism of degree + I of graded modules F : C-3 D such that
w - V = aE + 10, i.e., such that, for n e 7L,

Wn-(Pn=an+t-Yn+Xn-1an (3.1)

We say that gyp, tp are homotopic, and write q, ip if there exists a ho-
motopy F : q - lp.

The essential fact about homotopies is given in the following

Proposition 3.1. If the two chain maps V. yt : C-'D are homotopic.
then H(<p) = H(p): H(C)--* H(D).

Proof. Let z e keran be a cycle in Cn. If I : 9--*V, then

(,p-p) z=azz+Laz=aIz.

since Oz = 0. Hence W(z) - cp(z) is a boundary in Dn, i.e. V(z) and (p(z) are
homologous. 0

The reader is again warned that the converse of Proposition 3.1 is
not true; at the end of this section we shall give an example of two chain
maps which induce the same homomorphism in homology but are not
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homotopic. In the special case where cp = 0 : and ,= 1 : C-C
a homotopy E : 0-> 1 is called a contracting homotopy for C. We are then
given homomorphisms Z,,: C,,,, with 8n+1 E + Ei_ 10. = 1, n e Z.
By Proposition 3.1 an immediate consequence of the existence of such
a contracting homotopy is H(C) = 0. hence the complex C is exact. Indeed,
very often where it is to be proved that a complex C is exact, this is
achieved by constructing a contracting homotopy. We proceed with
a number of results on the homotopy relation.

Lemma 3.2. The homotopy relation " " is an equivalence relation.
Proof. Plainly " 2t " is reflexive and symmetric. To check transitivity,

let W - cp = 3E + 113 and x - W = 8T + TO (suppressing the subscripts). An
easy calculation shows x - cp = 0 (E + T) + (E + T)13. 0

Lemma 3.3. Let cp: C-3 D and then

Proof. Let then

VW-Vw=cp'8E+VEa=c3(cp'E)+(cp'E)0.

Also, fromV'- cp' = 0T + TO we conclude

W'W-(p'W=0TW+T8W=8(TW)+(TW) 7.

The result then follows by transitivity. 0
Indeed we may say that if E : (p--+V is a homotopy, then

V E : gyp'cp- VV

is a homotopy: and if T : gyp'-+W' is a homotopy then r i p : is
a homotopy.

Lemma 3.4. Let F : 9J'iA +931A, he an additive functor. If C and D are
chain complexes of A-modules and rp W : C- +D, then Fcp ^ FW : FC-->FD.

Proof. Let E : cp- V. then

Fp-Fcp=F(W-(p)=F(BE+E13)=FPFE+FIFO.

Hence FE : Fcp-.FW 0
Lemmas 3.3 and 3.4 show that the equivalence relation behaves

nicely with respect to composition of chain maps and with respect to
additive functors. Lemma 3.4 together with Proposition 3.1 now imme-
diately yields.

Corollary 3.5. If qp ^ W : C--3 D and if F is an additive functor, then
H(F(p) = H(FW) : H(FC)-* H(F D). 0

We remark that Lemma 3.3 enables one to associate with the category
of chain complexes and chain maps the category of chain complexes
and homotopy classes of chain maps. The passage is achieved simply by
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identifying two chain maps if and only if they are homotopic. The cate-
gory so obtained is called the homotopy category. By Lemma 3.4 an
additive functor F will induce a functor between the homotopy cate-
gories and by Proposition 3.1 the homology functor will factor through
the homotopy category.

We say that two complexes C. D are of the same homotopy type (or
homotopic) if they are isomorphic in the homotopy category, that is, if
there exist chain maps qp : and W : D-+C such that tpq 1c and
(pip 1D. The chain map qp (or tp) is then called a homotopy equivalence.

We conclude this section with the promised example: Take A=Z.

C1=71=(s1): Co=71=(so); ?s1=2so:

D1=71=(tl): D,,=O,n+l; (psl=tl.
Clearly tp : C-D and the zero chain map 0: C-.D both induce the zero
map in homology. To show that qp and 0 are not homotopic. we apply
Corollary 3.5 to the functor - ®Z2; we obviously obtain

HI ((p®Z2)+H1(0©712) ;
in fact,

Hl((P (O712) =1:712->Z2 ,

Hl(0®Z2)=0:712-*72-

Exercises:

3.1. Show that if V V : C--* D. then E(q) = E(y) (see Exercise 1.2).
3.2. Show that, further, if q ip : C--* D, then the homology sequences for rp and

tp of Exercise 2.1 are isomorphic.
3.3. Does E(r,) depend functorially on the homotopy class of gyp?
3.4. In the example given show directly that no homotopy E:0-.gyp exists. Also,

show that Hom ((p, Z2) * Hom (0. Z2)-
3.5. Suggest an appropriate definition for a homotopy between homotopies.

4. Resolutions

In this section we introduce a special kind of (co)chain complex which
is a basic tool in developing the theory of derived functors. We shall
restrict our attention for the moment to positive chain complexes, that
is, chain complexes of the form

C:... ->Cn-+ Cn-1-' ... Cl-I' Co-->0 (4.1)

with for n<0.

Definition. The chain complex (4.1) is called projective if C. is pro-
jective for all n >_ 0; it is called acyclic if H (C) = 0 for n > 1.
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Note that C is acyclic if and only if the sequence

-'...-+C1

is exact. A projective and acyclic complex

P: - -- - ... -, Po

together with an isomorphism H0(P)-- A is called a projective resolution
of A. In the sequel we shall identify H0(P) with A via the given iso-
morphism.

Theorem 4.1. Let C : -> C,,--+ C - t -> . -+Co be projective and let
D : -. D,, --+ D _ 1 -+ Do be acyclic. Then there exists, to every homo-
morphism cp : Ho(C)-+Ho(D), a chain map q : C--+D inducing T. Moreover
two chain maps inducing cp are homotopic.

Proof. The chain map T : C--> D is defined recursively. Since D is
acyclic, is exact. By the projectivity of Co there exists
cpo Co-,Do such that the diagram

Co -. H0(C)

wo w
11 (4.2)

Do-*,Ho(D)

is commutative. Suppose n>_ 1 and go, (p1, ..., (pn-1 are defined. We con-
sider the diagram

Wn V.-t -Vn-1

D a 0 D.-2-
(Ifn = 1, set C_ 1= Ho(C), D_ 1= Ho(D), and the right-hand square above
is just (4.2).) We have Nn-1 0=cpn_2 as=0. Hence

a S ker(a : Dn-1-'Dn-2)

Since D is acyclic, keran_1 = im (0: D,,-+D.- ). The projectivity of C,,
allows us to find cp : such that cp 1 a = This completes the
inductive step.

Now let cp = W = be two chain maps inducing the given
cp : H0(C)-+H0(D). Recursively we shall define a homotopy E : V--+(p.
First consider the diagram

C1 'C0 - H0(C) -0
Eow1W1 VO WO

W

D0 H0(D) 0
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Since cpo and lpo both induce co, cpo - lPo maps Co into

ker(Do-*H0(D)) = im(D1--.DO) .

Since C is projective, there exists Eo : Co->D1 such that go-Wo = 0Eo
Now suppose n 1 and suppose that Eo . . . . En-1 are defined in such

a way that cp, - lp, = a E, + E, a. r < n - 1 (E_ 12 being understood as
zero). Consider the diagram

C1.11
B

Cn Cn -1

.Vn+l!1 Wn+i 4Vn W.
Yn

Wn-W.-l

Dn+1 PDn)Dn-1
We have

a('Pn-Wn-En-la)=cPn-la-Wn-1a-aEn-1a

(cPn-1 -Wn-1 -aEn-1)a=En-2aa=0.

Hence cpn a maps Cn into

ker(a : Dn->Dn_1) = im(a : Dn+1-+Dn)

Since C,, is projective. there exists E,, : C,, ->Dn+1 such that

Pn-Wn-En-la=aEn. Q

Lemma 4.2. To every A-module A there exists a projective resolution.

Proof. Choose a projective presentation R1>-+Po-A of A; then
a projective presentation R2>--Pt--»R1 of R1, etc. Plainly the complex

P: - - - -*P, __>P,-1-> ...---), PO

where an: Pn-+Pn_1 is defined by Pn-»R,,,+Pn_1 is a projective resolu-
tion of A. For it is clearly projective and acyclic, and Ho (P) = A. 0

Notice that every projective resolution arises in the manner described.
Thus we see that the existence of projective resolutions is equivalent to
the existence of projective presentations. In general we shall say that an
abelian category 2I has enough projectives if to every object A in 2I there
is at least one projective presentation of A. By the argument above every
object in J then has a projective resolution.

We also remark that in the category of abelian groups, we can take
Pt = R1, P,, =0, n > 2, because an abelian group is projective if and only
if it is free and a subgroup of a free group is free. We shall see later that
for modules it may happen that no finite projective resolution exists, that
is, there may be no projective resolution P of A such that P,, = 0 for n
sufficiently large.
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Proposition 4.3. Two resolutions of A are canonically of the same
homotopy type.

Proof. Let C and D be two projective resolutions of A. By Theorem 4.1
there exist chain maps (p: C--+D and ip : D--+C inducing the identity in
H0(C) = A = H0(D). The composition ipq : C->C as well as the identity
1 : C-+C induce the identity in A. By Theorem 4.1 we have VV ^ 1.
Analogously cpy, ^- 1. Hence C and D are of the same homotopy type.
Since the homotopy class of the homotopy equivalence V : C--+D is
uniquely determined, the resolutions C and D are canonically of the
same homotopy type. 0

We conclude this section with a remark on the dual situation. We
look at positive cochain complexes, that is. cochain complexes of the form

C :O-+Co-SCI'CZ_p ...'C,--.Cntl--- ...
with Cn=0 for n<0.

We call C injective if each C is injective, and acyclic if Hn(C) = 0 for
n * 0. We then can prove the dual of Theorem 4.1.

Theorem 4.4. Let C : Co-+C1--> -* Cn-> Ci+1- - - be acyclic and
D : Do->D1-> - ->Dn->Dn + I-> be injective. Then there exists, to
every homomorphism cp : H°(C)-+H°(D), a cochain map tp : C-+D in-
ducing cp. Moreover two cochain maps inducing cp are homotopic. 0

A complex I:Io-+II-+ which is injective and
acyclic with H°(I)=A is called an injective resolution of A.

Plainly an abelian category U, for example "Al in which every object
has an injective presentation will have injective resolutions, and con-
versely. Such a category will be said to have enough injectives. For later
use we finally record the following consequence of Theorem 4.4.

Proposition 4.5. Two injective resolutions of A are canonically of the
same homotopy type. 0

Exercises:

4.1. Use Theorem 4.1 to show that if P is projective with P. = 0, n < 0, then H(P) = 0
if and only if 1 0: P-3P.

4.2. Let V : C-3 D be a chain map of the projective complex C into the projective
complex D with C. = D. = 0, n < 0. Use the chain complex E(qp) and Exercise
4.1 to show that 9 is a homotopy equivalence if and only if qx, : H(C)=-'H(D).

4.3. Dualize Exercises 4.1, 4.2 above.
4.4. Let qp : C--+D be a chain map, where C is a free chain complex with C = O. n < 0.

Let {y} be a fixed homogeneous basis for C and write S < y ('S is a face of y')
if S appears in 8(y) with non-zero coefficient. A function A from the basis {y}
to the set of sub-complexes of D is called an acyclic carrier for q if
(i) 9(y) is a chain of A(y),
(ii) H(A(y)) = 0, all y,
(iii) S< y .A(S) C A(y).
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Show that if qp admits an acyclic carrier then qp n- 0. [This is a crucial result
in the homology theory of polyhedra.] Show that this result generalizes
Theorem 4.1 as the latter applies to free chain complexes C.

4.5. Let A' be a submodule of A and let

K9+1

be an injective resolution of A'. Show how to construct an injective resolution

of A such that
(i) I, g Iq,
(ii) Kq c Kq, all q,

(iii) K. is a pullback.

Kq+I

4-'I9
Show that I /lo-' is then an injective resolution
of A/A'.

5. Derived Functors

We are now prepared to tackle the main theme of homological algebra,
that of derived functors. This theory may be regarded - and, indeed
historically arose - as a massive generalization of the theory of Tor and
Ext, described in Chapter III.

We shall develop the theory in some generality and take as base
functor an arbitrary additive and covariant functor T: 9te- lib. We shall
carry out the definition of left derived functors in detail, while we restrict
ourselves to some remarks on the definition of right derived functors.
We leave even more details to the reader in translating the theory to that
of an additive contravariant functor. The theory we present remains valid
if the codomain of T is taken to be any abelian category; however in
our principal applications the codomain is Sib.

Let T: WlA->2ib be an additive covariant functor. Our aim is to
define a sequence of functors WJLA-+2ib, n = 0, 1, 2, ... the so-called
left derived functors of T. This definition is effected in several steps.

Given a A-module A and a projective resolution P of A we first define
abelian groups L'T(A), n = 0, 1, ..., as follows. Consider the complex of



5. Derived Functors 131

abelian groups TP: -TPo-+O and define
n=0,1,....

We shall show below that, if T is a given additive functor, LnT(A) does
not depend on the resolution P, but only on A, and that for a given
a : A->A' it is possible to define an induced map a* :
making LnT(-) into a functor.

Let a : A->A' be a homomorphism and let P, P' be projective resolu-
tions of A, A' respectively. By Theorem 4.1 there exists a chain map
a : P--+P' inducing a, which is determined up to homotopy. By Corol-
lary 3.5 we obtain a map

a(P,P'):LnTA->Ln'TA', n=0,1,...
which is independent of the choice of a.

Next consider a : A-'A', a': A'--'A" and projective resolutions
P, P', P" of A, A', A" respectively. The composition a'a : A--+A" induces,
by the above, a map a'a(P, P") : LnTA--+Ln"TA" which may be con-
structed via a chain map P--+P" inducing a'x. We choose for this chain
map the composition of a chain map a : P-+P' inducing a and a chain
map a': P'----- P" inducing a'. We thus obtain

(a'a) (P, P") = a'(P', P") - a(P, P) . (5.1)

Also it is plain that 'A: A->A yields

1A(P, P) = identity of L TA . (5.2)

We are now prepared to prove

Proposition 5.1. Let P. Q be two projective resolutions of A. Then
there is a canonical isomorphism

n=np,Q:LnTA=>LQTA, n=0,1,....

Proof. Let q : P-+Q be a chain map inducing 1A. Its homotopy class
is uniquely determined; moreover it is clear from Proposition 4.3 that n
is a homotopy equivalence. Hence we obtain a canonical isomorphism

q= 1A(P, Q): LfTA=>LQTA, n=0, 1,...

which may be computed via any chain map q : P---- *Q inducing 1A. 0

By (5.1) and (5.2) IQ,RtIp.Q=qp,R for three resolutions P, Q, R of A,

and rlp. p =1.Thus we are allowed to identify the groups e,, TA and L? TA
via the isomorphism I. Accordingly we shall drop the superscript P and
write from now on L,, TA for LnTA.

Finally we have to define, for a given a : A-iA', an induced homo-
morphism
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Of course, we define

Indeed, if we do so, then (5.1) and (5.2) will ensure that is a functor.
The only thing left to check is the fact that the definition of a* is com-
patible with the identification made under rl. This is achieved by the
following computation. Let P, Q be projective resolutions of A and
P', Q' projective resolutions of A'. Then by (5.1)

a(P, P') = 1A.(P', Q') - a(P, P') = a(P, Q')

= a(Q, Q') - 1A(P, Q) = a(Q, Q') rl .

This completes the definition of the left derived functors. We may sum-
marize the procedures as follows.

Definition. Let T: 9JIA-421b be an additive covariant functor, then
WA->21b, n =0, 1, ..., is called the n-th left derived functor of T

The value of on a A-module A is computed as follows. Take a pro-
jective resolution P of A, consider the complex TP and take homology;
then

We first note the trivial but sometimes advantageous fact that in order
to define the left derived functors it is sufficient that T be given on
projectives. In the rest of this section we shall discuss a number of basic
results on left derived functors. More general properties will be discussed
in Section 6.

Definition. The covariant functor T: 9NA->21b is called right exact if.
for every exact sequence A'-+A->A"-'0. the sequence

TA'- TA- TA"--O

is exact. The reader may readily verify that a right exact functor is additive
(see Exercise 5.8). An example of a right exact functor is BOA - by
Proposition Ill. 7.3.

Proposition 5.2. Let T: LRA, W b he right exact, then Lo T and Tare
naturally equivalent.

Proof. Let P be a projective resolution of A. Then
is exact. Hence TPl ->TPo-+TA-*0 is exact. It follows that HO(T P) = TA.
Plainly the isomorphism is natural. 0

Proposition 5.3. For P a projective A-module 0 for n = 1, 2, ...
and L0TP=TP.

Proof. Clearly P : -+0-*P0-*0 with P0 = P is a projective resolu-
tion of P. 0
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Proposition 5.4. The functors n = 0, 1, . _. are additive.

Proof. Let P be a projective resolution of A and Q a projective
resolution of B, then

is a projective resolution of A Q+ B. Since T is additive we obtain

L,, T(AG)

The reader may convince himself that and are the
canonical injections. 0

Proposition 5.5. Let Kq*Pq _ 11q-2 -+ ->Po A be an exact
sequence with Po, P1, ..., Pq-1 projective. Then if T is right exact, and
q >_ 1, the sequence

O-+LgTA->TKq "-'>TPq-1
is exact.

Proof. Let .. TPq+I--TPq-+Kq->0 be an exact sequence with
Pq, Pq+I, ..., projective. Then the complex

P:...--iPq+l a9+1 'Pq a9 -Pq-1 --'+ PO --+ 0

Kg

is a projective resolution of A. Since T is right exact the top row in the
following commutative diagram is exact

TPq+I Tca4+'), TPq TKq ' 0

i
T(Bq)1

"*1
0-->0 --> TP4-1-24 TPq-I

The ker-coker sequence of Lemma 111. 5.1 yields the exact sequence

TPq+i T(a°- '), kerT(Oq)--+ kerp,k->0 .

But since Lq TA = Hq(TP) = ker T(7q)/im T(Oq+1) we obtain kerp.= LqTA,
whence the result. 0

Analogously one proves the following proposition, which does not,
however, appear so frequently as Proposition 5.5 in applications.

Proposition 5.6. Let Pq-4Pq-1-> ->P0)) A be an exact sequence
with Po, ..., Pq-1 projective. Let Kq = imtq. Then if T is left exact, and
q >_ 1, the sequence

T(Pq)->T(Kq)->Lq-1 TA-*O
is exact. 0
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(The definition of left exactness, if not already supplied by the reader.
is given prior to Proposition 5.7.)

We conclude this section with some remarks on the definition of right
derived functors. Let T : 912,,-+2ib again be an additive covariant functor.
We define right derived functors R" T: 0, -i 2C6, n = 0. 1.... as follows:
For any A-module A we obtain the abelian group R"TA by taking an
injective resolution I of A, forming the cochain complex TI and taking
cohomology: R"TA = H"(TI), n = 0, 1, .... As in the case of left derived
functors we prove that R"TA is independent of the chosen resolution.
Thus, given a : and injective resolutions I, I' of A, A' respectively,
we can find a cochain map a : I -F inducing x. The cochain map
Tat: TI TI' then induces a homomorphism between cohomology
groups, thus

a*:R"TA-R"TA'. n=0.1.....

As in the case of left derived functors it is proved that a* is independent
of the chosen injective resolutions 1. I' and also of the chosen cochain
map a. Finally it is easy to see that with this definition of induced homo-
morphisms. R" T becomes a functor. We define

Definition. The functor T:912A--+Wb is called left exact if, for every
exact sequence of A-modules, the sequence

0--+ TA'--+ TA --* TA"

is exact. Again, a left exact functor is additive (see Exercise 5.8). An
example of a left-exact functor is (see Theorem I.2.1).

Proposition 5.7. For I an injective A-module R"TI = 0 for n = 1, 2, ... .
If T is left-exact, then R°T is naturally equivalent to T. 0

Again of course the functors R" T are additive, and we also have results
dual to Propositions 5.5, 5.6. We leave the actual formulation as well as
the proofs to the reader.

In case of an additive but contravariant functor S : 931,,-s91b the
procedure is as follows. The right derived functors R"S are obtained as
the right derived functors of the covariant functor S : 9nAPP-+2ib. So in
order to compute R"SA for a module A we choose a projective resolution
P of A (i.e. an injective resolution in 912,'PP), form the cochain complex SP
and take cohomology

R"SA=H"(SP), n=0, 1,....

Analogously we obtain the left derived functors of contravariant functors
via injective resolutions.
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The contravariant functor S is called left exact if S, taken as covariant
functor 9JiAPP.9Ib, is left exact, i.e. if for every exact sequence

A'->A-+A"-*0

the sequence 0--SSA"->SA->SA' is exact. An instance of a left exact
contravariant functor is HomA(-,B) (see Theorem I.2.2). Analogously
one defines right-exactness. In these cases too results similar to Pro-
positions 5.2, 5.3, 5.4, 5.5, 5.6 may be proved. We leave the details to the
reader, but would like to make explicit the result corresponding to
Proposition 5.5.

Proposition 5.8. Let K9., ,. Pq _ 1-> -- PO A be an exact sequence
with PO, P1, ..., P, -I projective. Then if S is left exact contravariant and
q >_ 1, the sequence

SPq_t SKq->R9SA->0
is exact. 0

Exercises:

[In Exercises 5.1,5.2, 5.5 T: is an additive functor and, in Exercise 5.5,

...-*Pg -Pq_1-'.--+Po

is a projective resolution of A.]
5.1. Show that LO T is right exact.

5.2. Show that
LT, n = 0

t
0, n>0.

5.3. Prove Proposition 5.6.
5.4. Dualize Propositions 5.5 and 5.6 to right derived functors.
5.5. Show that O- is exact, q>_ 1, giving the appro-

priate interpretation of p . Show also that

LgTA?'Lq-1TK1=Lq 2TK2=...=L1TKq_1, q2A.

5.6. Give the contravariant forms of the statements of Proposition 5.6 and Exer-
cises 5.4, 5.5.

5.7. Let PhomA(A, B) consist of those homomorphisms which factor through
projectives. Show that Phom (A, B) is a subgroup of HomA (A, B). Let II P(A, B)
be the quotient group. Show that if is exact, then

I7P(A, B')-.I1P(A, B)--*HP(A, B")

is exact. Show that HP(A. -) is additive. and that it is left exact if A is a prin-
cipal ideal domain. Dualize.

5.8. Prove that right (or left) exact functors are additive.
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6. The Two Long Exact Sequences of Derived Functors

In this section we will establish the two basic long exact sequences
associated with the concept of derived functors. In the first (Theorem 6.1),
we vary the object in931A and keep the functor fixed; in the second
(Theorem 6.3) we vary the functor and keep the object fixed.

Theorem 6.1. Let T: SJJZA--+Wb be an additive functor and let
be a short exact sequence. Then there exist connecting

homomorphisms

co : L TA L - I TA', n =1, 2... .

such that the following sequence is exact:L,,-1
TA'-*

(6.1)

.. --*L1 TA"-*LOTA'-*LOTA- LO TA"-*0 .

Proof. By Lemma 111. 5.4 we can construct a diagram with exact rows

PP'.- Po -» Po

jE. JE jE'

A'A-"HA"
with PO', Po, Po projective. Clearly, PO = P; Ej Po. By Lemma III. 5.1 the
sequence of kernels

ker s',--> ker e--* ker E" (6.2)

is short exact. Repeating this procedure with the sequence (6.2) in place
of A ' A-» A" and then proceeding inductively, we construct an exact
sequence of complexes

P'4P "=»P".

where P', P, P" are projective resolutions of A', A, A" respectively. Since T
is additive and since P = P. O+ P,, for every n > 0, the sequence

0-*TP'->TP->TP"-*0

is short exact. also. Hence Theorem 2.1 yields the definition of

(o.: Hn(TP")--*H,, -1(TP')

and the exactness of the sequence. We leave it to the reader to prove that
the definition of w is independent of the chosen resolutions P', P, P" and
chain maps a', a", and hence only depends on the given short exact
sequence. 0
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Let r : T-* T' be a natural transformation between additive covariant
functors T, T': 9JlA-*2Cb. For a projective resolution P of A we then
obtain a chain map Tp: TP--->T'P defined by
n = 0, 1, 2, .... Clearly rp induces a natural transformation of the left-
derived functors, 'CA : L. TA--> n = 0, 1, ... .

We may then express the naturality of (6.1), both with respect to T
and with respect to the short exact sequence A' >-, A o) A", in the following
portmanteau proposition.

Proposition 6.2. Let r : T-+ T' be a natural transformation between
additive covariant functors T, T' : 931A->Wb and let the diagram

A' A " »A"

B' s B- B"

be commutative with short exact rows. Then the following diagrams are
commutative:

L,, TA' L. TA --- **'-+ L. TA" Ln TA'

1 TA. 1 LA 1 TA., 1 TAI

L
I

fl* L. TB L,, TB" -2--- L,, TB'

The proof is left to the reader. 0
We now turn to the second long exact sequence.
Definition. A sequence T'-4 T-14 T" of additive functors

T', T, T" : 9JIA---> Ub

and natural transformations r', -r" is called exact on projectives if for
every projective A-module P. the sequence

0,T'P-It- TP-T"P-.0
is exact.

Theorem 6.3. Let the sequence T'-4T-14 T" of additive functors
T', T. T": VA--->2ib he exact on projectives. Then, for every A-module A,
there are connecting homomorphisms

co:LT"A-.Ln_1T'A
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such that the sequence

LnT'A->
->L1 T"A- LOT'A ` LOTA T -SLOT"A --0

(6.3)

is exact.

Proof. Choose a projective resolution P of A and consider the
sequence of complexes

TP-14 T""P--.O

which is short exact since T'-4T-14 T" is exact on projectives. The long
exact homology sequence (Theorem 2.1) then yields the connecting
homomorphisms co,, and the exactness of sequence (6.3). 0

Of course the sequence (6.3) is natural, with respect to both A and
the sequence T'->T-->T". In fact, we have

Proposition 6.4. Let a : A--+A' be a homomorphism of A-modules and let

T'--" T--" T"

S,__" S " S

be a commutative diagram of additive functors and natural transformations
such that the rows are exact on projectives. Then the following diagrams
are commutative:

... LT'A LTA LT"A-2n-- Ln_1T'A->-

->LT'A'LTA'LT"A'

- - - , L. TL,, TA --LL- Ln T"A W" L 1T'A-,

... ,LS'A ",LSA °"LS"A '"--,Ln_1S'A->

The proof is left to the reader. 0

Exercises:

6.1. Prove Proposition 6.2.
6.2. Prove Proposition 6.4.
6.3. Give an example of a sequence of functors T'- T-, T" which is exact on

projectives, but not exact-



7. The Functors Ext;, Using Projectives 139

6.4. Use the exact sequences of this section to provide a solution of Exercise 5.5.
6.5. Give a direct proof of the exactness of Lo where

is exact and T= HomA(B. -).
6.6. Consider the category tf of short exact sequences in Wt,, and consider the

category t of morphisms in Rtb. Show that co" may be regarded as a functor

7. The Functors Ext; Using Projectives

The (contravariant) functor HomA(-, B) is additive. We therefore can
define, in particular, right derived functors of Homl(-, B). These will
be the ExtA" functors.

Definition. Extt(-, B) = R"(HomA(-, B)), n = 0, 1, ... .

We recall that this means that the abelian group Extt(A, B) is com-
puted by choosing a projective resolution P of A and taking cohomology
in the cochain complex HomA(P, B). Since HomA(-, B) is left exact it
follows from Proposition 5.2 that Ext,°1(A, B) = HomA(A, B). The calcula-
tion of ExtA(A, B) will justify our notation; we have

Proposition 7.1. Extt(A, B) - ExtA(A, B).

Proof. We consider the projective presentation R1 .Y+P0 t A of A
and apply Proposition 5.8. We obtain the exact sequence

-HomA (Po, B)---' HomA (Rl, B)-> Ext 1, (A, B)-* 0

whence it follows that Ext,'i(A, B) = ExtA(A, B) by the definition of the
latter (Section 111. 2). 0

From the fact that ExtA" (-, B) is defined as a right derived functor the
following is immediate by Theorem 6.1. Given a short exact sequence
A'>--*A-3*A" we obtain a long exact sequence

-+ l+1(A",B)-> .... (7.1)

This sequence is called the long exact Ext-sequence in the first variable.
By Proposition 6.2 this sequence is natural, i.e., if we are given a com-
mutative diagram

A'-----+ A--» A"

1..
11P
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then the diagram

->Extt(A", B)-*ExtA"(A, B)--+Ext" (A', B)- ExtA+ ' (A", B)->
I

-+ExtA"(A", B)->Extj(A, B)->ExtA"(A', B). w-. Exq+i(A", B)-

is commutative, also.

Proposition 7.2. If P is projective and if I is injective, then

ExtA"(P,B)=0=Extt(A,I) for n=1,2,....

(7.2)

Proof. The first assertion is immediate by Proposition 5.3. To prove
the second assertion, we merely remark that HomA(-. I) is an exact
functor, so that its n" derived functor is zero for n >_ 1. 0

Now let fl: B--+B' be a homomorphism of A-modules. Plainly Q
induces a natural transformation

Q : Homn(-, B)-*HomA(-, B').

By Proposition 6.2 we have that, for any short exact sequence

A' ,> A-» A" ,
the diagram
->Extt(A".B) -.Extt(A.B) -->Extt(A',B) --+Extt+'(A",B)

(7.3)

...... ExtA(A", B')-> Ext"A(A. B')--> Ext"A(A'. B')-+ Ext;'+' (A". B')-->

is commutative. From (7.3) we easily deduce the following proposition.

Proposition 7.3. ExtA" (-. - ), n = 0. 1. ... is a bifunctor. 0

Proposition 7.4. Let B' 4->B s-*B" be a short exact sequence. then the
sequence HomA(-, B') s'>Homa(-, B) >HomA(-, B") of left exact (con-
travariant) functors is exact on projectives.

This is trivial. 0

By Theorem 6.3 we now obtain

Proposition 7.5. For any A-module A the short exact sequence

B 0->B .B"

gives rise to a long exact sequence

0(7.4)
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Sequence (7.4) is called the long exact Ext-sequence in the second
variable. By Proposition 6.4 sequence (7.4) is natural. Indeed, invoking
the full force of Proposition 6.4, we infer

Proposition 7.6. Let a : A-+ A' he a homomorphism and let

B'-B-,*B"

B'>-->B-,*B"

be a commutative diagram with short exact rows. Then the following
diagrams are commutative:

-> Extt (A'. B')- Ext;A (A', B) -> Ext;A (A', B")- Ext;A+' (A', B')

(7.5)

...... Ext;A(A,B') -+Ext;A(A,B) -+Ext"A(A,B") Ext;A+'(A,B')

----+ExtA"(A,B') -+Ext;A(A,B) -> Ext;A(A,B")-Extt+'(A,B')-...

1 V4

...... )-Ext;A(A. B') -* Ext;A(A. B) -> Ext;A (A. B") ExtAn+' I A, B') -f

Diagrams (7.2), (7.3), (7.5), (7.6) show that the long exact Ext-sequences
are natural in every respect possible.

Exercises:

7.1. Let ...-, Pq-----+Pg_A->..._,po

Rg

be a projective resolution of A and let

I0-CA-+ ... --+Iq _1_-'I9 ...

Kq

be an injective resolution of B. Establish isomorphisms

Ext"A (A,B) Ext" '(RA.B)

Ext" (A, B) = Ext" ' (A, K1) = = Ext' (A, K _ 1) , n 1.

7.2. Suppose given the exact sequence

0->Kg-4Pq_1->-,P0-+A->0



142 IV. Derived Functors

with PG, ..., Pq_I projective. Prove that the sequence

HomA(Pq_ I, B)-.HomA(Kq, B)-+ExtA(A, B)-.O

is exact.
7.3. Let M* = HomA(M, _1) for any A-module M. Let Pl -*PG-M- O be an exact

sequence of A-modules with PG. P, finitely generated projective- Let

D = coker(Po -,P*).

Show that the sequence

A)-,O

is exact. (Hint: Consider the diagram

P,

0-,K*-.Po*__,M**

where K=ker(Pl-+D)=coker(M*-*PP); and show that PG-,Pr* is an
isomorphism.)

7.4. Show that w : Horn (A, B")-, Ext'(A, B') factors through 17P(A, B") (Exer-A

cise 5.7) and deduce that

IIP(A, B')-+HP(A, B)-417P(A, B")-,Ext',A(A, B)-.

is exact. What does this tell us about left derived functors of II P(A, - )?
7.5. Establish the existence of an exact sequence

-,IIP,(A, B')-.17Pn(A, B)-.17Pn(A, B")-.IIPP_,(A, B')-

where II PP(A, B) = HMA, S.), and

S.

is a projective resolution of B.

7.6. Show that II Pn(A, B) = Ln_, Hom (A, -) (B), n >- 2. Does this hold for n =1?
7.7. A A-module A is said to have projective dimension <- m. and we write

proj. dim. A < m,

if Ext'(A, B) = 0 for all q > m and all A-modules B. Show that the following
statements are equivalent:
(i) proj. dim. Am;
(ii) ExtA' +' (A, B) = 0 for all A-modules B;

(iii) There exists a projective resolution of A of length m, i.e., a resolution

_,PP_-..,P,_ I - b ... _,pl -.PG

with

pm+i=pm+2= =0.
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(iv) In every projective resolution

...- P.- P,,_1-+ ...

of A the image of P,,-' P, _ 1 is projective, where P_ 1 = A.
(Of course, we write proj.dim.A = m if proj.dim.A <_ m but proj.dim.A 1-m- 1.)

8. The Functors ExtA" Using Injectives

The covariant functor HomA(A, -) is additive. We therefore can define,
in particular, right derived functors of HomA(A, -). These will be the
Ext", functors.

Definition. Fit"1(A. -) = R"(HomA (A, -)), n = 0, 1, ... .

We recall that this means that the abelian group Extt(A, B) is com-
puted by choosing an injective resolution I of B and taking cohomology
in the cochain complex HomA(A, I). Since HomA(A, -) is left exact

Ex-to (A, B) = Home (A, B)

(Proposition 5.7). In order to compute Ext,'1(A. B) we choose an injective
presentation B>-1-'-* S of B and apply the dual of Proposition 5.5. We
obtain the exact sequence

HomA(A, I)-*+HomA(A.. S)-+Ext,'i(A. B)-30. (8.1)

By definitions made in 111.3 it follows that

Ext'n (A, B) - Exte (A, B).

This justifies our notation.
The fact that Ext""A (A, -) is defined as a right derived functor

immediately yields a number of results.
(1) For any injective A-module I,

Ext"A(A,I)=0 for n=1,2,... (8.2)

(compare Proposition 7.2).
_(2) A short exact sequence B'--+B- -*B" gives rise to a long exact
Ext-sequence:

-+Extn (A, B')- Ext",1(A, B)- Ext",1(A, B") w + Ext",+' (A, B'), . (8.3)

(compare sequence (7.4)).
(3) Sequence (8.3) is natural with respect to the short exact sequence

(compare diagram (7.6)).
(4) For any projective A-module P, Ext°, (P, B) = 0 for n =1, 2, ...

(compare Proposition 7.2).
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(5) A homomorphism a : induces a natural transformation
a* : Hom, (A', - )--+Hom, (A, -), and sequence (8.3) is natural with
respect to the first variable (compare diagram (7.5)). It follows that
Ext",,(-, -) is a bifunctor (compare Proposition 7.3).

(6) A short exact sequence A'4A "=»A" induces a sequence of
additive functors HomA (A", Hom,, (A, -)-!L+ HoMA (A', -) which
is exact on injectives and therefore gives rise to a long exact sequence

-> Ext;, (A", B)-> Ext;, (A, B)-> Ext;, (A', B)- " Ext;,+' (A", B) , (8.4)

(compare sequence (7.1)).
(7) Sequence (8.4) is natural both with respect to the short exact

sequence (compare diagram (7.2)) and with respect to the second variable
(compare diagram (7.3)).

The conclusion of the reader from all these results must be that the
functors Ext" and Ext" are rather similar. Indeed we shall prove

Proposition 8.1. The bifunctors Ext;,(-, -) and ExtA(-, -), n = 0,1,...
are naturally equivalent.

Proof. We will define natural equivalences

0": Ext;,(-, -)-*Ext;,(-, -)
inductively.

The construction of 0" is trivial for n = 0: 0° is the identity. Now let
B»I-.*S be an injective presentation. By Proposition 7.2 and (8.2) we
have

Ext;, (A, I) = 0 = Ext;, (A, I) for n =1, 2, ... .

We then consider the long exact Ext-sequence (7.4) and the long exact
Ext-sequence (8.3). We define OA.B by requiring commutativity in the
diagram

HomA(A, I)-"'-> HomA(A, S)-2-L*Ext,',(A, B)----+O

II II
A,B

HomA (A, I) "' HomA (A, S)-(A, B),0
and, assuming 0" defined, we define CP B by requiring commutativity
in the diagram

tExt ; (A, S) Ext;,+' (A. B)

B
.IL W v

Ext;, (A, S) ExtA+' (A, B)
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We obviously have to check that
1) the definition of VA B does not depend on the chosen presentation

of B,
2) 0A B is natural in B,
3) 4A B is natural in A.

We shall deal in detail with points 1) and 2), but leave point 3) to the
reader.

So suppose given the following diagram

B- 1-»S

B') ) I' ))S,

with I, I' injective, and let us consider the cube

Ext",(A, S')

Ext", (A, S)

mn

I C

I

o

Ext , (A, S')

Co i Ext;,+' (A, B')

Q

Ext"+' (A. B)

Co

0n+I

0n+i

Ext°,+' (A, B')

Ext" (A, S) , - Ext",,+' (A, B)

We claim that this diagram is commutative. The top square is
commutative by naturality of the long Ext-sequence, the bottom square
by analogous reasons for Ext. Front and back squares are commutative
by definition, the left hand square by the inductive hypothesis that 4;,,s is
a natural transformation. It then follows that the right hand square also is
commutative, since w : Ext;, (A, S)--, Ext;,+' (A, B) is surjective.

To prove point 1) we now only have to set /1= 1B : B-,B; point 2) is
proved by the fact that the right hand square of the diagram is com-
mutative. 0

We also prove

Proposition 8.2. For any A and any short exact sequence
the following square is commutative

Ext;,(A. B") u'-'Exti+' (A. B')
Ion

I
On+1

Exte (A, B")--ii ;,+' (A, B')
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Proof. Choose an injective presentation B'>-+I-»S of B' and con-
struct (p, p such that the diagram

B'>-> B---+>B"

B'---+ I-»S

is commutative. We then embed (8.7) as front square in the following cube

ExtA(A, S)
0)

, Exte+' (A, B')

Ext'(A. B")

Extn (A, S)

ExtA+' (A. B')w

w

1

-, ExtA+ 1(A,
B')

10

/ W

Ext ; (A, B") w E X

The right hand square trivially is commutative, the left hand square is
commutative since -P is a natural transformation. Top and bottom
squares are commutative by naturality of the Ext-, resp. Ext-sequence.
The back square is commutative by the definition of -0. It follows that
the front square is commutative, also. 0

By Proposition 8.2 the natural transformation -P is compatible with
the connecting homomorphism in the long exact Ext-sequence in the
second variable. We remark that -P as exhibited above is also compatible
with the connecting homomorphism in the long exact sequence in the
first variable (see Exercise 9.8). In view of the equivalence expressed in
Proposition 8.1 and 8.2 we shall use only the notation Ext. even if we
refer to the definition by injectives. We then may express the assertion
of Theorem 8.1 by saying that the bifunctor Ext ; is balanced; it may be
computed via a projective resolution of the first, or an injective resolution
of the second variable, and is balanced in that the value of Extn(A, B)
is obtained as the value of the n" right derived functor of Homn(-, B)
at A or the value of the n`h right derived functor of HomA(A, -) at B.

We finally point out the important fact that the steps in Section 7
necessary to define Ext" and elicit its properties are possible in any
abelian category with enough projective objects, and do not require any
other particular property of the category S93 A. Similarly, of course, the
steps in Section 8 necessary to define Ext" and elicit its properties are
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possible in any abelian category with enough injective objects. Moreover,
in a category with enough projectives and injectives, Ext" = Fit".
However it may well happen that an abelian category has enough
projectives but not enough injectives (for example the category of
finitely generated abelian groups (see Exercise 8.1)); then clearly only
the procedure using projectives will yield Ext-functors according to our
definition. In the dual situation of course, that is, in a category with
enough injective but not enough projective objects (for example in the
category of torsion abelian groups (see Exercise 8.2)) only the procedure
using injectives will yield Ext-functors. Actually, it may be shown that
even in abelian categories with neither enough projectives nor enough
injectives, functors having all the essential properties of Ext-functors
may be defined (see Exercises 9.4 to 9.7).

Exercises:

8.1. Show that the category of finitely generated abelian groups has enough
projectives but no non-zero injectives.

8.2. Show that the category of torsion abelian groups has enough injectives but
no non-zero projectives.

8.3. Suppose given the exact sequence

with Io, ..., Iq_1 injective. Show that the sequence

Hom (A, Iq _ 1)-' . Hom (A, Sq)-> Ext'A (A, B)-0

is exact.
8.4. Dualize the definition of II P(A, B), to define 17 I(A, B).
8.5. Dualize Exercises 7.4, 7.5. 7.6.
8.6. Let us say that (p: A--+B is a fibre-map if every homomorphism I--+B, I

injective, factors through cp. Let i : K-+A be the kernel of the fibre-map cp.
Show that there is an exact sequence, for any X,

-,III"(X,K) '*VIII"(X,A)

Dualize.
8.7. A A-module B is said to have injective dimension < m, and we write

inj.dim. B < m, if Extq,, (A, B) = 0 for all q > m and for all A-modules A. Analo-
gously to Exercise 7.7 give different characterisations for inj.dim. B :!g m. (Of
course, we write inj.dim. B = m if inj.dim. B <_ m but inj.dim. B J m - 1.)

8.8. A ring A is said to have global dimension < m, and we write gl.dim. A < m.
if Extq (A, B) = 0 for all q > m and for all A-modules A, B.
The smallest m with gl.dim A :!g m is called the global dimension of A. What is
the global dimension of a field, of a semi-simple ring, of a p.i.d.? Characterize
the global dimension of A in terms of the projective and injective dimension
of A-modules.
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9. Ext" and n-Extensions

We recall that B) = Ext,',(A, B) can be interpreted as the group
of equivalence classes of extensions B--+E-»A. A generalization of this
interpretation to Ext" has been given by Yoneda. An exact sequence

E:0->B-*E" (9.1)

of A-modules is called an n-extension of A by B. Then an extension is a
1-extension. In the set of n-extensions of A by B we shall introduce an
equivalence relation that generalizes the equivalence relation given in
Section III.1 for 1-extensions. We shall say that the n-extensions E, E'
satisfy the relation E-'E' if there is a commutative diagram

F : 0->B-+ 0

It is easy to see that the relation " is not symmetric for n >:2, although
it obviously is for n = 1. However every relation generates an equivalence
relation, which we now describe explicitly for the given relation '.
Accordingly, we define E and E' to be equivalent, E- E; if and only if
there exists a chain Eo =E, El, ..., Ek =E with

Ea -s El .,..N EZ ...,, ,,,, Ek .

By [E] we denote the equivalence class of the n-extension E, and by
Yext" (A, B), n >= 1, we denote the set of all equivalence classes of n-
extensions of A by B. In order to make Yext",(-, -) into a bifunctor we
shall define induced maps as follows.

First let B be fixed and let a : A'--+ A be a homomorphism. Let
be a representative of an element in

B). Define E1 as the pull-back of (a, ri),

By Lemma 111.1.2 q' is epimorphic and has the same kernel as rf. We
therefore obtain an exact sequence

Ea:O-->B->E +..-,EZ-+E -'"A'-*0

which determines an element in Yext",(A', B). It is to be proved that two
different representatives of an element in Yext"i(A, B) define the same
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element in Yext"1(A', B). This is achieved by proving that the relation
EKE implies the relation We concentrate on the right hand
end of the sequences. Setting K = ker q, k = ker i we obtain the following
diagram

Ei

Ei
n''

K-
(9.2)

A

where Ei is the pull-back of (a, q) and Ei is the pull-back of (a, ii). We
have to show the existence of a map g: Eimaking the diagram
commutative. The maps E"--"A'--+A and Ei-.E1-E1-L4A agree.
Since E i is a pull-back there is a (unique) map : E, -> E i making the
right hand cube commutative. The reader will show easily that the left
hand cube also is commutative (see the proof of Theorem 111.1.4), so that

establishes the relation E E«.

Thus cc" [E] = [Eu] defines a map a* : Yext"1(A, B)->Yext",,(A', B).
It is plain that 1 * =1. Also, using the fact that the composite of two
pull-back squares is a pull-back square, we have (aa')* =a'* a*. These
facts combine to show that Yext"1(-, B) is a contravariant functor.

Given fi : B-3 B' we define an induced map

Yext" (A, B)-. Yext"1(A, B')

by the dual process. Thus let be a
representative of an element in Yext"1(A, B). Let

B- E"

B' ........... , (E")p

be a push-out square. We obtain a sequence

EE : 0- E"-1-'...->E1->A-*O

which determines an element in Yext"1(A. B'). As above one proves that
[E] = [En] yields a map /i* : Yext i (A, B)-i Yext i (A, B') which makes

Yext"1(A, -) into a covariant functor.
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It is immediate that

Yext^ (A, B) = E(A. B) = (A. B) (9.3)

naturally in both A and B (see Theorem Ill. 2.4). Since E(-, -) is a
bifunctor (Theorem III. 1.4) Yext' (- , -) is a bifunctor, also. Indeed,
this is the only non-trivial case of the proposition that Yext",, (-, -) is a
bifunctor for n > 1. Generalizing (9.3) we have

Theorem 9.1. There is a natural equivalence of set-valued bifunctors
n=1, 2, ... .

Note that since Ext",(A, B) carries a natural abelian group structure
the equivalence 0 once established, introduces a natural abelian group
structure into Yext",(A. B).

Proof. We proceed by a method analogous to the one used in the proof
of Theorem 111.2.4. We first choose a projective resolution

P: ->P"

of A. Proposition 5.8 applied to the functor Home (-, B) yields the exact
sequence

B) --LL+ Ext",i(A, B)-*0 (9.4)

where i s R">-. P, is the embedding of R. = im 8 in P _ t . We define
0: Yext" (A, B)-, Ext" (A, B) as follows.

Given the n-extension E:O-*B we consider
the acyclic complex D : 0 -, B - E - -, EZ -, E, -, 0 with
D0=E1, Dk=O for k>-n+1. Plainly H0(D)=A.
By Theorem 4.1 there exists a chain map (p = {cpo, ..., such that the
following diagram is commutative

R"

P",_p. an
- ,A--,O

t
I.P. 11P.-I

t 00

Clearly (p,,: P,,- B factors as cp = cprl where cp : R,,--+B. We define
0(E) = [gyp]. We have to show that this definition is independent of the
chain map (p. By Theorem 4.1 it follows that if ip = IV,_., is another
chain map there exists a chain homotopy 2;: (p--* V. In particular we
have W. - cp =Z.- , so that ip - lp = z. It follows by (9.4) that
[vp] _ [rp + [cp]. Finally it is obvious that if E,-,,E' then
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0(E) = [p] = 0(E'). This completes the definition of the map

0: Yext"1(A, B)-> Ext"1(A, B).

Next we define a map 0: Ext"" (A, (A, B). Let cp :
represent the element [(p] e Ext", (A, B). We associate with *p the equiva-
lence class of the n-extension C., in the diagram

Rn-1

C : O--+Rn' ,

11

C0:0->B K >E -P"-2__*... ,Po---,A----.0

where E is the push-out of (i, (p). If cp is replaced by cp' = (p + E i then it
is easy to see that, if x is replaced by X'= x + icE, the diagram is again
commutative. It then follows that E is also the push-out of (i, (p'). Thus if
we set O[cp] = [C,], we indeed have defined a map

6: Ext"1(A, B)--.Yext"(A, B).

Plainly 00 =1 and the diagram

C: 0-->Rn-P.-1-'I'n-z .A-:O

CIP:O-.B -.E .A-0

E:0-*B -.En -=En-1 - ,E1- .A->0
where cp;,_ 1 is defined by the push-out property of E shows that 60 = 1.

It remains to prove that 0 is a natural transformation. First let
fi : B--+ B' be given; then the diagram

C:0-.Rn-.Pn_1 'Pn-2 -A-+0

I I.P.
1

100
II

E:O-.B =-E,, ---.E"_1 -)... ,E, A-.0
r I I I I I I I

Ep:0-.B' (E,,)p -E1-;A-+O
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shows that O f3* [E] = 0 [E8] = [# cp] = f * [cp] = f * 0 [E]. Finally let
a : A'-+A be given. We then have to look at the following diagram

x
Ox

Y11
0 R,,- 0

1011 1
q,1 19o

Ex: 0-yB --+En V-,...- ->A'-p0

E:0-*B -E --+E2----E1-A---0
where Ei is the pull-back of (?I, a). Since the maps Po-+P0--+ EI ->A
and Po->A'->A coincide we obtain a (unique) map PP-+Ei which makes
the diagram commutative. (There is, as usual, the extra argument
establishing that Pi->Po-+E, coincides with P1'-+E2->E'.) Thus we
obtain

Da*[E] =O[E] = [cpX] =a*[cp] =a*O[E] .

This completes the proof that 0 is a natural transformation. 0
We now give a description of the connecting homomorphisms of

the Ext-sequences in terms of n-extensions. We first consider the long
exact Ext-sequences in the second variable (7.4). Let B'>--+B-»B" be a
short exact sequence and let P: +P0 be a
projective resolution of A. Set Rn = im 8n, n >1, Ro = A. An element in
Ext i (A, B") is represented by a homomorphism cp : R,, -+B" (see (9.4)).
By construction the connecting homomorphism

w : Extn (A, B")-+ Ext"i+ 1(A, B')

associates with cp : R,,-+B" the homomorphism W : Rn+ 1-+B' in the
commutative diagram Rn+1-P. --» R.

B' -B -B"
(see the remark after the proof of Theorem 2.1). It follows that the diagram

0----+R

i
n+l IP

+

n-1
'PI-z-+... Io II --+0

Rn

lW 1 IO-*B' -B ---E
\1/

'Pn-2 A-)0

B"
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is commutative, where E is the push-out of (i, cp). Hence if

E: 0--+ B"--+ En-+ En_ 1->...-*El-*A-+0

represents the element [cp] a Ext i (A, B"), then

E':0->B'-+B->E"-+E"_, (9.5)

represents the element w[cp] a Ext"1+ 1(A, B'). We continue with an
analysis of the connecting homomorphism in the first variable, that is,
in sequence (7.1). Let A'---A-,*A" be a short exact sequence and let

be the short exact sequence of resolutions of A', A, A"
respectively, as constructed in the proof of Theorem 6.1. We recall that
the resolution P is constructed by induction using diagrams of the
following form

Rn+,>--> Rn+, -»Rn+l

I I

where r rr n r r rr "ere Rn = lm 8n, R" = im 8", Rn = im 8n, n 1, Ro = A , Ro = A, Ro = A
and En is constructed via xn. Now let (p: R;,->B represent an element of
Ext" (A', B). Then, by construction of the connecting homomorphism
w : Ext,",(A', B)->Ext"1+ 1(A", B), the element w[cp] is represented by the
map (pa in the diagram

-P.'E P.=»Pn-,tRnI IBR1

On the other hand it is clear that xn : P,, --> Rn induces z = Tn+ 1 : Rn+ 1-+R;,
From the construction of sn one sees that the sum of the two maps

Rn+l--* R n+1-R,Rn
Rn+1--"R"+,---- Rn - Rn

is zero, so that a= - T.
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Also, the following diagram is commutative

Rn '-+Pn-1-oRn 1

Set Bn-7rn-1 In-1 Xn We may compose the diagrams of the form (9.6)
to yield the top two rows in the following commutative diagram

R'

0-'R"+1, +Pn 1---> 1

1)n.1°n+1 (-1)nOn

0-.RII;,

0--+B

(-1)n-1Bn-1 I(-1)01.

-- Po -- A"-> 0
-°1

A'

Xo

P, P, In-L -------- A"- O

+ E -----+ P,' , A"-->0

It follows that if

F : 0

represents the element [cp] e Ex t" (A'. B) then (- 1)" + 1 co [cp] e Ex t",1+ 1(A". B)
is represented by

(9.7)

It is clear that using injectives instead of projectives one can construct
a natural equivalence Ext" (-, -) = Y ext" (-, -), An analysis of
the connecting homomorphisms in the long exact sequences of Ext shows
that the connecting homomorphism in the first variable is simply given
by the composition (9.7) whereas the connecting homomorphism in the
second variable is given by the composition (9.5) together with the
sign(-1)"+1

Finally we would like to draw the reader's attention to Exercises 9.4
to 9.7 where a direct description of the addition in Yext i (A, B) is given.
As a consequence it is then possible to construct functors Yext"(-, -)



9. Ext" and n-Extensions 155

possessing the properties of Ext"(-, -) (i.e. the usual long exact sequences)
even in abelian categories with neither enough projectives nor enough
injectives.

Exercises:

9.1. Give the detailed proof that Yext"(-, -) is a bifunctor, n >- 2.
9.2. Given the diagram

E: 0->B --+E"------ -+EI

H 1

Show that F and E. are in the same class. Dualize.
9.3. Define the Yoneda product

a: Ext"i(A. B)®Ext'A (B. Q-+ExtnA+'" (A, C)

by "splicing" an n-sequence starting with B with an m-sequence ending with B.
Show bilinearity, associativity, and existence of a unity.

9.4. Define addition in Yext, (A, B), independently of the equivalence Ext1A = Yextm,.
Describe a representative of 0 E Yext'A (A, B), m >- 2 and show that + 0

e YextA (A, B).
9.5. Show that if a1, a2 : A'-+A, then

(al +a2)* = ai +a2*: Yext'A (A, B)-+Yext, (A', B),

using your definition of addition in Exercise 9.4 above, but without invoking
the equivalence YextA1 = ExtA. Using this property show that Yextm, (A, B)
admits additive inverses.

9.6. Prove that the addition given in Exercise 9.4 above is compatible with the
equivalence Extm, Yextm of Theorem 9.1.

9.7. Given B : B'-+B-+.B", define a homomorphism

w : YextA(A, B")-+YextA+1 (A, B')

by setting w[E] = [F] where

F : ..-+El --+A-+O ,

(i.e. [F] = a([E], [B]) in terms of the Yoneda product).
Prove directly that the sequence

B')-+YextA(A, B)-+Yext'(A, B") -!4YextAn+'(A,

is exact. Does this sequence coincide with (7.4)? Also, define a connecting
homomorphism for Yext in the first variable and deduce an exact sequence
corresponding to (7.1).

9.8. Construct an equivalence U.: by proceeding dually to the proof
of Theorem 9.1. Identify the connecting homomorphisms in the exact se-
quences (8.3) and (8.4) in terms of n-extensions. Express the equivalence
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1" : Ext"=. Ext" as constructed in the proof of Proposition 8.1 in terms of O
(Theorem 9.1) and O. Show that 0" is compatible with the connecting homo-
morphism in the first variable.

9.9. Let A''-+A--. A" and B' B--+B" be two short exact sequences. Show that

Ext" (A', B") u'-- Ext"' ' (A', B')

1w lw
ExtA+ 1(A ", B") `- Ext"+ 2 (A", B')

is anticommutative.
9.10.Show that the diagram of abelian group homomorphisms

A--* B

may always be embedded in a square, which is both a pull-back and a push-out.
Does this property remain valid if we replace abelian groups by A-modules?

10. Another Characterization of Derived Functors

We have defined the functor Ext (A, -) as the q-th right derived functor
of HomA (A, -). We now show how the left derived functors of any right
exact functor may be obtained by means of the Ext-functors (Corol-
lary 10.2).

We use, as before, the symbol [S. S] to denote the set (or class) of
natural transformations of the functor S into the functor S'. Clearly for
natural transformations of functors into an additive category one has
a well defined notion of addition.

Let RQ be an exact sequence with
Po, P1i ..., Pq_ 1 projective. To the additive functor T : we
define abelian groups Lq TA as follows

LqTA=ker(µ*: TRq-* TPq_1). q=1,2.... .

Lo TA = TA.

For T a right exact functor we know by Proposition 5.5 that the sequence

0-LgTA->TRqTPq
is exact. Hence in this case we conclude

LgTA=LgTA, q=0.1..... (10.1)

In particular this shows that LgTA does not depend upon the choice
of the modules PO, P,, ..., Pg_ 1 in case T is right exact. It is an immediate
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corollary of the following result that this assertion holds true for
arbitrary T.

Theorem 10.1. Let T : 9)?A-21b be an additive covariant junior and
let A be a A-module. Then there are natural isomorphisms

T : [Extgl (A, -), T] Z Lg TA, q=0, 1,... .

In case T : 971,E--+2ib is right exact the assertion (10.1) immediately yields
the following characterization of left derived functors.

Corollary 10.2. Let T : 971A--+21b be a right exact functor and let A
be a A-module. Then there are natural isomorphisms

T : [Extq(A, -), T]=+LgTA, q=0.1, .... 0

Proof of Theorem 10.1. Since HomA (-, B) is left exact we may
apply Proposition 5.8 to obtain the following commutative diagram
with exact rows

HomA (Pq_ 1, Rq)_ HomA (Rq, Rq) r , Extq (A, Rq)-+0

I

P.
114*

I A*

HomA (Pq _ i , P q - i)-+ HomA(Rq, Pq _ 1)-LL+ Ext" (A. Pq_ i )-+0

Consider the element q e Extq (A, Rq) defined by l : Rq-+Rq. Since
p : Rq-+Pq_ 1 extends to 1 : Pq_ 1 we have ,1()=0. Now let
0: Extq (A, - )-+ T be a natural transformation. We look at the diagram

Extt(A. Rq) R T(Rq)

_ ' ' - T(Pq-1)Extn(A, Pq-1)

Since p, (q) = 0, the element = IRq(q) is in the kernel of

p,,:T(Rq) *T(Pq-1),
hence an element of LgTA. Thus, given the natural transformation 0, we
have assigned to 0 an element = F(cb) a LgTA. Clearly this map
F : [Extt(A, -), T]-+LgTA is a homomorphism.

Conversely, suppose the element E Lq TA is given. We have to define
a natural transformation 0 = 04, such that

ORq(11) = e T(Rq) . (10.2)

We first show that this rule determines 0. if 0 is to be a natural trans-
formation. For let M be an arbitrary A-module and let o e ExtA(A, M).
Since

HomA(Pq_1, M)--.Homn(Rq, (A, M)--.O
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is exact, o e Extj(A, M) can be represented by a homomorphism

a: Rq --- ).M.

We consider the square
ExtAq(A, Rq) T(Rq)IV.

1-
Ext'?(A, M) D'"-. T(M)

Then commutativity forces 1M(o) = 0Ma,k(Yl) = a, ORg(rl) = We next
show that we obtain the same value for OM(o), if we choose another
representative a' of o. Consider a - a': Rq-* M : it must factor through
Pq _ 1. Hence (a - a'),: TRq'-'*+ TPq _ 1 _+ TM; but since i; E LgTA = ker,z,
we have (a - 6 ),k 0, so that a k (c) = a', Finally we show that the
0 we have defined is indeed a natural transformation. Let (p : M--+N be
a homomorphism then the diagram

Extn(A, M)---. TM

ExtA(A, N) N-. TN

must be shown to be commutative. Since cpa : R,--+N represents

cp*(e) e Extgl(A, N)

we have 0
We remark that the assertion of Theorem 10.1 for q = 0 is nothing

but the Yoneda Lemma (Proposition 11. 4.1) applied to additive functors.
We may apply Theorem 10.1 to find a description of the natural

transformations P : Ext,'1(A, -)--+ Extj(A', -). It is clear that any homo-
morphism a : A'--+A will induce such a natural transformation. Proposi-
tion 10.3 says that all natural transformations are of this kind.

Proposition 10.3. Every natural transformation

0: Extt(A, -)---.Ext1(A', -)

is induced by a homomorphism a : A'--.A.

Proof. Since Ext'(A'. -) is additive we may apply Theorem 10.1. We
have that[Ext,(A,-),ExtA(A',-)]=>L1(Ext,(A',-))(A).Let R-E.P `»A
be a projective presentation: then

L1(Ext]1(A', -)) (A) = ker (µ,k : Extl,(A', R)--,. Ext1(A', P)).

On the other hand the long exact Ext-sequence (7.4) yields

--> Hom(A', P), Hom(A', A) - , Ext 1(A', R) . ExtA(A', P)-.... (10.3)
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whence it follows that any natural transformation 0 may be described
by a homomorphism a : It is to be shown that the natural trans-
formation 0 described by a is indeed the one induced by a. Let R',--+P'--+).A'
be a projective presentation of A' and consider the following diagram

HomA(A', R)-->HomA(A', A)

I I I
Hom t(P', R) ---. HomA(P', P) --+. HomA(P', A)

I 1 I
1 e HomA(R, R) B-- HomA(R', R)---+HomA(R', P)-->HomA(R', A)

I I I I
e Ext,(A, R) ---' Extj(A', R) - Ext,(A', P) -- Ext,(A', A),

where 0* is explained below.
We have to show that the natural transformation a* induced by a has

the property that a*(q) = = w(a). By the remark after (10.2) this is
sufficient. In order to describe a* we choose x, 0 such that the following
diagram commutes

A'

R--*P-+),A

By construction of the connecting homomorphism co we then have
w(a)=[0] =[0*(1R)] =a*(t'1)= 0

It follows from the exact sequence (10.3) that the homomorphism
a : A'--.A is determined up to a homomorphism factoring through P.

Theorem 10.4. For a : A'-+A the induced natural transformation
a* : ExtA(A, -)-+Ext3(A', -) is a natural equivalence if and only if a is
of the form a = na i.

a:A' A'QQ (10.4)

where P, Q are projective.

In case (10.4) holds we say that a is an isomorphism modulo projectives.

Proof. If a is of the given form, then a* is clearly a natural equivalence.
To prove the converse first note that if a* : Ext,(A, -)-+ Ext1(A', -) is
an equivalence, then a*: Extt(A, -)->Extt(A', -) is an equivalence for
all q >_ 1. Now suppose that a : A' A is epimorphic. Let ker a= A" and
consider the short exact sequence For any B we have
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a long exact sequence

0-*Hom(A, B)-*Hom(A', B)-Hom(A", B)-*ExtA' (A, B)

->ExtA(A". B)--+ ... . (10.5)

Thus ExtA (A", B) = 0 for all B, so that A" is projective (Corollary III. 5.5).
Now choose B = A" in sequence (10.5) and observe that

Hom(A', A")--> Hom(A", A")

is surjective. The identity of A" therefore is induced by a map A'--).A".
Hence the exact sequence A",*A'-»A splits, i.e. A'=A@@A". We have

a
a : A'- *AQ+ P-!'-.)* A with P =A" projective.

For the general case take a projective presentation a : Q---»A and
consider the epimorphism

a=<a.E>:A'QQ-»A.

Then a i = a, where 1='A' : A'AA'@ Q; moreover i* is obviously a na-
tural equivalence, so that 5*: ExtA(A, - )-* ExtA(A' (DQ, -) is a natural
equivalence. By the previous argument a is of the form

a
a: A'Q+Q=*AQP--A*A.

so that a = na i as required. 0

Exercises:

10.1. Dualize the theorems of this section.
10.2. Prove that j3: B- B" induces isomorphisms /3* :17P(-. B)-=.17P(-. B"),

fl*1 : [1P1(-, B)=>HP,(-, B") if and only if /i is an isomorphism modulo
projectives. Strengthen this result by weakening the condition on /3*1.
Dualize.

10.3. Show that [ExtgA (A, - ). Lo T] Lq T(A), for any additive functor T.
10.4. Show that [Extq(A, - ), Ext 1(A', - )] = R Pq _ j (A', A), q 1. Dualize.

11. The Functor Tor;;.

Here we generalise the bifunctor TorA(-, -) defined in Section 111. 8. Let
A be a right A-module and B a left A-module.

By Proposition 111. 7.3 the functor A®A - is additive, indeed right
exact. We therefore can define

Definition. Torn (A, -) = L (A ®A -), n = 0, 1, ... .

We briefly recall how the abelian group Torn (A, B) is calculated.
Choose any projective resolution P of B, form the chain complex A®AP
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and then take homology,
B) = H (A ®AP) .

It follows from Proposition 5.2 that

Toro(A,B)=A®4B.

Similarly to Proposition 7.1, we prove that

Tori (A, B) = Tor A (A, B),

as defined in Chapter 111. 8.
Given a short exact sequence B--+ B- *B" we obtain the long exact

Tor-sequence in the second variable

--*Tor"(A, B')-+Tor-,'(A, B)->Tor;'(A, B")-'O-'-Torn_1(A, B)-t
(11.1)

-> TorA(A, B")-A ®AB',A ®AB->A ®AB"-+O

by Theorem 6.1. Sequence (11.1) is natural with respect to the short exact
sequence. By Proposition 5.3 it follows that, for P projective, P) = 0
for n=1,2,....

A homomorphism a : A--+A' clearly induces a map

a* : Tor (A, B)--.Torn (A', B),

which makes Torn(-, B), n = 0, 1, ..., into a functor. Indeed we have -
as the reader may show - that Torn(-, -), n = 0, 1,..., is a bifunctor
(compare Proposition 7.3). Applying Proposition 6.2 to the natural
transformation a* : A ®A - -->A' ®A - we deduce that sequence (11.1) is
natural with respect to the first variable.

Given the short exact sequence A' A- A" the sequence of functors
A' ®A - A ®A - --+A" ® - is exact on projectives. It follows then by
Theorem 6.3 that there exists a long exact Tor-sequence in the first
variable,

2
(11.2)

Tor1(A", B) W'-*A' ®AB,A®AB--+A"®AB->0.

This sequence is natural both with respect to the short exact sequence
and with respect to B.

in Section 8 we have shown that ExtAn may also be obtained as a
derived functor in the second variable. Similarly we have

Proposition 11.1. Torn (A, B) = ®4 B) (A), n = 0. 1.... .

We may express the assertion of Proposition 11.1 by saying that the
bifunctor Tor(-, -) is balanced; it may be computed via a projective
resolution of the first or a projective resolution of the second variable-
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We leave the proof, which is analogous to that of Proposition 8.1, to
the reader. As a consequence, we have that Tor.' (P, B) = 0 for P pro-
jective and n = 1, 2, ..., though this, of course, follows from the first
definition of Tor and the fact that P ®A - is exact.

We finally give another characterization of Tor using Corollary 10.2.

Theorem 11.2. There are natural isomorphisms

F : [Ext;,(B, - ), A ®A -]-Torn (A, B) for n = 0, 1, ... .

Proof. We only have to observe that A&, - is right exact and that
Torn (A, B) = L,, (A ®A -) (B). The assertion then follows from Corol-
lary 10.2. 0

Exercises:

11.1. Write out a complete proof that Tor (A, B) is a bifunctor.
11.2. Prove Proposition 11.1.
11.3. Show that Tore (A, B) = ker(R ®A B-. P _ 1 (&A B), where

R.

is a projective resolution of A.
11.4. Show that, if P is flat, then Torn (P, A) = 0 = Torn (A, P) for all A and n >_ 1.
11.5. Let Q: be a flat resolution of A (i.e. the sequence

is exact in dimensions n >-1, H0(Q) = A, and each Q. is flat). Show that
Torn (A, B) = Hn(Q (DA B).

11.6. Let A be a fixed A-module. Show that if ExtA (A. -) = 0. then Torn (A. -) = 0.
n > 0. Show that the converse is false.

12. Change of Rings

In this final section of Chapter IV we study the effect of a change of rings
on the functor EM;. However, we will make further applications of a
change of rings in Chapters VI and VII, and hence we record in this
section certain results for future use.

Let A, A' be two rings and let U : 9JIA.-->9MA be a functor. Then we
may restate Proposition II. 10.2 (and its dual) in this context as follows.

Theorem 12.1. (i) If U has a left adjoint F : 9J1A->S9J14, and if U pre-
serves surjections (i.e., if U is exact), then F sends projectives to projectives.

(ii) If U has a right adjoint F : 9JlA __+911A , and if U preserves injections
(i.e., if U is exact), then F sends injectives to injectives. 0
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Now let U satisfy the hypotheses of Theorem 12.1 (i), let A be a
A-module and let B' be a A'-module. Choose a projective resolution

P:... Pn-,Pn-1- ... --+po

of A, and consider

FP:

By Theorem 12.1, FP is a projective complex (of A'-modules), but it is
not in general acyclic. However, since F is right exact,

H0(FP) = FA.

Let P' be a projective resolution of FA. By Theorem 4.1 there exists
a chain map q : FP,P', determined up to homotopy, inducing the
identity on FA. Combining this with the adjugant q : F I- U, we obtain
a cochain map

Home.(P', B')ZHom,FP, B') 2+Hom,(P, UB')

which gives rise to homomorphisms

0":Ext .(FA,B')-Ext;,(A,UB'), n=0,1,2,... (12.1)

which are easily seen to be natural in A and B'. Thus P is a natural
transformation, uniquely determined by the adjugant q.

We remark that if F preserves injections (i.e., if F is exact), then FP
is a projective resolution of FA and 0 is then a natural equivalence.

Now let 6: FU--+ 1 be the co-unit of the adjugant ri (see Proposition
11. 7.2). By (12.1) we obtain homomorphisms 0'= V8*",

0": ExtA".(A', B')-ZExt .(FUA', B')-*Ext;,(UA', UB'),
(12.2)

n=0,1,2,...,

for any A'-module A', and 0" is plainly natural in A' and R. If F is exact,
then 0" is equivalent to b". The reader is referred to Exercise 12.5 for
a different description of 0".

The theory described may be applied to the following specific pair
of adjoint functors. Let y : A--+A' be a ring-homomorphism. Then any
A'-module Mmay be given the structure of a A-module via y by defining

tm'=(y2)m', .%eA, m'eM. (12.3)

We denote this A-module by Uy M' so that UY : 9J1A.-+9J1A is a functor
called the change-of-rings functor induced by y : A-*A'. Then Uz' obvi-
ously preserves surjections and it is easily verified that Uy has a left
adjoint F : 9XA-+9J1A., given by

FM=A'®,,M, M in 9JtA ; (12.4)
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here A' is regarded as a right A-module via y, and FM acquires the
structure of a A'-module through the A'-module structure on A'. Thus,
for UY, we have natural transformations

P : Extt.(A'O4A, B')-* Extt(A, UYB'),
(12.5)

9: Ext;".(A', B')->ExtA"(UYA', UYB').

We record for future reference

Proposition 12.2. If A' is flat as a right A-module via y, then

0: ExtA".(A'(D AA, ExtA"(A, UYB')

is a natural equivalence.

Proof. This is clear since the functor F given by (12.4) is then exact. 0
We may apply Theorem 12.1 (ii) in essentially the same way. We

leave the details to the reader and simply assert that, with U and F satis-
fying the hypothesis of Theorem 12.1(ii). we get natural transformations

oi : Extt.(A', FB)->Extt(UA', B) ,
(12.6)

B : Extt.(A', UB') .

Moreover, -T is a natural equivalence if F preserves surjections (i.e., if
F is exact).

The case of special interest to us involves the same functor

UY : 972,,.-971,,

as above. For UY obviously preserves injections and, as the reader will
readily verify, U' admits the right adjoint F: 9NA->9JJlA., given by

FM = Homd (A', M), M in 971A ' (12.7)

here A' is regarded as a left A-module via y, and FM acquires the structure
of a A'-module through the right A'-module structure on A'. Thus, we
have natural transformations

0: Extt.(A'. HomA(A', B))-+ Extt(UYA', B),
(12.8)

0: Ext;".(A', B')--+Ext;(UYA', UYB').

Again we record for future reference

Proposition 12.3. If A' is projective as a left A-module via y, then
0: Ext;".(A', HomA(A'. B))=*Extt(UYA'. B) is a natural equivalence. 0

We also remark that the natural transformations 0, H of (12.2), (12.6)
are, in fact, defined whenever U is exact and do not depend on the
existence of adjoints to U (though the descriptions we have given, in
terms of adjoints, facilitate their study). Indeed they have a very obvious
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definition in terms of the Yoneda description of Ext". Thus, in particular,
we have (see Exercises 12.5, 12.6)

Proposition 12.4. The natural transformation 0 of (12.5) coincides with
the natural transformation 0 of (12.8). 0

Finally, we record for application in Chapters VI and VII the fol-
lowing further consequences of Proposition H. 10.2.

Theorem 12.5. Let U' : WA' -- TI1 be the change-of-rings functor in-
duced by y: A-->A'. Then (i) if A' is a projective (left) A-module via y,
UV sends projectives to projectives; (ii) if A' is a flat right A-module via y,
UY sends injectives to injectives.

Proof. (i) The hypothesis implies that F preserves epimorphisms, so
U'' sends projectives to projectives. (ii) The hypothesis implies that F
preserves monomorphisms, so UY sends injectives to injectives. 0

Exercises:

12.1. Apply the theory of this section to a discussion of Tor in place of Ext.
12.2. Let K be a field and let K[ ] be the group algebra over K functor. Let rp : 7r -+7i

be a monomorphism of groups and let y = K[rp] : K[7r]-'K[7r ]. Show that
K[7r'] is free as a left or right K[7r]-module via y.

12.3. Show that S : FU7A'-+A' is surjective, where F, U" are given by (12.4), (12.3).
Hence embed 0 of (12.5) in an exact sequence when A' is flat as a right A-module
via y.

12.4. Give details of the definitions of F, B in (12.6). Carry out the exercise corre-
sponding to Exercise 12.3.

12.5. Identify 0 in (12.2) with the homomorphism described as follows (U being
exact). Let P' be a projective resolution of A' and let P be a projective resolu-
tion of UA'. Then we have a chain map ip : P-+ UP' inducing the identity
on UA' and we form

HomA. (P', B')-HomA (U P', U B')- Home (P, UB') .

Pass to cohomology.
12.6. Carry out a similar exercise for Bin (12.6). Deduce that 8 = 8.
12.7. Show that 0 (12.2) and & (12.6) are compatible with the connecting homo-

morphisms.



V. The Kunneth Formula

The Kunneth formula has its historic origin in algebraic topology. Given
two topological spaces X and Y, we may ask how the (singular) homology
groups of their topological product X x Y is related to the homology
groups of X and Y. This question may be answered by separating the
problem into two parts. If C(X), C(Y), C(X x Y) stand for the singular
chain complexes of X, Y, X x Y respectively, then a theorem due to
Eilenberg-Zilber establishes that the chain complex C(X x Y) is canoni-
cally homotopy-equivalent to the tensor product of the chain complexes
C(X) and C(Y),

C(X X Y)^_,C(X)0C(Y) ;

(for the precise definition of the tensor product of two chain complexes,
see Section 1, Example (a)). Thus the problem is reduced to the purely
algebraic problem of relating the homology groups of the tensor product
of C(X) and C(Y) to the homology groups of C(X) and C(Y). This relation
is furnished by the Kunneth formula, whose validity we establish under
much more general circumstances than would be required by the topo-
logical situation. For, in that case, we are concerned with free chain
complexes of Z -modules; the argument we give permits arbitrary chain
complexes C, D of A-modules, where A is any p.i.d., provided only that
one of C, D is flat. This generality allows us then to subsume under the
same theory not only the Kunneth formula in its original context but
also another important result drawn from algebraic topology, the uni-
versal coefficient theorem in homology.

When the Kunneth formula is viewed in a purely algebraic context,
it is natural to ask whether there is a similar ("dual") formula relating
to Horn instead of the tensor product. It turns out that this is the case,
and we give such a development in Section 3. Here the topological
motivation is not so immediate, but we do get, by specialization, the
universal coefficient theorem in cohomology.

Applications are given in Section 4. Others will be found in Chapter VI.
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1. Double Complexes

Definition. A double complex of chains B over A is an object in 93l
together with two endomorphisms 0': B--+ B, X: B-+B of degree (-1, 0)
and (0, - 1) respectively, called the differentials, such that

a'a'=0, 0"a"=0, 0"0'+0'a"=0. (1.1)

In other words, we are given a bigraded family of A-modules {Bp,q},
p, q e 71 and two families of A-module homomorphisms

{ P,9' BP.9+BP-1.9} , {ap,q: BP.9+BP.9-1} ,

such that (1.1) holds. As in Chapter IV we shall suppress the subscripts
of the differentials when the meaning of the symbols is clear.

We leave to the reader the obvious definition of a morphism of double
complexes. We now describe two ways to construct a chain complex
out of B.

First we define a graded module Tot B by

(Tot B) (B Bp,,.
p+q=n

Notice that a'(Tot B) 9 (Tot B),_ a"(Tot B) S (Tot B),_ 1, and that

(a'+a") (a'+a")=a'a'+a"a'+a, a"+a,a"=0.

Thus Tot B becomes a chain complex if we set

a = a' + a" : (Tot B) _ 1,

for all n. We call Tot B the (first) total chain complex of B. Second, we
define a graded module Tot' B by

(Tot' fl Bpq.
p+q=n

Then if b = {bp,q) a (Tot' B),,, we define ab by

(a b)P.9 = a' b p + 1.9 + a" bP.9 + 1

Again, the relations (1.1) guarantee that a is a differential, so we obtain
Tot' B, the (second) total chain complex of B. Note that Tot B C Tot' B,
the inclusion being an equality if for example Bp,q = 0 for p or q negative
(positive).

Of course, given a double complex B, we may form the partial chain
complexes (B, a') and (B, a") (of graded A-modules). If H(B, a') is the
homology module of (B, a'), then a" plainly induces a differential a'; in
H(B, a') by the rule

a* [z] = [a" Z]
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where z is a cycle of (B, a'); for by (1.1) a"z is a a'-cycle and if z = O' b
then a" z = a" a' b = - a' a" b is a a'-boundary. Writing a" for a* by abuse
of notation we may thus form

H(H(B, a'), a") (1.2)

and, similarly, we may form

H(H(B, 0"),0'). (1.3)

A principal object of the study of double complexes is to establish a con-
nection between (1.2), (1.3) and the homology of Tot B or Tot' B. In
general, this connection is given by a spectral sequence (see Section
VIII.9), but there are cases, some of which will be discussed in detail in
this chapter, in which the connection is much simpler to describe.

Examples. (a) Given two chain complexes C, D of right and left
A-modules, respectively, we define B, a double complex of abelian
groups, by

Bp.q = CP ®n Dq ,

a'(c®d)=ac®d, 0"(c®d)=(-1)"c®ad, cECP, deDq.

(1.1) is then easily verified; we remark that the sign (- 1)P is inserted
into the definition of a" to guarantee that a" 0'+ 0'0" = 0. Other devices
would also imply this relation, but the device employed is standard. We
call Tot B the tensor product of C and D, and write

B=C D,

Tot B=C®AD.

We record explicitly the differential in Tot B = C ®A D,

a®(c®d)=ac®d+(-1)"c®ad, ceCP, dEDq. (1.4)

It will be convenient in the sequel to write n : C-*C for the involution
given by n(c) _ (- If c, c e C,,, so that (1.4) asserts that a® = a ®1 + n ®a.
Moreover

na= - an, n 2=1. (1.5)

(b) For our second example we consider two chain complexes of
A-modules D, E and define a double complex B. of abelian groups, by

BP,q = HomA(D_P, Eq),

(a'f)(d)=(-1)P+q+'f (ad), deD_P+D_P-'Eq,
(a"f) (d) = a(fd), deD_P,f:D_P-->Eq.
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Obviously a' a' = 0, 0"(r = 0; also

(a,rarf)(d)=a(a'f)(d)=(-1)p+q+1 a(f(ad)),

(ar .0-f ) (d) _ (- I)p+9(a" f ) (ad) _ (- 1)p+q a(.f (ad)) ,

deD_p+l,f:D_p---'Eq, so that
The presence of the term D_p in the definition of Bp,q is dictated by

the requirement that a' have degree (- 1.0). Other conventions may also,
of course, be used. In particular if D is a chain complex and E a cochain
complex, then by taking BP,q = Hom,,(Dp, Eq), we obviously obtain a
double complex of cochains. This convention is often the appropriate one;
however, for our purposes in this chapter it is better to adopt the stated
convention, whereby B is always a double complex of chains, but the
translation to B* is automatic.

We call Tot' B the chain complex of homomorphisms from D to E,
and write B = Hom,,(D, E),

Tot' B = Hom,,(D, E).

We record explicitly the differential in Tot' B = Hom,,(D. E). namely.

(0Hf)p,9-(-1)p+9Jp+1,90+0fp,q+1 (1.6)

where f = { fp,q}, fp,q : D_ p +Eq.

Our reason for preferring the second total complex in this example
is made clear in the following basic adjointness relation. Note first
however that if E is a chain complex of abelian groups, then we may give
Hom7(D_p, Eq) the structure of a left (right) A -module if D is a chain
complex of right (left) A-modules; and then Hom7(D, E) is a chain-
complex of left (right) A-modules, since a' and a" are plainly A-module
homomorphisms. We write Hom for Hom7 and state the adjointness
theorem as follows.

Theorem 1.1. Let C be a chain complex of right A-modules, D a chain
complex of left A-modules and E a chain complex of abelian groups. Then
there is a natural isomorphism of chain complexes of abelian groups

Hom(C®AD. E)- HomA(C, Hom(D, E))

Proof. We have already observed the basic adjointness relation
(Theorem 111.7.2)

Hom(C_p®A D_q, Er) = HomA(C_p, Hom(D_q, Er)) . (1.7)

This induces a natural isomorphism

Hom(C®AD, E) = Homn(C, Hom(D, E)) (1.8)

as graded abelian groups, and it remains to check the compatibility with
the differentials. Note that we achieve this last isomorphism precisely
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because we have chosen the second total complex as the definition of the
Hom complex.

Now let f(p,9),r correspond to fp,(9,r) under the isomorphism (1.7), and
let f = { f(p_9),r}, f'= { fp 1y r)}, so that f corresponds to f under (1.8).
Then, if c e C_ p, d e D- q,

(( f)(P,9).r(C©d)
_(- 1)1+1+r( f(P,1,4),r(ac®d)+(- 1)Pf(P,9+1),r(C(9ad))+af(P,fl),r+1(L(9d).

on the other hand

(aHf')P,(9,r)(C) (d)

(- 1)P+q+r(Jp+1,(4,r)a{C)(d)+(aHf ,(c))P,r(d)

(- 1)P+y+r(fp+1 ,(q,r1 ac)(d)+(- 1)e+rJ P,(9+1,r)(C)(ad)+ a(J p,(4,r+11(C))(d)This

calculation shows that aHf corresponds to aHf' under (1.8) and
completes the proof of the theorem. 0

This theorem will be used in Section 4 to obtain connections between
the functors Hom, Ext, ®, and Tor in the category of abelian groups.

We close this section with some remarks on the homotopy relation
in the chain complexes C ®n D, HomA (C, D). First we remark that
a chain map q : C--+ C' plainly induces chain maps

(p# : Hom4(C', D)

while a chain map ip : D-D' induces chain maps

y)b : Hom4(C, D)-1 Hom4(C, D').

Moreover, we have the commutation laws

t) q1P =(P#V)#,VO(P#=(P #wb,

so that the tensor product complex and the homomorphism complex are
both bifunctors. Now suppose that r is a chain homotopy from rp to cp'.
where V. V': C-*C. Thus q ' - (p = ar + ra. It then follows easily that
r#. defined in the obvious way. is a chain homotopy from q, to cp'. For
plainly
qP#-qp#=cp'®I -cp®1 =((P'-q,)®1

=(ar+ra)®1
=(a®1)(r®1)+(r®1)(a®1)
=(a®1 +n®a)(r®1)+(r®1)(a®1+

since qr + rq = 0,
=a®r#+r#a®.
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Similarly one shows that l' induces a chain homotopy, which we call
r, between 9i° and tpr and that if A is a chain homotopy from V to ip',
where ip, V': D-+D; then A induces a chain homotopy A, from ip toV'and

A, from tp, to yob. The reader will. in fact. easily prove the following
generalization.

Proposition 1.2. Chain maps qp : C-+ C', ip: D-* D' induce chain maps

tP ®'i : C©AD--+C' ®AD' ,

Horn ((p, V): HomA(C', D)- HomA(C, D').

Moreover if cp ^ cp', tp n ip', then cp ®i (p' ®V',

Hom ((p, tp) Hom ((p', W). 0

Corollary 1.3. If C _ C', D _- D', then C®AD C'®AD',

HomA (C, D) HomA (C', D'). 0

We note finally that we obtain special cases C®AD, HomA(C, D) by
allowing one of the chain complexes C, D to degenerate to a single
A-module, regarded as a chain complex concentrated in dimension 0.
We shall feel free to speak of these special cases, and to refer to them by
the notation indicated, in the sequel, without further discussion. Here,
however, one remark is in order with regard to HomA(C, B). It is natural
to regard HomA(C, B) as a cochain complex, in which

C"= HomA(C", B)

and S": C"--+ C` is induced by 8"+. Thus

C"= (HomA(C, B))_" . (1.9)

Study of (1.6) shows that b" differs from 8H" only in sign. Thus there is
no real harm in identifying HomA(C, B), as a special case of HomA(C, D),
with the cochain complex HomA(C, B), by means of (1.9). We exploit this
observation later in Sections 3 and 4.

Exercises:

1.1. Show that if A is a commutative ring, then C ®A D, HomA(C. D) acquire natu-
rally the structure of chain complexes over A and that there are then natural
isomorphisms of chain-complexes over A

C®AD = D®AC,

C'®A(C®AC") = (C' ®AC)®AC" ,

HomA(C' (DAC, C") - HomA(C, HomA(C, C")).

1.2. Prove Proposition 1.2 in detail.
13. Propose other "rules of sign" for the differentials in C ®A D, HomA(C, D) which

preserve the adjointness relation of Theorem 1.1.
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1.4. We define a differential right A-module with involution to be a right A-module
A equipped with an endomorphism d : A-+A such that d2 = 0 and an involution
n : A--+A such that dry = - ild. Given such an object A, show how to
introduce a differential into A®AB where B is a differential left A-module,
and into HomA(A, B) where B is a differential right A-module. Suggest a defini-
tion of a chain map of differential A-modules with involution, and of a chain
homotopy between such chain maps.

15. Let A be a commutative ring and let A be a chain complex over A. Show that
there are natural isomorphisms of chain complexes

A®AA- A, A(8)AA--'A

(considering A as a chain -complex concentrated in dimension zero). Define
a differential graded algebra A as a chain complex A together with a chain map
ry : A-'A (unity) and a chain map p : A®AA-'A (product) such that the
diagrams of Exercise Ill. 7.8 are commutative. (If the differential in A is trivial
we simply speak of a graded algebra over A.) If A, B are differential graded
algebras over A, show how to give A ®A B the structure of a differential
graded algebra.

1.6. Show that if {A;}, - oo < i < + oc, is a graded algebra over the commutative
ring A then A = A. is an algebra over A. (We then call A internally graded.)

2. The Kunneth Theorem

The Kunneth theorem expresses, under certain restrictive hypotheses,
the homology of the tensor product C ®A D in terms of the homology
of C and D. Our main restriction will be to insist that A be a principal
ideal domain (p.i.d.). Of course, the most important case is that of A = Z,
but we do not gain any simplicity by committing ourselves to the
domain Z.

However even the restriction to the case when A is a p.i.d. is not
enough, as the following example shows.

Example. Let A= Z. Let C = a2, concentrated in dimension 0, and
let D=C. Let Co=Z_(t), C' =Z=(s), Cp=0, p$0, 1, and let 8s=2t.
Then plainly

Hp(C) = HH(C'),

H1(C(D D)=72, H1(C(DD)=0.

Thus the homology of C (&D is not determined by that of C, D.
To eliminate this counterexample we make a further hypothesis,

namely that one of C, D is flat (a chain complex is flat if its constituent
modules are flat). We may then prove

Theorem 2.1. Let C, D be chain complexes over the p.i.d. A, and
suppose that one off, D is flat. Then there is a natural short exact sequence

Q HH(C)®AHq(D)'-cH,,(C®AD)--» O Tori (HH(C), Hq(D)) ,(2.1)
p+q=n p+q=n-1
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where C is induced by the inclusion mapping

Zp(C) ®A Zq(D)--sZp+q(C (&AD) ,

of representative cycles.
Moreover the sequence splits, but not naturally.

Proof. We recall the boundary operator a® in C®A D, given by

0®(c®d)=8c®d+(-1)pc®ild, ceC., dEDq. (2.2)

Now it is plain that (over any commutative ring A). there is a natural
isomorphism

C®AD = D®AC (2.3)

given by c 1)pg d ®c, c E Cp, d e Dq, so that it is sufficient to prove
the theorem when C is flat.

We next introduce the notation

Zp = Z,(C) , Bp = Bp(C) :
(2.4)

Zp = Z p(D) , Bp = BP(D).

We consider Z = {Zp}, B = (B,,) as complexes with trivial differentials.
We also introduce the notation B'p = Bp-I (C) and the complex B' = {Bp},
where the grading is chosen precisely so that the differential in C may
be regarded as a chain map 0: C---* B'. We then consider the exact
sequence of chain complexes

Since A is a p.i.d. and since C is flat, it follows that Z, B, and B' are flat
also. Thus we obtain an exact sequence

0-+Z0AD a®i,6'®AD-a0 (2.5)

of chain complexes. We apply Theorem IV.2.1 to (2.5) to obtain the
exact triangle

H(Z®AD) ('®')* H(C®AD)

cc®n (2.6)

H(B' ®AD)

Note that (c7(D 1)* has degree 0 and that co has degree - 1. If we replace
H(B' (&A D) by H(B ®A D) then (0 01)* has degree -1 and co has degree 0.

We now analyse H(B'®AD). We first remark that since the dif-
ferential in B' is trivial, the differential in B' ®D is 1®a up to a sign.
Hence we may compute H(B'(9AD) using the differential 1®a. So
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consider the complex

( ®,1 D),,
(B,®AD)n (1®a) /B,©nD)n-1 ...

Since B' is flat, we obtain

ker(1 ®a),, = (B, (DAZ)n = (B®AZ)n-1 ,

im (1 ©a)n+ 1 =
(B,

®A B)n = (B OAR L-1 ,
so that

H,,(B'
®e D) = (B ®A H(D))n-1 . (2.7)

Similarly, since Z is flat,

Hn(Z ®A D) = (Z ®e H(D)). . (2.8)

Thus (2.6) becomes

Z®AH(D)

B ®n H(D)

Moreover, it is plain that (101). induces C in the statement of the
theorem. We next analyse w. We revert to (2.5) and pick a representative
ac®z of a generator ac®[z] of H(B®AD)=B®AH(D). Then

ac®z=(a(91)(c®z)

and a®(c(Dz)=ac®z. Thus w(ac(D[z]) is the homology class in
H(Z ®i1 D) = Z OA H(D), of ac 0 z. This means that w in (2.9) is simply
induced by the inclusion B C Z. Finally, since Z is flat, we obtain the
exact sequence

0->Torl (H(C),

where Tori (-, -) has the obvious meaning on graded modules. Hence
(2.9) yields the sequence

0-;H(C)®,, H(D)- H(CG)AD)->Torl (H(C), H(D))-*O.

This sequence is, however, precisely the sequence (2.1).
It is plain, without going into details, that every step in the argument

is natural, so that the Kunneth sequence is itself natural.
We prepare for the proof that the Kunneth sequence splits by demon-

strating some basic lemmas related to free chain complexes over p.i.d.'s.

Lemma 2.2. Let H be a graded module over the p.i.d. A. Then there
exists a free chain complex C over A such that H(C) = H.
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Proof. Let O--ARP-+F,,-*HP,O be a free presentation of HP. Set

CP_FP®RP-1>

a(x,y)=(y,0), xeFp, yeRp-1

Then as = 0, ZP(C) = FP, BP(C) = RP, so that HP(C) = HP. 0

Lemma 2.3. Let C, D be chain complexes over the p.i.d. A and let C
be free. Let 1p : H(C)- H(D) be a homomorphism. Then there exists a chain
map rp : C-> D such that rp* = V.

Proof. Consider 0-*BP-*Z1,-+HP--*0, CP-Bp_1, where everything
relates to the chain complex C. Since BP-1 is free, it follows that
CP = ZP p Y, where OP I YP : YP-* B p _ 1. Using barred letters to refer to D,
we have the diagrams

0- BP -ZP- -HP- )0

VP (2.10)

0BP>ZP>HP=.0,

(2.11)

DP aP..BP-1

here we use the fact that ZP is free (projective) to lift WP to (p' : Zp->ZP,
inducing eP : BP-*B,,, and then we use the fact that YP is free (projective)
to lift OP_ J to (pp : The reader will now easily verify that (p = {cpP},
where

(Pp = <(Pp> (Pp>: Cp = Zp©Y,->D, e

is a chain map inducing V in homology. 0

We will need a refinement of Lemma 2.3 in the next section. For our
present purposes we record the following immediate consequence of
Lemmas 2.2 and 2.3.

Proposition 2.4. Let C be a chain complex over the p.i.d. A. Then there
exists a free chain complex F over A and a chain map tP : F-'C such that
(p* : 0

We are now ready to prove that the Kunneth sequence (2.1) splits.
We first make the simplifying assumption that C and D are free. Then
we have projections x : C-*Z, x : D--+Z and plainly

x®c : C®AD-Z®i1Z
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maps a boundary of C ®A D to B ®A Z + Z ®,, B. It follows that K ® K
induces 0: H(C ®AD)-* H(C) ®AH(D) such that 0 =1 on H(C) ®AH(D).
Thus the sequence (2.1) splits if C and D are free.

We now return to the general case when C or D is flat. so that we
have a Kiinneth sequence (2.1) natural in C and D. By Proposition 2.4
we may find free chain complexes F. G and chain maps (p : F--*C,
W : such that (p,: H(F)- H(C), V* : H(G)-*H(D). In view of the
naturality of (2.1) we have a commutative diagram

0--*H(F)®AH(G) H(F®AG) Torl (H(F), H(G))--*0

I-or* 19,0WI. ITor(W*,W*( (2.12)

0-+H(C)®AH(D) H(C ®,,D) > Torl (H(C), H(D))-+0

However, since (p,k. V,k are isomorphisms, so are V* ®tp*, Tor ((p*, V,).
Thus (gyp®ip)* is an isomorphism and (2.12) exhibits an isomorphism
between two exact sequences. Since the top sequence splits, so does the
bottom one.

The only assertion of Theorem 2.1 remaining to be proved is that the
splitting of (2.1) is not natural. Were it natural, we would have, for any
rp:C--+C',W:D--*D',that (rp(&ap)*=0if gp*®1p =OandTor(cp*,1p)=0.
We will give a counter-example to this implication. Take A = 71,
C1=71=(s1), Co=71=(so), n+0, 1, 8s1 =2so; Ci =71=(si),

n$1; (p1(sl)=si; Do=Z2=(to), n+0; D'=D; tp=1.
Plainly rp* = 0, so that, were the splitting to be natural, we would have
(V ®W)*=0. But H,(C®D)=712=(s1 ®to), H1(C'®D')=712=(si®to),
so that (qp 0 ip)* : H1 (C ® D)=* H1 (C® D). This completes the proof of
Theorem 2.1. 0

A particularly important special case of the Kiinneth sequence occurs
when D is just a A-module A regarded as a chain complex concentrated
in dimension 0. We then obtain a slightly stronger result.

Theorem 2.5. (Universal coefficient theorem in homology.) Let A be a
p.i.d., let C be a flat chain complex over A and let A be a A-module. Then
there is a natural short exact sequence

(Hn_1(C), A)--*0. (2.13)

Moreover, (2.13) splits; the splitting is unnatural in C but natural in A.

Proof. The only part of the assertion requiring proof is the final
phrase. That the splitting is unnatural in C is attested by the example
given to prove the unnaturality of the splitting of (2.1). Thus it remains
to prove the naturality of the splitting of (2.13) in the variable A. If C
is free, the splitting is given by K®1 : C®AA->Z(C)®,,A. Thus, once K
is chosen, we get a left inverse 0, to l;, which is plainly natural in A. If C
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is an arbitrary flat chain complex over A, then, as demonstrated in the
proof of Theorem 2.1, there is a free chain complex F and a chain map
qp : F-->C which induces an isomorphism of the universal coefficient
sequence for F with the universal coefficient sequence for C which is
natural in A. Since the splitting of the sequence for F is natural in A, so
is the splitting of the sequence for C. 0

Exercises:

2.1. Let C be a resolution of Zk; thus Co = F. C1= R, 01 is the inclusion, where
is a presentation of 7k. Similarly let D be a resolution of

Z,. Compute H(C®D),
2.2. State and prove a Kenneth formula for the tensor product of three chain

complexes over a p.i.d.
2.3. What does the Kenneth formula become for tensor products over a field?
2.4. Show that if A is a differential graded algebra over the commutative ring A,

then H(A) is a graded algebra over A (see Exercise 1.5).
2.5. How may we weaken the hypothesis on A and still retain the validity of the

Kenneth formula?

3. The Dual Kenneth Theorem

In this section we obtain a sequence which enables us to analyse the
homology of HomA(C, D), in the sense in which the Kenneth sequence
provides an analysis of the homology of C ®A D. Again we suppose
throughout that A is a p.i.d.

Theorem 3.1. Let C. D be chain complexes over the p.i.d. A. with C
free. Then there is a natural short exact sequence

fl ExtA(H,(C),

Hq(D))
q-p=n

f e Zn(HomA(C, D)) the induced homomorphism
f,: H(C)-H(D). Moreover, the sequence splits non-naturally.

Proof. The reader should be able to provide the details of the proof
of the exactness and naturality of (3.1) by retracing, with suitable modifi-
cations, the argument establishing (2.1). It is pertinent to comment that,
if we define a chain map of degree n from C to D to be a collection f of
morphisms fp : Cp-'Dp+,, such that

fa=(-1)nof (3.2)
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then plainly (see (1.5)) such an f is just a cycle of dimension n of
Hom,,(C, D) and f induces f* e fl Hom(HH(C), Hq(D)).

q-p=n

This clarifies the definition of C; for it is plain from (1.6) that a bound-
ary of Hom,,(C, D) maps a cycle of C to a boundary of D. Further, we
replace (2.5) by

0-'Hom,,(B, D)-->Hom,,(C, D)-->Hom,,(Z, D)-+0. (3.3)

Here exactness is guaranteed by the fact that B is free; since we are
concerned with the functor Hom,,(C, -) rather than C OA - (similarly
for Z, B) we must demand that C be free rather than merely flat.

We now enter into detail with regard to the splitting of (3.1). Again
we imitate the argument for the splitting of (2.1) by first assuming D is
also free. Reverting to the argument of Lemma 2.3 we see how to adapt
it to the case of a homomorphism W : H(C)--+H(D) of degree n. The only
essential modification is that we must take

(pp = <TP" (- 1)" q > : Cp = Zp© Yp-Dp+n (3.4)

in order to achieve cp? = (- 1)" 8cp (3.2). However, an additional point
arises if D is also free; namely. we choose a fixed splitting

Dp+n = Zp+n©Yp+n,

for each p, with al Yp+n: Yp+n=-Bp+n-1 Then the lifting of Op_, to
(PP : in (2,11) becomes canonical and the only choice exercised

p+".in the construction of rp from W is in the lifting of WP to (pl : Zp--+z
We now prove

Lemma 3.2. If D is free, the construction of tP from W in Lemma 2.3
induces a homomorphism

0: fl HomA(HP(C), H9(D))->H"(HomA(C, D)).
q-P=n

Proof. It is plain that the only assertion to be established is that the
homology class of (p in Hn(Home(C, D)) is independent of the choice of
q'. Consider therefore a family of morphisms

q=p+n.
(The indexing is consistent with our rule in Example (b) of Section 1,
whereby HomA(C_p, Dq) is indexed as (p, q).) We may lift a_p,q to

Y-p,q+1 : Zp Yp+n+1
so that

ay = a . (3.5)

Now extend y-p q+1 to Y-p,q+l : Cp--PDp+n+, by defining y-p,q+, I Yp = 0.
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According to the rule (3.4), and incorporating the canonical lifting of
6P_ 1 in (2.11), we see that a gives rise to the family of morphisms

#_ P" = <0C_"" (-1l T,-1o (3.6)

Thus our assertion is proved if we can show that P is a boundary. In fact
we show that

For we find, by (1.6),

(aHy)-P.q = (-1)"Y-P+1,q0 + 8Y_P.q+1 -

Thus, on ZP,
(OHY)-P,4 t7Y-P.q+1 = -P,q' by (3.5) ;

and, on YP,

«-P+1,q-1

again by (3.5).
This proves (3.7) and hence the lemma. 0
We now return to the proof of Theorem 3.1. It is plain that CO is the

identity on r[ Hom(HP(C), Hq(D)), so that we have indeed proved that
(3.1) splits if D is free. We now complete the proof exactly as for the
sequence (2.1); that is, we use Proposition 2.4 to find a free chain complex
G and a chain map cp : G-* D inducing an isomorphism in homology;
and then prove that the Kenneth sequence for HomA(C, G) is isomorphic
to that for HomA(C, D). The reader is now invited to construct an
example to show that the splitting is not natural. As in the case of (2.1)
such an example is easily constructed with D concentrated in dimen-
sion 0. This completes the proof of the theorem. 0

We may apply Theorem 3.1 to the case when D is a A-module B,
regarded as a chain complex concentrated in dimension 0. Let us then
write H"(HomA(C, B)) for H_"(HomA(C, B)). We obtain

Theorem 3.3. (Universal coefficient theorem in cohomology.) Let A be
a p.i.d., let C be a free chain complex over A, and let B be a A-module.
Then there is a natural short exact sequence

0-* ExtA(H"-1(C), B)--+H"(Homi1(C, B)) Hom(H"(C), B)-+0. (3.8)

Moreover, (3.8) splits; the splitting is unnatural in C but natural in B.

Proof. Only a few remarks are required. First, the notation

H"(Homr1(C, B))

is unambiguous, since the cohomology modules of the cochain complex
(HomA(C, B), Hom(a, 1)) are given precisely by

H"(HomA(C, B)) = H_"(HomA(C, B)),
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where B is the chain-complex consisting just of B in dimension 0. Second,
the example (which the reader should have constructed!) to show that
the splitting of (3.1) is not natural shows that the splitting of (3.8) is not
natural in C. That the splitting is natural in B is evident from the fact
that, when D = B, we construct a canonical right inverse to l; based on
a splitting of C as ZEE) Y. 0

Exercises:

3.1. Compute H(Hom(C. D)) where C. D are as in Exercise 2.1.
3.2. Prove that if C is a free chain complex of abelian groups, then

Hom(C, G) = Hom(C, Z)® G

provided C is finitely generated in each dimension or G is finitely generated.
Deduce that Hom(C, G) c- Hom(C, Z) ® G if H(C) is finitely generated in each
dimension. How may we generalize this to chain complexes over a ring A?

33. Use the result of the exercise above to obtain an alternative universal coef-
ficient theorem for Hom(C, G) under suitable hypotheses. May we obtain in
a similar way an alternative to the dual Kunneth formula?

3.4. Reformulate the Kunneth formula, regarding Hom(C, D) as a cochain complex.
3.5. Obtain a Kunneth formula for Tot B, where B = HomA(D. E) (we worked with

Tot' B !). Prove the splitting property.

4. Applications of the Kunneth Formulas

Since we are concerned to give here some fairly concrete applications,
we will be content to state our results for the case A = Z; we will propose
in exercises the evident generalization to the case when A is an arbitrary
p.i.d. The following proposition is evident.

Proposition 4.1. Let C, C, C" be chain complexes of abelian groups.
Then there is a natural isomorphism

(C'®C)OC" = C'®(C®C") . p (4.1)

We are going to exploit (4.1) together with the companion formula
(which is just Theorem 1.1 in the case A = Z)

Hom(CO C, C") = Hom(C', Hom(C, C")). (4.2)

First, we consider (4.1). We take C, C, C" to be resolutions of abelian
groups A', A, A". Thus, for example C1= R, Co = F, Cp = 0, p $ 0, 1, and
a1 is the inclusion R S F, where

0-->R-->F--'A--*O
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is a free presentation of A. If we compute homology by means of the
Kunneth formula on either side of (4.1), we find

HO((C'®C)(D C") _ (A'(& A) e) A" ,

H, ((C' (&C) (DC") = Tor(A', A) ®A" +O Tor(A' (&A, A"),

H2((C'®C)®C") = Tor(Tor(A', A), A") ;

Ho (C' (D (C ®C")) = A' O (A ®A") ,

H1(C' ® (COO C")) = A'(8) Tor (A, A") p Tor(A', A ®A") .

H2(C'(& (C®C")) = Tor(A', Tor(A, A")),

where Tor means Tor'. We readily infer

Theorem 4.2. Let A'. A, A" be abelian groups. There is then an un-
natural isomorphism

Tor(A', A) ®A" Q T or(A' (D A, A") = A' ®Tor(A, A") +O Tor(A', A (D A") ,
(4.3)

and a natural isomorphism

Tor(Tor(A', A), A") = Tor(A', Tor(A, A")). (4.4)

Proof. We simply show why (4.4) is natural. A homomorphism
(p : A- B induces a unique homotopy class of chain maps rp : C(A)- C(B),
where C(A), C(B) are resolutions of A, B. Thus from 9':A'--+B',
(P : A-+B, v" : A"-* B", we obtain gyp' : C(A')-->C(B'), q: C(A)-->C(B),
(p": Then Proposition 1.2 guarantees unique homotopy
classes

((P' ®(i) ®cp " : (C(A') (&C(A)) ®C(A")-* (C(B') (&C(B)) ®C(B") ,

(p' O QP OO (p") : C(A') ® (C(A) (9 C(A"))-*C(B')
®(C(B) (D

compatible with (4.1). Since the calculation of H2((C'®C)®C"),
H2 (C' O (C (D C")) does not involve the splitting of the Kunneth sequence
(2.1), this proves naturality. 0

We now turn to (4.2) and use the same chain complexes C', C, C" as
in the proof of Theorem 4.2. Computing either side of (4.2) by means of
the dual Kiinneth formula, we find

H0(Hom(C' (& C, C")) = Hom(A' ® A, A"),

H_, (Hom(C' (& C, C")) = Hom(Tor(A', A), A") +O Ext(A' (DA, A"),

H_2(Hom(C'®C, C")) = Ext(Tor(A', A), A");

H0(Hom(C', Hom(C. C")) = Hom(A'. Hom(A, A")).

H-, (Hom(C', Hom(C, C")) = Hom(A', Ext(A, A")) O+ Ext(A', Hom(A, A")),

H_2(Hom(C', Hom(C, C")) = Ext(A', Ext(A, A")),
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where Tor means Tort and Ext means Ext'. We readily infer, leaving
all details to the reader,

Theorem 4.3. Let A', A, A" be abelian groups. There is then an
unnatural isomorphism

Hom(Tor(A', A), A") ®Ext(A' ©A. A")

Hom(A', Ext(A, A")) D Ext(A', Hom(A, A")),
(4.5)

and a natural isomorphism

Ext(Tor(A', A), A") = Ext(A', Ext(A, A")). 0 (4.6)

We may draw some immediate inferences from Theorem 4.3.

Corollary 4.4. If A is torsion free, then Ext(A, B) is divisible, for all B.

Proof. It follows from (4.6) that, if A is torsion-free, then

Ext(A'. Ext(A. B)) = 0

for all A', B. This means that Ext(A, B) is injective, that is, divisible, for
all B. 0

Corollary 4.5. If A' is torsion free. then Ext(A'. Ext(A, A")) = 0 for all
A A". 0

Corollary 4.6. (i) There is a natural isomorphism

Ext(A', Ext(A, A")) = Ext(A, Ext(A', A")).

(ii) There is an unnatural isomorphism

Hom(A', Ext(A, A"))®Ext(A', Hom(A, A"))

Hom(A, Ext(A', A")) D Ext(A, Hom(A', A")) . 0

Less immediate consequences are the following; the reader should
recall that Ext(Q, 71) = IR (see Chapter IIl, Exercise 6.2).

Corollary 4.7. If Ext(A, 7l) = 0, Hom(A, 71) = 0, then A = 0.

Proof. By (4.5) we infer Ext(A' Q A, 71) = 0 for all A'. Now, since
Ext(A, 71) = 0, A is torsion-free. Thus if A $ 0, take A'= Q. Then Q (&A
is a non-zero vector space over Q, so that Ext(Q Qx A, Z) 4 0. 0

Corollary 4.8. There is no abelian group A such that Ext(A, 7l) = Q,
Hom(A, Z) = 0.

Proof. Since Ext(A, 71) = Q, A is a non-zero torsion-free group. Again
by (4.5) we infer

Ext(Q Q A, 71) = Hom(Q, Q.

But Hom(Q, Q) - Q and Q ®A is a non-zero vectorspace over Q. Since
Ext(Q, 71) = IR, we have a contradiction. 0
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Remark. Theorems 4.2 and 4.3 really express certain associativity
relations between the bifunctors ®, Tor, Hom and Ext. Their true nature
is masked by the traditional notation, adopted here, whereby ® is
written between the two arguments, while Tor, Hom and Ext are written
to the left of their arguments. If we were to write

A * B for Tor(A, B),

ArhB for Hom(A, B),

A t B for Ext(A,B),

then (4.3)-(4.6) would assume the form
(A,*A)®A" (A'(&A)*A"A'*(A(&A")eA'®(A*A"),

(A'*A)*A" A'*(A*A"),
A't(A(hA")(DA,4) (AtA"),

(A,*A)tA" = A't(AtA").

These forms are surely more perspicuous.

Exercises:

4.1. Extend the results of this section to modules over arbitrary p.i.d.'s.
4.2. Show that all isomorphisms obtained by considering tensor products of four

chain complexes may be deduced from (4.3), (4.4) and the associativity of
by using functorial properties of ® and Tor.

4.3. Prove (by a suitable counterexample) that (4.3) is not natural-
4A. Similarly, prove that (4.5) is not natural.
4.5. Generalize Corollary 4.8 in the following sense: Find a family a of abelian

groups such that Q e a and such that the relations Ext (A, Z) a a, Hom(A,Z) = 0
have no solution.
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In this chapter we shall apply the theory of derived functors to the
important special case where the ground ring A is the group ring 7LG of
an abstract group G over the integers. This will lead us to a definition
of cohomology groups H"(G, A) and homology groups H"(G, B), n>_0,
where A is a left and B a right G-module (we speak of "G-modules"
instead of "7LG-modules"). In developing the theory we shall attempt to
deduce as much as possible from general properties of derived functors.
Thus, for example, we shall give a proof of the fact that HZ(G, A) clas-
sifies extensions which is not based on a particular (i.e. standard)
resolution.

The scope of the book (and of this chapter) clearly allows us to present
the most fundamental results only. The interested reader is referred to
the books [20, 33, 49; 41], for further material relating to the cohomology
of groups.

In this introduction we first give a survey of the content of this chapter
and will then discuss the historical origins of the theory in algebraic
topology.

In Sections 1, 2 we introduce the group ring and define the (co)homol-
ogy groups. Then we exhibit the nature of these groups in dimensions 0
and 1 in Sections 3,4. Section 5 consists of a discussion of the fundamental
interplay between the augmentation ideal, derivations, and the semi-
direct product. Section 6 is devoted to a short exact sequence associated
with an extension of groups. We then apply this in Section 7 to compute
the (co)homology of cyclic groups and in Section 8 to deduce the so
called 5-term exact sequence which connects the (co)homology in dimen-
sions 1 and 2. The 5-term sequence is then used in Section 9 to exhibit
relations between the homology of a group and its lower central series;
and it is the main tool for the proof, in the next section, of the fact that
H2(G, A) classifies extensions with abelian kernel.

We present in Section l 1 the theory of relative injective and projective
modules as far as it is necessary to give a proof of the reduction theorems
(Section 12) and a description of various standard resolutions (Section 13).
In Sections 14 and 15 we discuss the behavior of (co)homology with
respect to free and direct products of groups. Also, we state the universal
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coefficient theorems. We conclude the chapter with the definition of
various important maps in (co)homology and finally apply the co-
homology theory of groups to give a proof of Maschke's Theorem in the
representation theory of groups.

Homological algebra has profited greatly from interaction with alge-
braic topology. Indeed. at a very superficial level, it is obvious that the
homology theory of chain-complexes is just an algebraic abstraction
(via, e.g., the singular chain-complex functor) of the homology theory of
topological spaces. However, at a deeper level, the mathematical disci-
pline known as homological algebra may be held to have originated with
the homology theory of groups. This theory itself arose out of an observa-
tion of the topologist Witold Hurewicz in 1935 about aspherical spaces.
An aspherical space is a topological space X such that all the higher
homotopy groups of X, ni(X), i >_ 2, are trivial. Hurewicz pointed out
that the homology groups of a path-connected aspherical space X are
entirely determined by its fundamental group. It was natural, therefore,
to inquire precisely how this determination was effected, and a solution
was given independently by Hopf and Freudenthal in the years 1945
to 1946. Hopf based himself on his own study of the influence of the
fundamental group on the second homology group of a space. Indeed,
Hopf had shown earlier that if one considers the quotient group of the
second homology group by the subgroup consisting of spherical cycles,
then this group can be explicitly determined in terms of a given presenta-
tion of the fundamental group. The resulting formula has come to be
known as Hopes formula for H2(iv), where iv is the fundamental group
(see Section 10). Hopf generalized this result and defined higher homology
groups of the group iv in terms of a certain standard resolution associated
with the group rc. These groups are then the homology groups of a path-
connected aspherical space X with ir1(X) = iv.

At about the same time (actually, in the case of Eilenberg and Mac-
Lane, a little earlier) certain cohomology groups of the group iv were
being introduced and investigated by Eilenberg and MacLane and inde-
pendently by Eckmann.

Actually, we know now that in a certain sense the second homology
group H2 had been invented earlier, for back in 1904 Schur had intro-
duced the notion of the multiplicator of a group. This group was studied
by Schur in connection with the question of projective representations
of a group. It turns out that Schur's multiplicator is canonically iso-
morphic to the second integral homology group, so that one could say
that Schur's introduction of the multiplicator was, in a sense, the pre-
cursor of the theory.

The techniques employed by Hopf, Freudenthal, and Eckmann were
all, in their initial phases, very strongly influenced by the topological
application. If X is an aspherical space, then its universal covering space
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X is contractible. Moreover, it is a space upon which the fundamental
group acts freely. Thus the chain complex of X is, in modern terminology,
a free x, (X)-resolution of the integers. If we take a group B upon which
rc, (X) operates, that is to say, a 7G, (X)-module B, then we may form the
tensor product of the chain complex C(X) with B over the group ring of
x,(X), and this chain complex will yield the homology groups of X with
coefficients in the n,(X)-module B, or, in other words, the homology
groups of X with local coefficients B. In particular, if ir,(X) operates
trivially on B we will get the usual homology groups of X with coef-
ficients in B. If, instead of taking the tensor product we take the cochain-
complex Hom,,(C(X), A), where x = n,(X) and A is a it-module, then we
obtain the cohomology groups in the sense of Eckmann and Eilenberg-
MacLane.

We now know, following Cartan, Eilenberg and MacLane, precisely
how to interpret this entire program in a purely algebraic manner and
it is this purely algebraic treatment that we give in this chapter.

1. The Group Ring

Let G be a group written multiplicatively. The integral group ring ZG of
G is defined as follows. Its underlying abelian group is the free abelian
group on the set of elements of G as basis; the product of two basis
elements is given by the product in G. Thus the elements of the group
ring ZG are sums E m(x) x, where m is a function from G to Z which

XEG
takes the value zero except on a finite number of elements of G. The
multiplication is given by

(Y m(x) xl ( m'(Y) y)= Y- (m(x) m'(y)) xy . (1.1)
`XEG l1 \\yEG l1 x.yEG

The group ring is characterised by the following universal property. Let
i : be the obvious embedding.

Proposition 1.1. Let R be a ring. To any function f : G---+R with
f (x y) = f (x) -fly) and f (l) = 1 R there exists a unique ring homomorphism
f' : such that f' i = f.

Proof. We define f'(Y m(x) x) = Y m(x)f(x) which obviously is the
xEG

x)
xEG

only ring homomorphism for which f' i = f. 0
A (left) G-module is an abelian group A together with a group

homomorphism o : G-*AutA. In other words the group elements act as
automorphisms on A. We shall denote the image of a e A under the
automorphism a(x), xe G, by xoa or simply by xa if this notation cannot
cause any confusion.
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Since Aut A C End A, the universal property of the group ring yields
a ring homomorphism a':ZG-+ End A, making A into a (left) module
over ZG. Conversely, if A is a (left) module over ZG then A is a (left)
G-module, since any ring homomorphism takes invertible elements into
invertible elements, and since the group elements in ZG are invertible.
Thus we need not retain any distinction between the concepts of G-module
and ZG-module.

We leave it to the reader to word the definition of a right G-module.
A (left) G-module is called trivial if the structure map a: G-*AutA is
trivial, i.e. if every group element of G acts as the identity in A. Every
abelian group may be regarded as a trivial left or right G-module for
any group G.

The trivial map from G into the integers Z, sending every x e G into
I e Z, gives rise to a unique ring homomorphism e : ZG-'Z. This map
is called the augmentation of ZG. If Y m(x) x is an arbitrary element

xeG
in ZG, then

8(Y m(x) x) = Y, m(x) . (1.2)
xeG // xeG

The kernel of c, denoted by I G, is called the augmentation ideal of G. It
will play a key role in this chapter. First we note

Lemma 1.2. (i) As an abelian group I G is free on the set

W={x-1l1+xeG}.
(ii) Let S be a generating set for G. Then, as G-module, I G is generated

byS-1={s-11 seS}.
Proof. (i) Clearly, the set W is linearly independent. We have to show

that it generates I G. Let Y m(x) x e I G, then Y m(x) = 0. Hence
xcG xe G

m(x) x = m(x) (x - 1), and (i) is proved.
xeG xeG

(ii) It is sufficient to show that if x e G, then x -1 belongs to the
module generated by S -1. Since xy - I = x(y - 1) + (x - 1), and

x-1-1=-x-1(x-1),
this follows easily from the representation of x as x = s1 i sZ sk
siES. p

Lemma 1.3. Let U be a subgroup of G. Then ZG is free as left (or right)
U-module.

Proof. Choose {xi}, xi e G, a system of representatives of the left cosets
of U in G. The underlying set of G may be regarded as the disjoint union
of the sets xi U. Clearly, the part of ZG linearly spanned by xi U for
fixed i is a right U-module isomorphic to Z U. Hence the right module
ZG is a direct sum of submodules isomorphic to ZU. 0
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With Lemma 1.3 we deduce immediately from Theorem IV. 12.5

Corollary 1.4. Every projective (injective) G-module is a projective
(injective) U-module for any subgroup U of G. 0

Exercises:

1.1. Let A be a ring with unit and let U(A) be the set of units of A. Show that U
is a functor Rt,-+( from rings with unity to groups, and that U is right
adjoint to the group ring functor Z( ). Deduce that if G is the free product
of the groups G, and G2, then ZG is the coproduct of ZG, and ZGZ in the
category of rings with unity.

1.2. Interpret the augmentation e : ZG-+Z (i) as a G-module homomorphism, (ii) as
a morphism in the image of the functor Z( ).

1.3. Set up an isomorphism between the category of left G-modules and the
category of right G-modules.

1.4. Propose a definition of AG where A is a ring with unity and G is a group.
This is the group ring of G over A. Develop the concepts related to G-modules
as in this section, replacing "abelian groups" by "A-modules". What is a
AG-module when A is the field K?

1.5. Prove Corollary 1.4 without appealing to the theory of adjoint functors.
1.6. Show that the functor - ®ZGZ is left adjoint to the functor which assigns to

an abelian group the structure of a trivial G-module. Deduce that if P is a
projective G-module, then PG = P ®ZGZ is a free abelian group.

2. Definition of (Co)Homology

For convenience we shall use A, A', A", ... only to denote left G-modules,
and B, B', B", ... only to denote right G-modules. Moreover we shall
write BOG A, Hom6(A, A'), Torn (B, A), Ext"(A, A') for

B®76 q , Homzc(A, A') , Torn G(B, A), Extzc(A, A'),

respectively.
We define the n-th cohomology group of G with coefficients in the

left G-module A by
H"(G, A) = Ext" (Z, A), (2.1)

where 7l is to be regarded as trivial G-module. The n-th homology group
of G with coefficients in the right G-module B is defined by

H"(G, B) = Torn(B, 7L) , (2.2)

where again 7L is to be regarded as trivial G-module.
Clearly both H"(G, -) and H"(G, -) are covariant functors. The fol-

lowing is obviously an economical method of computing these groups:
Take a G-projective resolution P of the trivial (left) G-module 7L, form the
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complexes HomG(P, A) and B ®G P, and compute their homology. In
Section 13 we shall give a standard procedure of constructing such a
resolution P from the group G. Unfortunately even for groups of a very
simple structure the actual computation of the (co)homology groups by
resolutions is very hard. We therefore put the emphasis here rather on
general results about the (co)homology than on actual computations.
indeed, we shall give a complete description of the (co)homology only
for cyclic groups (Section 7) and for free groups (Section 5).

Some properties of H"(G, A), H"(G, B) immediately follow from their
definition. We list the following:

(2.3) To a short exact sequence A' A-»A" of G-modules there is
a long exact cohomology sequence

0-> H°(G, A')-> H°(G, A)-+H°(G, A')-*

... - * H"(G, A') -* H"(G, A) --> H"(G. A ") --+ H"+ 1(G, A') - ... .

To a short exact sequence B'>-,B-)*B" there is a long exact homology
sequence

...- *H"(G.B') - H"(G.B)-,H"(G,B")- H"

-,H1(G, B')-->H°(G, B) --)-H0(G,B") --- 1-0.

(2.4) If A is injective, then H"(G, A) = 0 for all n 1. If B is flat (in
particular if B is projective). then H"(G. B) = 0 for all n 1.

(2.5) If A>--+I-»A' is an injective presentation of A, then
H"+1(G, A) = H"(G, A')

for n>_ 1. If B'>- +P->)-B is a projective (or flat) presentation of B. then
H"±1(G. B) ? H"(G, B') for n >_ 1.

(2.6) Let 0-> K-+Pk-+ -P°-7L-+0 be an exact sequence of
(left) G-modules, with P°, ..., Pk projective. Then the following sequences
are exact and specify the (co)homology groups of G :

HomG(Pk, A)--+ Homo(K, A),Hk+1(G, A),O,

O-'Hk+1(G, B)- B®GK-*B®GPk .

Under the same hypotheses as in (2.6) we have, for n > k + 2,

H"(G, A) = Ext k -1(K, A),
(2.7)

H"(G, B) = K).

In particular, using 0->IG-*ZG-->Z->0, we get, for n>_ 2,

H"(G, A) = EXt 1(I G, A),
(2.8)

H"(G, B) = TorGn-, (B, I G) .



190 VI. Cohomology of Groups

The proofs of these simple facts (2.3),..., (2.8) are left to the reader. Next
we make some remarks on the functoriality of the (co)homology groups.

Let f : G--+G' be a group homomorphism; clearly f induces a ring
homomorphism 7L f : ZG-'7LG', which we shall also write as f. By
(IV. 12.3), f gives rise to a functor Uf : zG'-'9J'zG If A' is a G'-module
then x c- G acts on a' c- A'= Uf A' by x o a'= f(x) ' a'. By (IV. 12.4) the
functor Uf has a left adjoint F : zG-9J1zG defined by FA =7LG' ®GA.
By (IV. 12.5) this situation gives rise to a natural homomorphism

0: H"(G', A)- H"(G, Uf A). (2.9)

If we proceed similarly for right modules and if we use the statement for
the functor Tor analogous to (IV. 12.5), we obtain a natural homo-
morphism

6: H"(G, Uf B). (2.10)

For convenience we shall omit the functor Uf in the statements (2.9),
(2.10), whenever it is clear from the context that the G'-modules A, B are
to be regarded as G-modules via f.

The above suggests that we regard H"(-, -) as a functor on the
category G* whose objects are pairs (G, A) with G a group and A a
G-module. A morphism (f, a) : (G, A)->(G', A') in this category consists
of a group homomorphism f : G-+G' and a homomorphism a : A'- Uf A
(backwards!) of G'-modules. It is obvious from (2.9) that (f, a) induces
a homomorphism

(.f,a)*=H0a*=a*:6:H"(G',A')-'H"(G,A) (2.11)

which makes H"(-, -) into a contravariant functor on the category (5*.
We leave it to the reader to define a category (5* on which H"(-, -) is
a (covariant) functor.

We finally note the important fact that for trivial G-modules A. B we
may regard H"(-, A) and H"(-, B) as functors on the category of groups.

Exercises:

2.1. Compute H"(G, A). H"(G. B) where G is the trivial group.
2.2. Show that H"(G, -), H"(G, -) are additive functors.
2.3. Prove the statements (2.3),..., (2.8).
2A. Check explicitly that (2.11) indeed makes H"(-, -) into a functor. Similarly

for H"(-, -).
2.5. Let f : G-+G' be a group homomorphism. Show that for a G'-module A the

change-of-rings map (.1*, 1)* : H"(G', A)-> H"(G, A), n > 0, may be obtained by
the following procedure. Let P be a G-projective resolution of Z and Q a
G'-projective resolution of Z. By the comparison theorem (Theorem IV. 4.1)
there exists a (G-module) chain map rp : P-+Q lifting 1: Z--+Z. Then (f, 1)*
is induced by gyp. Proceed similarly to obtain the change-of-rings map in
homology.
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3. H°, H°

Let A be a G-module. By definition we have H°(G, A) = HomG(Z, A).
Now a homomorphism (p: Z--+A is entirely given by the image of 1 e Z,
(p(1) = a e A. The fact that (p is a G-module homomorphism implies that
x a = cp(x - 1) = V(l) = a for all x e G. Indeed one sees that tp is a
G-module homomorphism if and only if cp(1) = a remains fixed under the
action of G. Thus, if we write

AG={aeAIx -a=a for all xeG} (3.1)

for the subgroup of invariant elements in A, we have

H°(G, A) = HomG(Z, A) = AG. (3.2)

Let B be a right G-module. By definition H°(G, B) = B®GZ. Thus
H°(G. B) is the quotient of the abelian group B ? B ® Z by the subgroup
generated by the elements of the form b x - b = b(x - 1), b e B, x e G. Since
the elements x - I e ZG precisely generate the augmentation ideal I G
(Lemma 1.2), this subgroup may be expressed as B o I G. Thus if we write

BG=B/B-IG=B/{b(x- l)IbeB,xeG} (3.3)

we have
H°(G,B)=B®GZ=BG.

We may summarize our results in

Proposition 3.1. Let A, B be G-modules. Then

H°(G, A)=AG, H°(G, B)=BG.

If A, B are trivial G-modules, then

H°(G, A) = A, H°(G, B) = B.

Proof. It is immediate that, in case the G-action is trivial, AG=A and
B6=B. 0

Exercises:

3.1. Express the isomorphism HomG(Z, A) =-A G as an equivalence of functors.
3.2. Show that AG=IGA={aj).a=O,ReIG}.
33. Let F' :2tb-971G assign to each abelian group A the trivial left G-module

with underlying abelian group A. Show that F' is left adjoint to the functor
-G. Similarly show that P (obvious definition) is right adjoint to the functor

- G*

3A. Prove, without appeal to homology theory, that if O-+A'-+A `4A"-O is a
short exact sequence of G-modules, then

O,A'G--,AG --"+A "G
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is exact. Give an example where s* is not surjective. Carry out a similar
exercise for the short exact sequence 0-+B'-+B---->B"--+0 of right G-modules,
and the functor -o.

3.5. Express the functorial dependence of A', B0 on G.

4. Hl, H1 with Trivial Coefficient Modules

It turns out to be natural to begin with a study of Hl. By definition we
have H,(G. B) = Tor?(B,71). If we take the obvious 7LG-free presentation
of Z. i.e..

IG>-`--7LG `»7L, (4.1)

we get the exact sequence

0-->Hl(G,B)->B®rIG `+B(Do7LG->H0(G.B)-O.

We therefore obtain, for an arbitrary G-module B,

H,(G. B) = ker(t* : B®oIG- B) 4.2)

where i* (b (D(x -1)) = bx - b, b e B, x e G. In order to compute the first
homology group for B a trivial G-module we remark that then i* is the
zero homomorphism and hence H, (G, B) = B ®G I G. To compute B ®GI G
when B is trivial, we have to consider the subgroup of B ®1 G generated
by b®y(x-1)-by®(x- 1). But by®(x-1)=b®(x- 1); hence the
subgroup is generated by b ®(y -1) (x - 1) and so. if B is a trivial
G-module, BOOGIG?B®IG/(IG)2.

Finally, let Gab = GIG' denote the quotient of G by its commutator
subgroup G' = [G, G]. i.e.. the subgroup of G generated by all elements
of the form x-1 y-'xy, x, y e G. By Lemma 4.1 below we obtain, for
a trivial G-module B,

H,(G, B) = B®IG/(IG)2 = B®G/G' . (4.3)

In particular we note the result (well known to topologists!)

H, (G, 7L) = GIG' = Gab . (4.4)

Lemma 4.1.7L®oIG=IG/(IG)2 =Gab.

Proof. The first equality is already proved, so we have only to
show that I G/(I G)2 = Gab. By Lemma 1.2 the abelian group I G is free
on W = {x -111 + x e G}. The function p : W-. G/G' defined by

y,(x - 1) = xG'

extends uniquely to ip' : I G-+G/G'. Since

(x- 1)(y-1)=(xy-1)-(x-1)-(y-1),
ip' factors through W": I G/(I G)2--+G/G' .
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On the other hand, the definition cp(x) = (x -1) + (I G)2 yields (by the
same calculation as above) a group homomorphism (p': G-->IG/(IG)Z
inducing (p": GIG'->IG/(IG)Z. It is trivial that (p" and tp" are inverse to
each other. 0

We now turn to cohomology. Again by definition we have

H'(G, A) = Ext'(Z, A),

and (4.1) yields the exact sequence

0-+H°(G, A)-->Homc(ZG, A)-4Homa(IG, A)-*H1(G, A)-*O.

We obtain for an arbitrary G-module A,

H'(G, A) = coker(i* : A->HomG(IG, A)) (4.5)

where t*(a) (x - 1) = xa - a, a e A, x E G. For A a trivial G-module we
remark that i* is the zero homomorphism; hence

H'(G, A) = HomG(IG, A).

Moreover, cp : I G--+A is a homomorphism of G-modules if and only if
(p(x(y - 1)) = xcp (y - 1) = cp(y - 1). x. .v E G; hence if and only if

(p((x - 1) (y - 1)) = 0 .

Using Lemma 4.1 we therefore obtain, for A a trivial G-module.

H 1(G, A) = Hom (I G/(I G)2, A) = Horn (Gab, A). (4.6)

The relation of (4.6) to (4.3) which asserts that. for a trivial G-module A.

H'(G, A) - Hom (H1(G, Z), A)

is a special case of the universal coefficient theorem (see Theorem V. 3.3),
to be discussed in detail later (Section 15).

Exercises:

4.1. Use the adjointness of Exercise 3.3 to prove HomG(I G, A) - Hom(IG/(IG)2, A)
for A a trivial G-module.

4.2. Let H, G be two groups, let A be a right H-module, let B be a left H-right
G-bimodule, and let C be a left G-module. Prove

(A(DHB) C=A®H(B®GC).

Use this to show that,for a trivial right G-module M

M®GIG=(M(&Z)®GIG-M®(Z®GIG)=M®IG/(IG)2.



194 V1. Cohomology of Groups

43. Show that the isomorphisms

Hl (G, B) = B ® Gab ,

H1 (G, A) _-- Hom (Gab, A),

where A, B are trivial modules, are natural in A, B and G.
4.4. Let be a short exact sequence of abelian groups. Show that

the connecting homomorphism w : H1(G, B")-.HO(G, B') is trivial. Does the
conclusion follow if O is a short exact sequence of G-modules?

4.5. Carry out an exercise similar to Exercise 4.4 above in cohomology.

5. The Augmentation Ideal. Derivations, and the Semi-Direct Product

In the previous section we evaluated H' (G, A) for a trivial G-module A.
Here we give an interpretation of H' (G, A) in the non-trivial case. (The
analogous interpretation of H1 (G, A) is possible, but does not seem to
have any interesting applications.)

Definition. A function d : G into the G-module A
with the property

x,yeG, (5.1)

is called a derivation (or crossed homomorphism) from G into A.
Notice that, if d is a derivation, d(1)=0. The set of all derivations

d : G-+ A may be given an obvious abelian group structure; this abelian
group will be denoted by Der(G, A). Note that for a G-module homo-
morphism a : A-*A' and a derivation d : G--+A the composition

a d: G--+A'

again is a derivation. With this Der(G, -) : or,-- Wb becomes a functor.
For A a trivial G-module a derivation d: G--+A is simply a group
homomorphism.

Next we relate the derivations to the augmentation ideal.

Theorem 5.1. The homomorphism rj: Der(G, A)-+HomG(IG, A) de-
fined by

(ti(d))(y-1)=d(y), yeG (5.2)

is a natural isomorphism.
The theorem claims that the augmentation ideal I G represents the

functor Der (G, -).

Proof. Given a derivation d : G--+A, we claim that the group homo-
morphism rl (d) = cod : I G-+ A defined by cod(y -1) = d y, yeG, is a G-
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module homomorphism. Indeed

cPd(x(y- 1))=Wd((xy-1)-(x-1))=d(xy)-dx

= dx + x(dy) - dx = x (pd(y- 1).

Conversely, given a G-module homomorphism cp:IG-*A, we define a
map d4,: G->A by d,,(y)= (p (y - 1). We claim that d,, is a derivation.
Indeed

d,(xy)=cp(xy-1)=cp(x(y-1)+(x-1))
=xcp(y-1)+cp(x- 1)=xd,,(y)+d4,(x).

It is quite obvious that n is a homomorphism of abelian groups and that
cpNdq, is inverse to ri. p

The above theorem now allows us to give a description of the first
cohomology group in terms of derivations. By (4.5) H' (G, A) is the
quotient of Homc(I G, A) by the subgroup of homomorphisms cP : I G-> A
of the form (p(x -1) = xa - a for some a e A. The derivation d,,: G-* A
associated with this map cp has the form

d,,(x)=(x-1)a (5.3)

for some a e A.
Derivations of this kind are called inner derivations (or principal

crossed homomorphisms). The subgroup of Der(G, A) of inner derivations
is denoted by Ider(G, A). We then can state

Corollary 5.2. H' (G, A) = Der(G, A)/Ider(G, A). 0
Definition. Given a group G and a G-module A, we define their semi-

direct-product A x G in the following way. The underlying set of A x G
is the set of ordered pairs (a, x), a e A, x e G. The product is given by

(a, x) (a', x') = (a + xa', xx'). (5.4)

This product is easily shown to be associative, to have a neutral element
(0, 1), and an inverse (a, x)-' = (- x-1 a, x-1). There is an obvious mono-
morphism of groups i : A-+A x G, given by i(a) = (a, 1), a e A. Also, there
is an obvious epimorphism of groups p : A x G-* G, defined by p(a, x) = x,
a e A, x e G. It is easy to see that iA is normal in A x G with quotient G,
the canonical projection being p; thus the sequence

A» A x G-4' G (5.5)

is exact. We say that A x G is an extension of G by A (see Section 10 for
the precise definition of the term extension). It follows that A x G acts
by conjugation in iA; we denote this action by We have

(a',x)-(a, 1)=(a',x) (a. 1), (5.6)

a,a'eA, xeG.
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In other words, the element (a', x) e A x G acts in iA in the same way as
the element x e G acts by the given G-module structure in A. Thus we
may regard A itself as an (A x G)-module by (a'. x) a = xa.

We finally note that in (5.5) there is a group homomorphism
s : G-i A x G. given by sx = (0, x), x e G, which is a one-sided inverse
to p, ps =1G. It is because of the existence of the map s that we shall
refer - by analogy with the abelian case - to the extension (5.5) as the
split extension; s is called a splitting.

In contrast with the abelian case however the splitting s does not
force A x G to be the direct (but only the semi-direct) product of A and
G. The projection q : A x G--.A, given by q(a, x) = a, is not a group
homomorphism; however it is a derivation:

q((a, x) (a', x')) = q(a + xa', xx') = a + xa' = q(a, x) + (a, x), q(a', x). (5.7)

We now easily deduce the following universal property of the semi-direct
product:

Proposition 5.3. Suppose given a group G and a G-module A. To every
group homomorphism f : X -> G and to every f-derivation d : X -+A (i.e.
d is a derivation if A is regarded as an X-module via f), there exists a
unique group homomorphism h : X--+A x G such that the following diagram
is commutative:

A« 4 A x G E G

Conversely, every group homomorphism h : X --*A x G determines a homo-
morphism f = ph : X --*G and an f-derivation qh = d : X--+A.

The proof is obvious; h is defined by hx = (dx,fx), x e X, and it is
straightforward to check that h is a homomorphism. 0

By taking X = G and f = 1G we obtain:

Corollary 5.4. The set of derivations from G into A is in one-to-one
correspondence with the set of group homomorphisms f : G->A x G for
which pf = 1G. Q

As an application we shall prove the following result on the augmenta-
tion ideal of a free group.

Theorem 5.5. The augmentation ideal IF of a group F which is free
on the set S is the free ZF-module on the set S - 1 = Is - 1 I s e S).

Proof. We show that any function f from the set Is -1 1 s e S} into
an F-module M may be uniquely extended to an F-module homo-
morphism f': IF--*M. First note that uniqueness is clear, since
Is -1 1 s e S} generates IF as F-module by Lemma 1.2 (ii). Using the fact
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that F is free on S we define a group homomorphism f : F---).M x F by
f (s) _ (f (s - 1), s). By Corollary 5.4 f defines a derivation d : F--+M with
d(s) = f (s - 1). By Theorem 5.1 d corresponds to an F-module homomor-
phism f': IF--.M with f'(s- 1)=f(s- 1). 0

Corollary 5.6. For a free group F, we have

H"(F, A) = 0 = H"(F, B)

for all F-modules A, B and all n > 2.

Proof. IF>--.ZF--»Z is an F-free resolution of Z. 0

Exercises:

5.1. Let d: G-A be a derivation. Interpret and prove the following relation

d(x")=(x" ldx, neZ, xeG.x1
5.2. Let A>-`+E-»G be an exact sequence of groups with A abelian. Let s : G-'E

be a one-sided inverse of p, ps =1,. Show that E = A x G.
5.3. Let the (multiplicative) cyclic group of order 2, C2, operate on Z by

x generates C2. Use Corollary 5.2 to compute H' (C2, Z), for this action
of C2 on Z.

5.4. Carry out a similar exercise to Exercise 5.3, replacing C2 by C2k.
5.5. Let C. operate on Z2 p+ eZ2 (m copies) by

xai=ai+, 1=1.... m. (am+, =a,)

where x generates C. and ai generates the i°' copy of Z2. Compute

H' (Cm, Z2 (3 ... (E Z2) .

for this action of C. on Z2 e . . . eZ2.
5.6. For a fixed group Q consider the category (h/Q of 6-objects over Q. Consider

the functors F : 6/Q-+971Q and U : 97ZQ-.6/Q defined by F(G- Q) = I G ®c ZQ
and U(A) = (A x Q-4Q), where G-+Q is a group homomorphism, A is a ZQ-
module and A x Q is the semi-direct product. Show that F -1 G. Deduce Pro-
position 5.3 and Corollary 5.4.

6. A Short Exact Sequence

In this section we shall assign to any extension of groups N--+G---,,.Q
a short exact sequence of Q-modules. We shall later apply this exact
sequence to compute the (co)homology of cyclic groups (Section 8), and
to deduce a 5-term exact sequence (Section 9) which will be basic for our
treatment of extension theory. We start with the following two lemmas.
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Lemma 6.1. If N,',G-»Q is an exact sequence of groups, then
Z ®N7G = ZQ as right G-modules.

Proof. As abelian group Z®NZG is free on the set of right cosets
GIN - Q. It is easy to see that the right action of G induced by the product
in ZG is the right G-action in 7Q via p. 0

Lemma 6.2. If N-+G--»Q is an exact sequence of groups and if A is
a left G-module, then Tor (Z, A) = Torn (7Q, A).

Proof. The argument that follows applies, in generalized form, to
a change of rings (see Proposition IV. 12.2). Let X be a G-projective
resolution of A, hence by Corollary 1.4 also an N-projective resolution
of A. By Lemma 6.1, Z ®N X - 7L ®N7G ®G X 7Q ®G X ; which proves
Lemma 6.2. 0

Consider now the sequence of G-modules Tensoring
with 7Q over G we obtain

(6.1)

Note that each term in (6.1) has a natural Q-module structure, and that
(6.1) is a sequence of //Q-modules. It is easy to see that the map

ZQ = ZQ®GZG-7LQ®GZ = Z

is the augmentation of ZQ. By Lemma 6.2,

Tori (7Q, 7) Tori (Z, 71) = Hl (N, 71) - N/N'.

Hence we get the following important result.

Theorem 6.3. Let N>-,G-+Q be an exact sequence of groups. Then

0-NabZQ ®G I G-4 I (62)

is an exact sequence of Q-modules. 0
For our applications of (6.2) we shall need an explicit description of

the Q-module structure in Nab = N/N', as well as of the map
K: Nab-7LQ®GIG.

For that we compute Tori (7,Z) by the N-free presentation I N ZN-»Z
of Z and by the G-free (hence N-free) presentation IG.-,7G--»Z. We
obtain the following commutative diagram

O--.Tori (7l. Z) Z

I

®Z
I

1

®NZN' Z ®NZ O

?

0-+Tori(Z,Z)-)Z®NIG--)Z®NZG-+7®N7-->0 (6.3)
I: It It It

0-'Tori (ZQ,7)-+7Q®GIG-'7Q®GZG-'7Q®GZ ,O
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The vertical maps in the top half are induced by the embedding N,-,G.
in the bottom half they are given as in Lemma 6.2. If we now trace the map

c: Nab=.Tor; (Z, '7Q®GIG, we see that x is
given by

x)(nN')=IQ®(n-1)EZQ®GIG, neN. (6.4)

As a consequence we shall prove that the Q-module structure in Nab is
(as expected) induced by conjugation in the group G, that is,

y- nN'=(xnx-')N', (6.5)

where n e N and x e G is a representative of y e Q, i.e., y = px (see
Lemma 6.1). To prove this we proceed as follows, using the fact that is
is a Q-module monomorphism. Then

1c(y = nN') = y®(n - 1) = 1®x(n -1) a ZQ ®G IG .

Since xnx
_' a N, it follows that 1 ®(xnx _' - 1)(x- 1)= 0 in ZQ ®GI G,

so we get 1®x(n - 1) = l ®(xnx-' - 1) which obviously is the K-image
of

xnx_' N' e N/N', proving (6.5).

Corollary 6.4. Let Q be an exact sequence of groups with F
a free group, i.e. a free presentation of Q. Then

(6.6)

is a Q -free presentation of I Q.

Proof. By Theorem 5.5 IF is F-free, therefore ZQ ®FIF is Q-free. 0

Corollary 6.5. Let R '-. F--» Q be a free presentation of Q. Then for
any Q-modules A, B and all n > 3

HH(Q, B) = TorQ_ 1(B, IQ) = TorQ_ 2(B, Rab) ,

H"(Q, A) ExtQ ' (I Q, A) = ExtQ 2 (Rab, A).
(6.7)

Proof. The exact sequences IQ>--.ZQ-»Z and (6.6) together with (2.7)
give the result. 0

Exercises:

6.1. Establish the naturality of the isomorphisms in Corollary 6.5.
6.2. Generalize Corollary 6.5 to establish natural homomorphisms

HH(Q, B)-.TorQ_ 2(B, N/N'),

Ext"Q 2(N/N', A)-.H"(Q, A)

associated with N>-. G-» Q, n >_ 3.
63. Let R-*F-»Q be the free presentation of Q, free abelian on 2 generators, by

F, free on two generators. Describe Rab as a Q-module.
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7. The (Co)Homology of Finite Cyclic Groups

We denote by Ck the (multiplicatively written) cyclic group of order k
with generator z, by C the (multiplicatively written) infinite cyclic group
with generator t. Given Ck, we consider the exact sequence of groups
C - C-»Ck where µ(t) = tk, e(t) = T. By Corollary 6.4 we have a Ck-free
presentation

Z-ZCk®CIC-'X-ICk, (7.1)

where the domain Z of K is Cab, the infinite cyclic group generated by t,
written additively and regarded as a trivial C, -module. For n > 3 and for
a C, -module A, Corollary 6.5 yields

Hn(Ck, A) = Ext-k 2(7 A) = Hn-2(Ck, A). (7.2)

Hence we obtain for n =1, 2, ...
H2n-1(Ck, A) = H'(Ck, A),

(7.3)
H2n(Ck, A) = H2(Ck, A).

Since H°(Ck, A) = Ack by (3.2), the cohomology of Ck is known, once it
is computed in dimensions 1 and 2. The higher dimensional cohomology
groups then are determined by (7.3) which says that the cohomology of
Ck is periodic with period 2.

By Theorem 5.5 the augmentation ideal I C is C-free on t - 1; hence
ZCk®cIC=7Ck. The sequence (7.1) therefore becomes

Z +ZCkICk (7.4)

Now by (6.4) x sends the generator t of 71 into 1®c(tk- 1)E7Ck®cIC.
Since 1®C(tk-1)_(Zk-1+2k-2+ "' +t+1)®C(t-1), the map a is
described by a(t)=Tk-1 +rk-2+ .. +T+1 E?Ck. The map fl clearly is
multiplication in 7Ck by r - 1, whence it follows from (7.4) that

I Ck =7Ck/(Tk-1 +,rk-2 + ... +T + l) . (7.5)

Using the remark (2.6) we obtain

H2(Ck, A) = coker(a* : Homck(7Ck, A)-.Homck(7L, A))

={aeAlra=a}/(zk-l+rk-2+ +i+ 1)A
H1(Ck, A) = coker(t* : Homck(7Ck, A)-+Homck(ICk, A))

={aeAI(T`+,rk-2+ +r+l)a=0},('r-1)A,
the latter using (7.5). Proceeding analogously for homology, one obtains
the homology of Ck (see Proposition 7.1).

If we define Ck-homomorphisms cp, W: A-+A by

lpa=(z-1)a, 1pa=(Tk-1+ik-2+ +v+1)a, aeA, (7.6)
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and similar maps (p, 4' for the right C, -module B, we can state our results
as follows:

Proposition 7.1. Let Ck be a cyclic group of order k with generator T,
and let A, B be Ck-modules. Then, for n > 1,

H2n -' (Ck, A) = ker tp/im cp , H2"(Ck, A) = ker q /im tp ;

Hen_t(Ck, B) = kercp/imyp , H2n(Ck, B) = ker4/imcp .
(7.7)

while H°(Ck, A) = kerq, HO(Ck, A) = cokerq . For A, B trivial Ck-modules
we have

H2n-'(Ck, A) = kerk, H2"(Ck, A) = cokerk :

H2n_ t (Ck, B) = coker k . H2n (Ck, B) = ker k

where tp = k : A-A (resp. k : B-+B) is multiplication by k.

It follows readily from these results that a (non-trivial) finite cyclic
group Ck has H"(Ck, Z) $ 0 for infinitely many n. Hence there cannot
exist a finite Ck-projective resolution of Z.

Exercises:

7.1. Prove the following statement: To a group G containing an element x + 1 of
finite order there cannot exist a finite G-projective resolution of Z.

7.2. Describe explicitly a periodic free resolution of Z as Ck-module.
7.3. Compute H"(Ck, Z), H"(Ck, Z) explicitly.
7.4. Use Exercise 2.5 and the periodic resolution of Exercise 7.2 to compute

explicitly the change-of-rings map in integral homology for f : where
f (t) = s', t is the generator of Cm, s is the generator of C. and n I rm.

7.5. Let C. be generated by t, and Cm: by s. Define an action of C. on Cm2 by
t s = s"'. Using Exercise 7.4, compute the resulting Ca; module structure on
H,(Cmz), j > 0, the integral homology of Cmz.

7.6. Under the same hypotheses as in Exercise 7.5 compute Hi(Cm, Hj(Cm2)). where
m is an odd prime.

7.7. Let G be a group with one defining relator, i.e. there exists a free group F and
an element r e F such that G - FIR where R is the smallest normal subgroup
of F containing r. It has been shown that the relator r may be written in a
unique way as r = w9, where w cannot be written as a proper power of any
other element in F. Note that q may be 1. Denote by C the cyclic subgroup
generated by the image of w in G. R. C. Lyndon has proved the deep result
that Rat-Z®cZG. Using this and Corrollary 6.5 show that, for G- modules
A, B. we have H"(G. A) = H"(C. A) and H,(G. B) - H"(C. B) for n >_ 3. Deduce
that if r cannot be written as a proper power (i.e., if q = 1) then G is torsion-free.
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8. The 5-Term Exact Sequences

Theorem 8.1. Let N'-,G-»Q be an exact sequence of groups. For
Q-modules A. B the following sequences are exact (and natural)

H2(G,B)-'H2(Q,B)--'B©QNab B©GIG-+B®QIQ-'0
(8.1)

0-.Der(Q, A)-+Der(G, A)->H2(Q, A).

Proof. We only prove the first of the two sequences, the cohomology
sequence being proved similarly, using in addition the natural iso-
morphisms Der(G, A) = HomG(IG, A), Der(Q, A) = HomQ(IQ, A).

By Theorem 6.3 Nab'*7Q ®G I G-» IQ is exact. Tensoring with B
over ZQ yields the exact sequence

TorQ(B, ZQ (Dc I G)-*Tor?(B, I Q)-+B ®Q Nab-+B ®01 G-*B ®Q I Q-> 0

since, plainly, B ®Q7Q ®o I G = B ®01 G. Moreover, by (2.8)

H2(Q, B) ? TorQ(B, IQ) .

It therefore suffices to find a (natural) map

Torl (B, IG)-+TorQ(B, ZQ ®o I G)

and to show that it is epimorphic. To do so, we choose a Q-projective
presentation M - P--»B of B. Applying the functors - ®GIG and
- ®Q(?Q (&G I G) we obtain the commutative diagram, with exact rows,

->Torl (B.IG)-' Torl (B, IG) M®GIG-+P®GIG ->

1 1..... 0 )Tor?(B,ZQ(&GIG)-*M®o1G-+P®GIG-> ---

which proves immediately that the map in question is epimorphic.
Naturality of the sequence is left as an exercise. 0

We remark that the sequences (8.1) can be altered to

H2(G, B)-H2(Q, B)--'B®QNab--'H1(G, B)-+H1(Q, B)-*0,
(8.2)

0->H'(Q, A)- H'(G, A)->HomQ(Nab, A)->H2(Q, A)-,H2(G, A).
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Again we concentrate on the homology sequence. Using (4.2) we obtain
the following commutative diagram, with exact rows and columns,

0 0

H1(G, B) H1(Q, B)

I I

B®Q'Nab B©GIG?'->B®QIQ_)0

B B

1 1

It is obvious now that p* : H1 (G, B)-* H1 (Q, B) is epimorphic. Further-
more we have O= i* p* x* = r * x* : B ®Q Nab-+B, whence it follows that
x* factors through H1 (G, B). Exactness of (8.2) is then trivial.

We remark that the sequences (8.2) coincide with the sequences (8.1)
in case A, B are trivial Q-modules.

Finally, with a view to application in the next section, we write down
explicitly the sequence in the case of integral homology. For short
we write for Z), and analogously for Q. By (4.4) we have
H1(G) = Gab, H, (Q) - Qab Also, Z ®Q Nab is isomorphic to the quotient
of Nab by the subgroup generated by the elements (y - 1) (nN') where
y e Q, n e N, and denotes the Q-action. By (6.5) we see that 7L®Q Nab
is therefore isomorphic to the quotient of N by the normal subgroup
generated by xnx -1 n -, with x e G, n e N. This subgroup is normally
denoted by [G, N], so that

Z®QNab - N/[G, N] . (8.3)

With these preparations we get the following

Corollary 8.2. Let N,-*G-»Q he an exact sequence of groups. Then
the following sequence is exact

H2(G)-'H2(Q)-NI[G, N]-'Gab-'Qab--'0. (8.4)

Exercises:

8.1. Prove without homological algebra the exactness of

N,r [G, N] --i Gab-Qab-'0 .
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8.2. Use Theorem 8.1 to compute H2(Ck, B) and H2(Ck, A).
83. Prove the exactness of the cohomology sequence in Theorem 8.1 in detail.
8.4. Prove that the 5-term sequences of this section are natural.
8.5. Prove that the maps H2(G, B)-+H2(Q, B) and H1(G, B)->H1(Q, B) of (8.2) are

the maps given by (2.10). Similarly in cohomology.
8.6. Prove that if H is a normal subgroup of K of prime index, then

is monomorphic.

H;- [K, H]-+H[K, K]/[K, K]

9. H2, Hopf's Formula, and the Lower Central Series

Let R,*F--*G be an exact sequence of groups with F free, i.e., a presen-
tation of the group G. For B a G-module, Theorem 8.1 provides us with
the exact sequence

H2(F, B)->H2(G, B)-,B4cRab BQFIF-*BQGIG--+O.

By Corollary 5.6 we have H2(F, B) = 0, whence

H2(G. B) = ker(BQGRab-+B(&FIF) . (9.1)

In case B = 7L Corollary 8.2 leaves us with

H2(G) = ker(R,+[F, R]-F/[F, fl),

and we obtain Hopf's formula for the second integral homology group

H2 (G) = R n [F, F]/[F, R] . (9.2)

As an immediate consequence we deduce that the group given by the
formula on the right hand side of (9.2) is independent of the choice of
presentation of G.

Next we state a result which relates the homology theory of a group
to its lower central series.

Definition. Given a group G, we define a series of subgroups Ga,
n>_0, by

Go=G, Ga+t= [G, G.]. (9.3)

This series is called the lower central series of G. A group G with Ga = { 11
is called nilpotent of class <_ n.

It is easily proved by induction on n that the groups Ga are normal
in G. Also, the quotients Ga/Ga+1 are plainly abelian. A homomorphism
f : G-+ H maps Ga into Ha for every n > 0.

Theorem 9.1. Let f : G-.H be a group homomorphism such that the
induced homomorphism f* : G.,--4 H.b is an isomorphism, and that

fk : H2(G)->H2(H)
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is an epimorphism. Then f induces isomorphisms

f: G/Gn- H/H , n >_ 0.

Proof. We proceed by induction. For n = 0, 1 the assertion is trivial
or part of the hypotheses. For n 2 consider the exact sequences

Gn-t'-'G-"G/G,, -, , Hn_1-H-»H/H,-1

and the associated 5-term sequences in homology (Corollary 8.2):

H2 (G) 'H2(G/Gn-1) 'Gn-1/Gn=.Gab (G/Gn-1)ab-'0

I., I., I., 1a4 125 (9.4)

H2(H) 'H2(H/Hn-1) `Hn-1/Hn 'Hab'(H/Hn-1)ab--'0

Note that [G, Gn-1] = G, [H, H1 _t] = Ha by definition. By naturality the
map f induces homomorphisms a;, i = 1, ..., 5. such that (9.4) is com-
mutative. By hypothesis al is epimorphic and a4 is isomorphic. By
induction a2 and as are isomorphic. Hence by the generalized five Lemma
(Exercise 1. 1.2) 0(3 is isomorphic. Next consider the diagram

Gn -1 I`Gn . . G/Gn G/Gn
-1

23

1 1

Hn-1/H,,-+H1HH -H/Hn-1.

The map f : G--> H induces a3, fn, fn-1. By the above a3 is isomorphic,
by induction fn-1 is isomorphic, hence fn is isomorphic. 0

Corollary 9.2. Let f : G--*H satisfy the hypotheses of Theorem 9.1.
Suppose further that G, H are nilpotent. Then f is an isomorphism. f : G- -> H.

Proof. The assertion follows from Theorem 9.1 and the remark that
there exists n > 0 such that Gn = 111 and Hn = { 11. 0

Exercises:

9.1. Suppose f: G-+H satisfies the hypotheses of Theorem 9.1. Prove that f

induces a monomorphism f : G n Gn ._CHI n, H,,.
i n0 ' n=0

9.2. Let R-F-»G be a free presentation of the group G. Let {xi} be a set of
generators of F and {rr) a set of elements of F generating R as a normal sub-
group. Then the data P=({xi}; {rj}) is called a group presentation of G, xi are
called generators, rr are called relators. The group presentation P is called
finite if both sets {xi}, (r,} are finite. A group G is called finitely presentable
if there exists a finite group presentation for G. The deficiency of a finite group
presentation, defP, is the integer given by def P = (number of generators -
number of relators). The deficiency of a finitely presentable group, defG, is
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defined as the maximum defiency of finite group presentations for G. Prove
that defG:!- rank Gab-sH2(G), where sM denotes the minimum number of
generators of the abelian group M.

9.3. Let G have a presentation with n + r generators and r relators. Suppose
s(Gab) < n. Prove that H2(G) = 0 and conclude by Exercise 9.1 that G contains
a free group F on n generators such that the embedding i : F CG induces iso-
morphisms ik : Fi Fk-=. G/Gk, k >_ 0. Conclude also that if G can be generated
by n elements, then G is isomorphic to the free group F on n generators

(Magnus). (Hint: Use the fact that n Fk =I 1} for a free group F.)
k=o

9.4. Prove that the right hand side of (9.2) depends only on G without using
Hopfs formula.

9.5. Deduce (8.4) from Hopfs formula.

10. H2 and Extensions

Let A'- E-4 G be an exact sequence of groups, with A abelian. It will
be convenient to write the group operation in A as addition, in G and E
as multiplication, so that i transfers sums into products. Let the function
(section) s : G--+E assign to every x e G a representative sx of x, i.e.,
PS = 1c. Given such a section s, we can define a G-module structure in iA,
and hence in A, by the following formula

xc (ia)=(sx)(ia)(sx)-t, xeG, aeA (10.1)

where the multiplication on the right hand side is in E. It must be shown
that (xy) (ia) = x: (y,- ia) but this follows immediately from the remark
that s(xy) = (sx) (sy) (ia') for some a' e A and the fact that A is abelian.
Similarly we see that 1 (ia) = ia. Also, again since A is abelian, different
sections s, s': G,E yield the same G-module structure in A, because
s'x = (sx) (ia') for some a' c- A.

We define an extension of the group G by the G-module A as an
exact sequence of groups A>E4G (10.2)

such that the G-module structure on A defined by (10.1) is the given
G-module structure.

We proceed in this section to classify extensions of the form (10.2),
and we will of course be guided by the classification theory for abelian
extensions presented in Chapter III.

We shall call the extension A--+E - * G equivalent to A ->E'-» G, if
there exists a group homomorphism f : E-+E' such that

ASE -»G

A>--* E'-» G
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is commutative. Note that then f must be an isomorphism. We denote
the set of equivalence classes of extensions of G by A by M(G, A), and
the element of M(G, A) containing the extension A-+E-»G by [E]. The
reader notes that in case G is commutative, and operates trivially on A,
we have E(G, A) S M(G, A), where E(G, A) was defined in III. 1.

The set M(G, A) always contains at least one element, namely, the
equivalence class of the split extension A>-->A x G-+' G, where A x G is
the semi-direct product (see (5.5)).

We now will define a map A: M(G, A)->H2(G, A). Given an exten-
sion (10.2) then Theorem 8.1 yields the exact sequence

0--*Der(G,A)->Der(E,A)--), Homo(A,A)-H2(G,A)-4H2(E,A) . (10.3)

We then associate with the extension A-.E-»G the element

d [E] = O(1A) a H2 (G, A). (10.4)

The naturality of (10.3) immediately shows that 0(lA) e H2(G, A) does not
depend on the extension but only on its equivalence class in M(G, A).
Hence d is well-defined,

d : M(G, A)-> H2 (G, A).

We shall prove below that d is both one-to-one and surjective. The
analogous result in the abelian case E(A, B) = ExtA(A. B) has been proved
using prominently a projective presentation of A, the quotient group in
the extension (see Theorem 111. 2.4). If we try to imitate this procedure
here, we are naturally led to consider a free presentation
of G. We then can find a map f: F--*E such that the following diagram
commutes

R, F--»G

I i If
I (10.5)

where f is induced by f. Clearly f induces a homomorphism of
G-modules cp : Rab--*A. Diagram (10.5) now yields the commutative
diagram

->Der(E, A)-- Homc(A, A) H2(G, A)->H2(E, A)
if.

le II 1
(10.6)

_*Der(F,A) `Homa(Rab,A) °->H2(G,A)- 0

It follows that A[E] = O(lA) = acp*(lA) = o((p). We are now prepared
to prove

Proposition 10.1. The map d : M(G, A)--H2(G, A) is surjective.
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Proof. Since a in (10.6) is surjective, it suffices to show that every
G-module homomorphism tp : Rab-' A arises from a diagram of the form
(10.5). In other words we have to fill in the diagram

R h G

(10.7)

A

where f induces cp. We construct E as follows. Regard A as an F-module
via q and form the semi-direct product V = A x F. The set

U= {(fr,hr-i)I reR}

is easily seen to be a normal subgroup in V. Define E = V /U. The map
i : A--.E is induced by the embedding A-.A x F and p : E--'G is induced
by A x F--+F followed by q : F--+G. Finally f : F--+E is induced by
F--+A x F. The sequence A--+E--).G is easily seen to be an extension of
G by A, and (10.7) is plainly commutative. 0

Proposition 10.2. If two extension have the same image under A, they
are equivalent, in other words, the map A : M(G, A)-> H2(G, A) is injective.

Proof Let the two extensions be denoted by and
ASE'-4G. Choose a presentation RAF-9»G and (see (10.5)) lifting
maps f : f' : F-*E, lifting the identity on G, in such a way that
f and f are both surjective. (For example choose F to be the free group
on the set E x E'.) Let f f' induce gyp, cp' : Rab-i.A. Note that (p, cp' are
surjective if and only if f, f' are surjective.

Since A [E] = A [E'], it follows that u((p) = Q((p') in (10.6). Thus, by the
exactness of the lower row in (10.6), there exists a derivation d : F-->A
such that cp = cp' + i(d). Consider now f" : F-*E' defined by

f"x=(i dx)(f'x), xeF.
We claim that (i) f " is a group homomorphism, and (ii) f" is surjective.
We remark that once the first assertion has been proved, the second is
immediate, since plainly f " induces cp" = z(d) + (p'= cp : Rab +A. which is
surjective by hypothesis.

For the proof of (i) let x. y e F. Consider

f"(xy) = i'd(xy) f'(xy) = i'(dx + xdy) (f' x) (f'y)
=(i

where denotes the multiplication in E' and the action of F on A which
is given via q : FAG. Since this action is defined by conjugation in E'
we obtain

x J (i"dy)=(f'x)' (i'dy) (f'x)-i
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whence it follows that f "(x y) = (f " x) (f " y). Hence f" is indeed a
homomorphism.

We now have the following commutative diagram

p
a/iPsi

f', /F )Gf if
A> f----+ El - - 4* G

where J" induces (p": Rab-*A. Since rp = cp", it follows that f = f": R-,A;
hence f and f" have the same kernel, namely, the kernel of T. It then
follows that there is an isomorphism E--+E' inducing the identity in A
and G. 0

Propositions 10.1 and 10.2 yield the following theorem.

Theorem 10.3. There is a one-to-one correspondence between H2(G, A)
and the set M(G, A) of equivalence classes of extensions of G by A. The
set M(G, A) has therefore a natural abelian group structure and

M(G, -) : MG->%b

is a (covariant) functor. 0

Note that. if A is a trivial G-module, then M(G, A) is the set of equiv-
alence classes of central extensions of G by A, i.e., extensions ASE -**G
with A a central subgroup of E.

We conclude this section with the observation that the neutral
element in the abelian group M(G, A) is represented by the split extension

x G-*G. By Proposition 10.2 it is enough to show that d maps
the class of the split extension into the neutral element of H2 (G, A), i.e.,
one has to show that 0(lA) = 0 in 10.3. By exactness this comes to showing
that there is a derivation d : E-' A which, when restricted to A, is the
identity. But, for E = A x G, such a derivation is given by d(a, x) = a,
a e A, x e G.

Exercises:

10.1. Show that an extension A,-LE- G may be described by a "factor set", as
follows. Let s : G-> E be a section, so that ps = 1G. Every element in E is of
the form i(a) s(x) with a, x uniquely determined. The multiplication in E
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determines a function f: G x G- A by

x,x'nG.

Show that associativity of multiplication in E implies

(i) xf(Y, z) -1(xy, z) + f(x, Yz) - f(x, y) = 0 , x, Y, z E G.
A function f satisfying (i) is called a factor set.

Show that if s, s': G- E are two sections and f,1 ' the corresponding factor
sets, then there is a function g : G-A with

(ii) f '(x, y) = f(x, y) + g(xy) - g(x) - xg(Y) , x, Y E G .

[In fact, every factor set can be realized by means of a suitable extension
equipped with a suitable section. For an indirect argument, see Exercise 13.7]

10.2. Show directly that M(G, -) is a functor.
10.3. Proceeding analogously to Exercise 2.5, 2.6, 2.7 of Chapter III describe an

addition in M(G, A). Show that with this addition A becomes a group iso-
morphism.

10A. Using the universal property of free groups, show that M(F, A), with F free,
consists of one element only, the class containing the semi-direct product.

10.5. Given the group extension E: A---*G-»Q with abelian kernel, show that we
may associate with E the 2-extension of Q-modules

0-
(called the characteristic class of E). Interpret this in terms of HZ(Q, A) and
Ext2 (Z, A).

11. Relative Projectives and Relative Injectives

It is clear (see (2.4)) that H"(G, A) = 0 for n >_ 1, whenever A is injective,
and that B) = 0 for n >_ 1, whenever B is projective (or flat). We shall
see in this section that the class of modules for which the (co)homology
groups become trivial in higher dimensions is much wider.

Definition. The right G-module B is called induced, if there is an
abelian group X, such that B = X ®7LG as G-modules.

It is easy to see that any G-module B is a quotient of an induced
G-module. For let us denote by Bo the underlying abelian group of B;
then co : Bo ®ZG--*B defined by tp(b (&x) = bx, b e B, x e G is an epi-
morphism of G-modules. We remark that the map V is even functorially
dependent on B, for is easily seen to be a functor.

Proposition 11.1. If B is an induced G-module, then H (G, B) = 0 for
n>_ 1.

Proof. Let P be a G-projective resolution of Z. The homology of G
with coefficients in B is the homology of the complex B ®G P. Since
B= X ®ZG for a certain abelian group X, we have B ®G P = X ®P.
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Since the underlying abelian group of a G-projective module is free, the
homology of X @P is Tor (X, Z) which is trivial for n >_ 1. 0

Definition. A direct summand of an induced module is called relative
projective.

Since the module B is a quotient of Bo ® ZG, every module has a
relative projective presentation.

The reader may turn to Exercise 11.2 to learn of a different charac-
terisation of relative projective modules. This other characterisation also
explains the terminology. We next state the following elementary pro-
positions.

Proposition 11.2. A direct sum B = Q Bi is relative projective it' and
ier

only if each Bi, i e I, is relative projective.

The proof is immediate from the definition. 0
Since H"(G, -) is an additive functor, we have

Proposition 11.3. If B is a relative projective G-module. then

H"(G,B)=0
forn > 1. 0

We now turn to the "dual" situation:

Definition. A left G-module A is called coinduced, if there is an abelian
group X such that A - Hom(ZG, X) as G-modules. Note that the left
module structure of Hom (Z G, X) is induced by the right module struc-
ture of ZG. Any G-module A may be embedded functorially in a
coinduced module. For let AO denote the underlying abelian group of A;
then the map W: A-+Hom(ZG, A0), defined by W(a) (x) = xa, x e G, a e A
is a monomorphism of G-modules. The functoriality follows easily from
the fact that A " AO is a functor.

Proposition 11.4. If A is a coinduced G-module then H"(G, A) = 0 for
n>_ 1.

The proof is left to the reader. 0
Definition. A direct summand of a coinduced module is called relative

injective.

Again it is clear that every module has a relative injective presentation.

Proposition 11.5. A direct product A = fl Ai is relative injective if and
iel

only if each Ai, i e I is relative injective. 0

Since H"(G, -) is an additive functor, we have:

Proposition 11.6. If A is a relative injective G-module, then H"(G,A) = 0
forn >t 1. 0
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For the next two sections the following remarks will be crucial.
Let A1, A2 be left G-modules. We define in Al®A2 (the tensor product

over 7L) a G-module structure by
x(a1(9 a2)=xa1(9 xa2, xeG, a1eA1. a2eA2. (11.1)

The module axioms are easily verified. We shall say that G acts by
diagonal action.

It should be noted that the definition (11.1) is not possible if we replace
7LG by an arbitrary ring A. It depends upon the fact that the map
A : 7LG-+7G ®7LG given by A (x) = x ®x, x e G. is a ring homomorphism.
Generally, one can define an analogous module action for an augmented
K-algebra A. K a commutative ring, if one is given a homomorphism of
augmented K-algebras A : A->A®KA, called the diagonal. Given A-
modules Al and A2, there is an obvious action of A®KA on Al OO KA2
and A then acts on Al®KA2 by diagonal action, that is,

)(a1 ®a2) = (A 2) (a1®a2)

Such an algebra A, together with the diagonal A, is usually called a Hopf'
algebra.

Henceforth we will adhere to the following two conventions.
(11.2) If A is a G-module, we will regard its underlying abelian group

AO as a trivial G-module.
(11.3) Whenever we form the tensor product over 71 of two G-

modules it is understood to be endowed with a G-module structure by
diagonal action.

With these conventions, our enunciations become much simplified.
Lemma 11.7. Let A be a G-module. Then the G-modules A'=7G®A

and A" = ZIG ®Ao are isomorphic.
Proof. We define a homomorphism (p: A'-+A" by

tp(x®a)=x®(x-1a), xeG, ac-A.
Plainly, (p respects the G-module structures and has a two-sided inverse
4':A"-A', defined by lp(x (&a) = x ®.xa. 0

Corollary 11.8. A'=7LG®A is relative projective. 0

We note for future reference that if Ao is a free abelian group, 7LG ®A0
and, hence, ZG ® A are even free G-modules.

We now turn to the "dual" situation.
Let A1, A2 be left G-modules. We define a G-module structure in

Hom (A,, A2) by

(ya) (a) = y(a(y-1 a)) , y e G, ac-A,, x : Al--+A2 . (11.4)

Again the module axioms are easily checked. We shall say that G acts
by diagonal action on Hom(A1, A2). Also, we shall adopt the following
convention which is analogous to (11.3).
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(11.5) Hom(A1, A2) is understood to be endowed with a G-module
structure by diagonal action.

Lemma 11.9. Let A be a left G-module. Then the G-modules

A' = Hom(ZG, A)

and X= Hom(ZG, A0) are isomorphic.

Proof. We define rp : A'-A" by ((p(a)) (x) = x -t (a(x)), x e G. a : ZG --+A.
We verify that (p is a homomorphism of G-modules:

((P (Y " a)) (x) = x -1((Y - a) (x)) = x -1(Y (a(Y - l x))) ,

(y WOO)
(x)=((Pa)(Y-lx)=(x-'y)(a(Y 1x)), x,yeG.

The map W : A"-+A' defined by (tpa) (x) = x(a(x)) is easily checked to be
a two-sided inverse of tp. 0

Corollary 11.10. A' = Hom(ZG, A) is relative injective. 0

Exercises:

11.1. Show that the functor - ®ZG is left-adjoint to the functor B-B0.
11.2. Prove that a G-module P is relative projective if and only if it has the following

property: If A>-.B-»P is any short exact sequence of G-modules which
splits as a sequence of abelian groups, then it also splits as a sequence of
G-modules. (See also Exercise IX.1.7.)

11.3. Characterise relative injective G-modules by a property dual to the property
stated in Exercise 11.2.

11.4. Show (by induction) that H"(G, A), may be computed by using a relative
injective resolution of A and H"(G, B) by using a relative projective resolution
of B.

11.5. Show that d defined by d(x)=x®x, xeG is a homomor-
phism of augmented algebras over Z. hence ZG is a Hopf algebra.

11.6. Show that the tensor algebra TV over the K-vectorspace V is a Hopf algebra,
d being defined by d (v) = v ®1 + 1®v, v e V.

11.7. Show that with the conventions (11.3) and (11.5) Hom(-, -) and - ® -
are bifunctors to the category of G-modules.

11.8. Let A1..... A. be G-modules. Let A, ® ... ®A" be given a G-module structure
by diagonal action, i.e., x(a1® ... (9a") = xa1®xa2 ® ... ®xa", x e G, ai a A,,
i =1, ..., n. Show that ZG®A1® ... ®A,, ZG®A10® ... ®A"o.

12. Reduction Theorems

Theorem 12.1. For n >_ 2 we have

H"(G. B)Hn_1(G,B(9 IG).
H"(G. A) = H" -1(G. Hom (I G, A)),

where B ® 1 G and Hom (I G, A) are G-modules by diagonal action.
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Proof. We only prove the cohomology part of this theorem. Consider
the short exact sequence of G-module homomorphisms (see Exercise 11.7)

Hom (7L, A)'--. Hom (Z G, A)-»Hom (I G, A).

By Corollary 11.10, Hom(7G, A) is relative injective, so that the above
sequence is a relative injective presentation of Hom(7l, A) =-A. By the
long exact cohomology sequence and Proposition 11.6, we obtain the
result. 0

Theorem 12.2. Let G = F/R with F free. For n >_ 3, we have

Hn(G, B) H,,-2(G, B(&Rab),

Hn(G. A) = Hn-2(G. Hom(Rab, A)).

where B®Rab and Hom(Rab, A) are G-modules by diagonal action.

Proof Again we only prove the cohomology part. By Corollary 6.4
we have the following short exact sequence of G-module homomorphisms

Hom(IG, A)N Hom(ZG ®FI F, A)-» Hom(Rab, A) .

Now Z G ®F I F is G-free, hence Hom(7LG (&F I F, A) is relative injective
by Proposition 11.5 and Corollary 11.10. The long exact cohomology
sequence together with Theorem 12.1 yields the desired result. 0

Exercises:

12.1. Show that Theorem 12.2 generalizes the periodicity theorem for cyclic groups.
12.2. Prove the homology statements of Theorems 12.1, 12.2.

13. Resolutions

Both for theoretical and for computational aspects of the homology
theory of groups, it is often convenient to have an explicit description
of a resolution of 71 over the given group. In this section we shall present
four such resolutions. The first three will turn out to be, in fact, equivalent
descriptions of one and the same resolution, called the (normalized)
standard resolution or bar resolution. This resolution is entirely described
in terms of the group G itself, and indeed, depends functorially on G; it
is the resolution used, almost exclusively, in the pioneering work in the
homology theory of groups described in the introduction to this chapter.
The fourth resolution, on the other hand, depends on a chosen free
presentation of the group G. Throughout this section G will be a fixed
group.

(a) The Homogeneous Bar Resolution. We first describe the non-
normalized bar resolution. Let Bn, n > 0, be the free abelian group on the



13. Resolutions 215

set of all (n + 1)-tuples (yo, Yt, , yn) of elements of G. Define a left
G-module structure in F. by

Y(Yo,Y1, ,Yn)=(YYo,YY1, ,YYn), yEG. (13.1)

It is clear that B is a free G-module, a basis being given by the (n + 1)-
tuples (1, yl, ..., We define the differential in the sequence

'9: ... -B, 111 190 (13.2)

by the simplicial boundary formula
n

anl.Y0,Y1, ,Y.)= Y_ (-
1)i(YO, ,Yi, ,Y.),

i=O
(13.3)

where the symbol yj indicates that yi is to be omitted; and the augmenta-
tion E : B0- 7L by

E(Y) = 1 . (13.4)

Plainly s are G-module homomorphisms. Moreover, an elementary
calculation, very familiar to topologists, shows that

n>2; Ea1=0.

We claim that B is a free G-resolution of 7L; this, too, is a translation into
algebraic terms of a fact familiar to topologists, but we will give the proof.
We regard

as a chain-complex of abelian groups and, as such, it may readily be seen
to admit a contracting homotopy d, given by

d -1(1) = 1 . d "(YO, ... , yj Y0, ... , y").

We leave the reader to verify that d is indeed a contracting homotopy,
that is, that

Ed_1=1, 8140+d_ts=1, 1, n>_1. (13.5)

The complex ff is called the (non-normalized) standard (or bar) resolution
in homogeneous form. Now let D. C B be the subgroup generated by the
(n + 1)-tuples (yo, y1, , yn) such that yj = Yi+ 1 for at least one value of
i, i = 0, 1, ..., n - 1; such an (n + 1)-tuple will be called degenerate, and
plainly D is a submodule of generated by the degenerate (n + 1)-tuples
with yo = 1. We claim that 8D C D _ 1. For, if (y0, yt, ..., is degenerate,
let y,.=Yj+1. Then yt, ..., is a linear combination of degenerate
n-tuples, together with the term

lY(YO, Y,-1, Y, Y;+2, ,YJ

+(- 1Y+1 (Yo, ,Y;-1,Y,Yj+2, ,Y.), Y=Y;=Y;+1
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which is clearly zero. Thus the submodules D yield a subcomplex D,
called the degenerate subcomplex of B. (Of course, we could choose other
definitions of degeneracy; for example, we could merely require that any
two of yo, yl, ..., y be the same.) We remark that Do = 0. We also notice
that the contracting homotopy d has the property that c
n >_ 0. Thus we see that, passing to the quotient complex B = BID. each
G-module B. is free (on the (n + 1)-tuples (yo, yl, ..., for which y, = y;+1
for no value of i, i = 0. 1...., n - 1), and B is a G-free resolution of a, the
contracting homotopy A being induced by X. The complex B is called
the (normalized) standard (or bar) resolution in homogeneous form. It is
customary in homological algebra to use the normalized form with
precisely this definition of degeneracy.

(b) The Inhomogeneous Bar Resolution. Let B;,, n >_ 0, be the free left
G-module on the set of all n-tuples [x1 I X21

I
of elements of G. We

define the differential in the sequence

g. ..-,Bn a=.Bn-1--'... Bi a''Bo (13.6)

by the formula
Ix21... I x1 [x21... I

n-1

+ Y (- (13.7)
i=1

and the augmentation E : Bh,z by

E[]=I. (13.8)

The reader is advised to give a direct proof that B' is a G-free resolution
of 7l, using the hint that the contracting homotopy is given by

d-1(1)=[ ],
d is a homomorphism of abelian groups). However, we avoid

this direct proof by establishing an isomorphism between B' and B, com-
patible with the augmentations. Thus we define T,,: by

1Y21...IY 11Yn]

and by

W [x1 I ... I x1, x1 x2, ... , x1 x2 ... xn) .

It is easy to see that W. are mutual inverses, and that they are com-
patible with the differentials and the augmentations. Moreover, if
D;, then D is the submodule of B;, generated by the n-tuples
[x1 I X21 I

with at least one x; equal to 1. The modules D. constitute
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the degenerate subcomplex D' of 9' and the quotient complex B' = B','D'
is a G-free resolution of Z, isomorphic to B, and called the (normalized)
standard (or bar) resolution in inhomogeneous form.

(c) Alternative Description of the Bar Resolution. Here and in (d)
below we shall construct a resolution step by step. First we recall that

IG,---+ZG `»Z

is a G-free presentation of Z. Tensor with the free abelian group IG to
obtain the exact sequence of G-modules

IG®IG, 4ZG0IG-»IG.

By Corollary 11.8 and the remark following it, this is a G-free presenta-
tion of I G. In general write I G" for the n-fold tensor product of I G, and
give IG" a G-module-structure by diagonal action (see Exercise 11.8).
Clearly

IGn+1,- (13.10)

is a G-free presentation of I G". Putting the short exact sequences (13.10)
together, we obtain a G-free resolution of 7L

C:----->ZG®IG"2-"+ZG®IG"-tom.----+ZG (13.11)

In each 7LG ®I G" the G-action is given by the diagonal action

x(Y®(zl - 1)®...
®(zn-1))=xY®x(Z1-1)®... ®x(zn- 1),

x,Y,z1,...,zneG.
The differential On : 7LG ®I G"-+ZG ®I Gn -1 is defined by

an(x®(Z1-1)®... ®(Zn-1))

(13.12)
=(z1-1)®... ®(zn-1). x,z1,...,zneG.

One can prove that the resolution C is isomorphic to the resolution B.
The isomorphism On : Bn-->ZG ®I G" is defined by

en(Yo, Yt, - , Yn)
(13.13)

=Yo®(Yi -Yo)® ®(Yn-Yn-1), Yo,---,ynEG.

Details are left to the reader (see Exercises 13.1 through 13.5). It is also
plain that a homomorphism f : induces a chain map

Bf : B(G)-,B(G) (B' f : B'(G)-->B'(G), C f : C(G)-->C(G)) ,

which is even a chain map of G-complexes if B(G) is given the structure
of a G-complex via f. Thus the bar construction is evidently functorial,
and the isomorphisms cpn, tpn, On of (b) and (c) yield natural equivalences
of functors.
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(d) The Gruenberg Resolution. Here we shall present a resolution,
which, unlike the bar resolution, depends on a chosen free presentation
of the group G. Let G be presented as G - FIR with F free. We recall that

IG>- ZG-»71 (13.14)

is a G-free presentation of Z. By Corollary 6.4 the short exact sequence

Rab--+ZGOO FIF-»IG (13.15)

is a G-free presentation of IG. Tensoring (13.14), (13.15) with the n-fold
tensor product Rab of the free abelian group Rab endowed with the
G-module structure by diagonal action (R°b = a), we obtain G-free
presentations

n>_ 1, (13.16)

R' --+(7LGOFIF)®Rab-»IG®Rab, n0. (13.17)

Thus we obtain a G-free resolution of 71,

D:...- D2nII-D2n--'...-s D0,
where

Den=71G®R"ab, Den+1=(7LG(&FIF)®R"ab

The differentials are given by combining (13.15), (13.16); thus

a2n+1 : D2n+1-*D2n

is induced by ZG®FIF-»IG.*ZG and 02n: by

ZG ®Rab-» Rab'--+7LG ®FIF .

We conclude with the remark that, if we take F to be the free group
on the set S = {x e G I x $ 1), then we obtain the resolution C, described
under (c), hence a resolution isomorphic to the standard resolution B.
The only thing to prove is that the two short exact sequences

Rab-*ZG®FIF1--aIG, IG®IG-»7LG®IG>--SIG

are isomorphic. Indeed, the map a:7LG®FIF--ZG®IG defined by
a (x ®(y - 1)) = x ®x(y - 1) , x, y e G, y $1, is an isomorphism and induces
the identity in 1G. Hence it also induces an isomorphism

fl:Rab-IG®IG.

We summarize this last result in

Proposition 13.1. Let G:--- FIR with F free on all non-unity elements
in G. Then Rab = I G (DIG as G-modules. 0
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Exercises:

13.1. Show that the functions A. given by

d;,(Yo©(Yi-1)©...®x(Y"-1))=1©(Yo-1)®...(&(Y"-1),

yield a contracting homotopy in the augmented complex C -10Z of (c).
13.2. Show that 0.: B"- C. as defined in (13.13) is a G-module homomorphism.

Show that A.O. = 0n+1 A".
13.3. Define C.: C,-B,, inductively by C. = Bo',

C"(X0(Y1- 1)®(Y2 - 1)®... ®(Y" - 1)

=XAn-1Cn-
1(X-1 Y1®...OW 1Y"-X-1)-x-1(9 ...(9 (X-1Yn-x-1)).

Show that C. is a G-module homomorphism.
13.4. Show (inductively) that 5" is a two-sided inverse of 0".
13.5. Show that 0" respects the differential, either directly or inductively by using

the fact that it is enough to prove iB" J" _ 1= 0.-, since A,-, B.-, C B.
generates B. as G-module.

13.6. Let B denote the homogeneous bar resolution of the group G. Consider
cochains with coefficients in a ring R, regarded as a trivial G-module. To
a p-cochain f : BP- R and a q-cochain g : B,,-+R associate a (p + q)-cochain
f u g : Bp+q-l R by defining

(.rug) (XO, ..., XP+q) = J (XO, ..., xP) - g(xp, ..., XP.+q) .

Show that this definition makes HorG(B, R) into a differential graded algebra
(see Exercise V. 1.5), and hence, by Exercise V. 2.4, that H*(G, R) becomes
a graded ring. This ring is called the cohomology ring of G with coefficients
in R, and the product induced by u is called the cup-product. Show that the
ring structure in H*(G. R) is natural in both variables. (Harder:) Show that
if R is commutative, H*(G, R) is commutative in the graded sense.

13.7. Compare formulas (i), (ii) of Exercise 10.1 with the formulas for 2-cocycles
and 1-coboundaries in the inhomogeneous description of the bar construction.
Conclude that M(G. A) ~_ H2(G. A) (compare Theorem 10.3).

13.8. Show that if G is finite, and if A, B are finitely-generated G-modules, then
H"(G, A), H"(G, B) are finitely-generated.

14. The (Co)Homology of a Coproduct

Let G1, G2 be two groups. Denote as usual their coproduct (free product)
by G = G1 * G2. Let A. B be G-modules. By (2.9), (2.10) the coproduct
injections i : Gi->G1 * G2 yield maps

H"(G, A)->H"(G1, A) O+ H"(G2, A), n >= 0,

H"(G1,B)+QH"(G2,B)-'H,,(G,B), n>_0.
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In this section we shall prove that these maps are isomorphisms for n ? 2.
So, loosely speaking, H"(-, A), H"(-, B) are coproduct-preserving. We
start with the following lemma.

Lemma 14.1. Let G = G1 * G2. Then there is a natural isomorphism

IG=(7GQxG,IG1)(D(ZG©c2IG2) (14.1)

Proof. First we claim that for all G-modules A there is a natural
isomorphism

Der(G. A) = Der(G1, A) +O Der(G2, A). (14.2)

Clearly, by restriction, a derivation d : G--+A gives rise to derivations
d; : G1- A, i = 1, 2. On the other hand a derivation, di : G, --> A corresponds
by Corollary 5.4 to a group homomorphism f, : G1-->A x G; C A x G such
that the composition with projection onto G is the injection ii : G;--.G.
By the universal property of the coproduct the homomorphisms
G1-->A x G give rise to a group-homomorphism f : G-->A x G. Composi-
tion of f with projection onto G clearly yields the identity. So f gives
rise to a derivation d : G-+A, whose restriction to G, is d.: G.- *A. This
proves (14.2). Finally we have Der(G, A) = Homc(IG, A) and

Der(G;, A) = Homc,(IG1, A) = Homc(ZG®c IG;, A)

(see (IV. 12.4)). Together with (14.2) this proves Lemma 14.1. 0

Theorem 14.2. Let G = G1 * G2, A a left G-module, B a right G-module.
Then for n >- 2

H"(G, A) = H"(G1, A) O+ H"(G2, A),

H"(G1, B) H"(G2, B) = H"(G, B).

Proof. We only prove the cohomology part of the assertion. For
n >_ 2 we have, by (6.7),

H"(G, A) = Ext 1(I G, A)

= Ext 1 / n G ®c, I G1, A) +O Extc 1(7G ®c2I G2, A) .

by Lemma 14.1. 1(7LG ®o I G1, A) = Ext" _ 1(1 G;, A) by Pro-
position IV. 12.2. 0

The conclusion of Theorem 14.2 is clearly false for n = 0; for n = 1
and trivial coefficient modules the conclusion is true, the cohomology
part being a restatement of (14.2), and the homology part following easily
from (14.1). However, in general, it is false for n = 1, as we now show by
a counterexample. Let G be the free group on two elements x1, x2, and
let A be an infinite cyclic group on which x1i x2 act non-trivially;
x1 a = - a = x2 a, a e A. Now consider the exact sequence

Homc(7, A),--. Homc(Z G, A)--> Homc(I G, A)-* H1(G, A).
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Since Homc(Z, A) = Ac =0 and since IG is G-free on two elements it
follows that rank H' (G, A) = 1- On the other hand G = G1 * G2 where G1
is infinite cyclic on xi, i = 1, 2. Thus rank (H1(G1, A)@ H' (G2, A)) is even.

Exercises:

14.1. Compute H' (G, A). H' (Gi, A), i =1, 2 for G, Gi, A as in the counterexample
at the end of Section 14.

14.2. Let

G2 "2-' G

be a pushout diagram in the category of groups with ti : U--, Gi monomorphic
for i = 1, 2. The group G is usually called the free product of G1 and G2 with
amalgamated subgroup U(see [36]). Prove that for every G-module A the
sequence (Mayer-E4etoris-sequence)

0-+Der(G, A)-- Der(GI, A)Q Der(G2, A)--L+ Der(U, A)-+H2(G, A)-+---

...-,H"(G,A) -4H"(G1,-4)(1 H"(GZ A)_ - H"(U,A)-H"+'(G A) ...

is exact, where K* _ {K*, K*} and t* _ <t*, - i*>. (Hint: Use the fact that
K1. K2 are monomorphic to prove first that the square

ZG®uI U t"*ZG®c,IGI

ZG(Dc2IG2 -(K2-)-4 IG

is a pushout diagram in the category of G-modules.)
14.3. Show that the Mayer-Vietoris sequence may be started in dimension 0, i.e. that

0,H°(G, A)=+H°(G1, A)OH°(G2, A)-Y, H°(U, A)->H'(G.

A) O+ H' (G2, A)=, H' (U, A), H2 (G. A)--, ...
is exact.

14.4. Using Exercise 14.3 show that the conclusion of Theorem 14.2 fails to be true
in dimensions 0, 1. What happens if A is a trivial G-module?

14.5. Compute the cohomology with integer coefficients of the group G given by
the presentation (x, y; x2y-3).

15. The Universal Coefficient Theorem and the
(Co)Homology of a Product

In the previous section the (co)homology of a coproduct of groups was
computed. It may be asked, whether the (co)homology of a (direct)
product of groups can be computed similarly from the (co)homology of



222 VI. Cohomology of Groups

its factors. We will not discuss this question in general, but restrict
ourselves to the case where the coefficient modules are trivial. We will
see that then the answer may be given using the Kunneth theorem
(Theorem V. 2.1).

As a first step we deduce the universal coefficient theorems which
allows us to compute the (co)homology with trivial coefficient modules
from the integral homology. As before we shall write H"(G) instead of
H,, (G, 7l).

Theorem 15.1. Let G be a group and let C be an abelian group con..
sidered as a trivial G-module. Then the following sequences are exact and
natural, for every n >_ 0.

H"(G)®C>--*H"(G, C)-)*Tor(Hn_1(G), C),

Ext(Hn_1(G). C)>--.H"(G. C)-»Hom(H"(G), C).

Moreover both sequences split by an unnatural splitting.

Proof. Let P be a G-free (or G-projective) resolution of Z. Tensoring
over G with 7 yields PG = P®G7L, which is a complex of free abelian
groups. Also, plainly, P ®G C - PG ®C and HomG(P, C) = Hom (PG, Q.
Theorem V. 2.5 establishes the homology part, Theorem V. 3.3 the co-
homology part of the assertion. 0

By Theorem 15.1 the question about the (co)homology with trivial
coefficients of a product is reduced to a discussion of the integral
homology.

Now let G1, G2 be two groups, and G = Gl x G2 their (direct) product.
Let P(`), i = 1, 2, be a G,-free (or G; projective) resolution of Z. Since the
complexes P(`) are complexes of free abelian groups, we may apply the
Kunneth theorem (Theorem V.2.1) to compute the homology of the
complex P(1)®P(2). We obtain

Ho(P(1)®P(2))=Z®71=7; H"(P(t)(Dp(2))=0, n>_ 1 .

Furthermore we can regard P' 11®P' 2' as a complex of G-modules. the
G-module structure being given by

(x1,x2)(a(')®a(2))=xla(1)®x2a(2), x,eG,, a(`)EP(`), i=1,2.

The reader may verify that this action is compatible with the differential
in p(1)®P(2). Also, Pk1)®P;2) is a projective G-module. To see this, one
only has to prove that 7G1®7G2 -7G, which we leave to the reader.
Thus P(1)®P(2) is a G-projective resolution of Z. Finally

H"(G)=Hn((P(1)®p(2))®G7)=H"((p(1)®p(2))G)=H"(PP,) ®PPZ)).
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Since the complexes Ps), i =1, 2, are complexes of free abelian groups we
may apply the Kunneth theorem again. This proves the following
Kunneth theorem in the homology of groups.

Theorem 15.2. Let G., i =1, 2 be two groups, and let G = G1 x G2 be
their direct product. Then the following sequence is exact:

0 Hp(G1)Ox Hq(G2)'_4Hn(G)-» Tor(Hp(G1),Hq(G2))
p+q=n p+q=n-1

Moreover the sequence splits by an unnatural splitting. 0

We finally note that the two theorems of this section allow us to
compute the (co)homology groups of any finitely generated abelian
group with trivial coefficient module (see Exercises 15.1, 15.3).

Exercises:

15.1. Compute the integral (co)homology of C. x Cm.
15.2. Show that the integral (co)homology groups of a finitely generated com-

mutative group G are finitely generated. (An interesting example of Stallings
[43] shows that this is not true if G is an arbitrary finitely presentable group.)

15.3. Find a formula for the integral homology of a finitely generated commutative
group.

15.4. What information do we obtain about the homology of a group G by com-
puting its (co)homology with rational coefficients?

15.5. Show that the splitting in the universal coefficient theorem in homology
(Theorem 15.1) is unnatural in G, but may be made natural in C.

15.6. A group G is said to be of cohomological dimension < m, cdG <- m, if
Hq(G, A) = 0 for every q > m and every G-module A. It is said to be of
cohomological dimension m, if cd G <-- m but cd G m - 1. Show that cd G _< m,
m>- 1, if and only if, for every G-projective resolution,

P1-.P0

of Z, the image of Pm->Prn_l is projective. Show that
(i) for G a free group we have cd G =1,

(ii) if cd G1= m1, cd G2 = m2, then cd (G1 * G2) = max (m1, m2), and

cd (G1 x G2):-5 MI + m2 .

(iii) Compute cd G for G finitely-generated free abelian.

16. Groups and Subgroups

In this section we shall introduce certain maps which are very significant
in a detailed study of (co)homology, especially of finite groups. We
restrict ourselves entirely to cohomology and leave to the reader the
translation of the results to the "dual" situation.
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In (2.11) it was shown that H"(-, -) may be regarded as a contra-
variant functor on the category 6* of pairs (G, A), with G a group and
A a G-module. A morphism (f, a) : (G, A)->(G1, Al) in 6* consists of
a group homomorphism f: G-- Gl and a map a: Al-->A which is a
homomorphism of G-modules if Al is regarded as a G-module via f
Thus

a(f(x)al)=xa(al), a,EA,, xEG. (16.1)

The maps in cohomology to be defined in the sequel will be obtained
by choosing specified maps f, a.

(a) The Restriction Map. Consider a group G and a G-module A. Lei
U be a subgroup of G. Regard A as a U-module via the embedding
i : U>-+G. Clearly (i, lA): (U, A)--'(G, A) is a morphism in (ri*. We define
the restriction (from G to U) by

Res=(1, 1A)*:H"(G,A)-±H"(U,A). n>0.

The following considerations allow us to make a more detailed study
of the restriction map. Let E : 7LG-+7L be the augmentation: tensor it with
7L over 7L U. We obtain the short exact sequence

K-7LG xpu7L-'4,7 (16.2)

where K is the kernel of E'. Next we apply the functor HomG(-, A) to
(16.2). By Proposition IV. 12.2 we obtain

Extn(7LG(Du7L, A) Extn,(7L, A) = H"(U. A).

Hence we have proved

Proposition 16.1. Let U be a subgroup of G, and let A be a G-module.
Denote by K the kernel of E :7LG pu7L-*7L in (16.2). Then the following
sequence is exact :

-+Ext""(K, A)-> H"(G, A) *- H"(U, A)--> Ext"(K, A) -> . 0

Note that, in case U is normal in G with quotient group Q, the module
7LG ©u7L is isomorphic to 7LQ by Lemma 6.1. Hence K = IQ, the augmen-
tation ideal of Q.

(b) The Inflation Map. Let N---,.G-'+,,Q be an exact sequence of
groups, and let A be a G-module. Consider AN, the subgroup of A con-
sisting of those elements which remain invariant under the action of N.
Then AN admits an obvious Q-module structure. Denote the embedding
of AN in A by a : AN -A. Then (p, a) : (G, A)--+(Q, AN) is easily seen to be
a morphism in 6*. We define the inflation map (from Q to G) by

Inf = (p, a)*: H"(Q, AN) +H"(G, A), n >_ 0 .
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In Proposition 16.1 the restriction map has been embedded in a long
exact sequence. We remark that an analogous embedding for the inflation
map exists: but since it is of no apparent use in the study of the inflation
map we refrain from stating it here.

(c) Conjugation. Let x E G be a fixed but arbitrary element, and let A
be a G-module. Define f : G-*G and x : A-A by

f(y)=x-lyx, yeG; a(a)=xa, ac-A. (16.3)

It is easily seen that (f, a) : (G, A)-+(G, A) satisfies the condition (16.1),
and therefore is a morphism in T)*. Moreover (f, a) is invertible in T)*,
hence the induced map

(f, a)*:H(G,A)-+H"(G,A), n>_0

is an isomorphism. However, we prove more, namely

Proposition 16.2. Let (f, a) : (G, A)-*(G, A) be defined as in (16.3).
Then (f, (x)* : H"(G, A)->H"(G, A), n > 0, is the identity.

Proof We proceed by induction on n. For n = 0, H°(G, A) = AG, and
the assertion is trivial. If n > 1 we choose an injective presentation
A---- I ---)*A', and consider the long exact cohomology sequence

-->Hn-' (G, A')--+H"(G, A)->O

1 (I, aT 1 (I. a)"

... -*Hn-1(G, A')-->H"(G, A)--*O

where of course x' a = xa', a' e A'. By induction (f, a')* is the identity,
hence so is (f, (x)*. p

(d) The Corestriction Map. Let A be a G-module, and let U be a sub-

group of finite index m in G. Suppose G = U Ux; is a coset decomposition
i=1

of G. We then define a map 0: Homu(7LG, A)->A, by

xi ' cpxi , cp :7LG-'A . (16.4)

We claim that 0 is independent of the chosen coset decomposition.
M

Indeed, if G = U Uyi is another coset decomposition, then we may
assume that the'eriumeration is such that there exist u; e U with xi = ui yi,
i . 1, ..., m. But then clearly

Ex; lui(pyi=Eyi'coyi
Furthermore we claim that 0 is a G-module homomorphism. To show
this let y E G, and define a permutation it of (1, ..., m) and elements
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vi e U by the equations

xiy=vix."i, i=1,...,m. (16.5)

We then have

0(Yv) = Exi 1 co(xiy) = Exi 1 cp(vix*i) = Exi 1 vi (p(x, )

= EYxni1 (P(x"i) =YB(w)

Finally we claim that 0 is epimorphic. Let a e A, and define cp by cp(xi) = 0
if i r 1, q (x1) = x, a; then 0((p) = a. We summarize. our results in the
following proposition.

Proposition 16.3. Let U be a subgroup of finite index m in G, and let
m

G= U Uxi
i=1

be a coset decomposition. Then the map 6: Homv(7LG, A)-4A, defined by

NO _ xi 1 Cpxi

is an epimorphism of G-modules. 0
Now since, by Proposition IV.12.3, H"(G,Homv(7LG,A))=H"(U,A),

n >_ 0, we may define the corestriction map (from U to G)

Cor : H"(U, A)->H"(G, A)
by

H"(U, A) - H"(G, Homu(7LG, A))---*+ H"(G, A), n >_ 0 . (16.6)

Using the fact that 0 is epimorphic, the reader may easily embed the
corestriction map in a long exact sequence (compare Proposition 16.1).

Theorem 16.4. Let U be a subgroup of finite index m in the group G,
and let A be a G-module. Then Cor = Res : H"(G, A)--> H"(G, A), n >_ 0, is
just multiplication by m.

Proof. We proceed by induction on n. For n = 0 the restriction
Res : H°(G, A)->H°(U, A) simply embeds A' in A°. The corestriction
Cor : Au-=-*(Homu(7LG, A))o-->A' sends a G-invariant (!) element a e A
first into the U-module homomorphism cp :7LG->A given by

and then into
m

0((p) Y xi 1gpxi=ma.
i=1
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For n>_ I let A,--.I-»A' be a G-injective presentation of A. Note that I
is U-injective. also. Then the diagram

... -..H"-1(G, A')=-H"(G,A)-+ 0

Cor ResI
11

f Cor Res

->Hn-1(G, A') , H"(G, A)-->0

is commutative, and the assertion follows by induction. 0

Corollary 16.5. Let G be a finite group of order m. Then mH"(G, A) = 0
for alln>1.

Proof. Use Theorem 16.4 with U = { 1 } and observe that H"({ 11, A) = 0
for n > 1. 0

We close this section by applying Corollary 16.5 to yield a proof of
a celebrated theorem in the theory of group representations. We have
seen that K-representations of G are in one-to-one correspondence with
KG-modules (Example (c) in Section 1. 1). The K-representations of G
are said to be completely reducible if every KG-module is semi-simple.
i.e.. if every short exact sequence of KG-modules splits.

Theorem 16.6 (Maschke). Let G be a group-of order m, and let K be
a field, whose characteristic does not divide m. Then the K-representations
of G are completely reducible.

Proof. We have to show that every short exact sequence

V'>--+V 0. V. (16.7)

of KG-modules splits. This is equivalent to the assertion that the induced
sequence

O-*Homa(V", V')-- Homc(V, V') °-+Hom6(V', V')-+O (16.8)

is exact. In order to prove this, we first look at the short exact sequence
of K-vector spaces of K-linear maps

0-*HomK(V", V')-14HomK(V, V')-e-+HomK(V'. V')-s0. (16.9)

We remark that these vector spaces may be given a KG-module structure
by diagonal action (compare (11.4)) as follows. If, for instance, a : V-+ V'
is a K-linear map, we define

(xa)v=xa(x-1v), xeG, veV. (16.10)

It is easily checked that, with this G-module structure, (16.9) becomes an
exact sequence of G-modules. In terms of the module structure (16.10),
the K-linear map a : V-s V' is a G-module homomorphism if and only
if a is an invariant element in the G-module HomK(V, V'). It therefore
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remains to prove that

0--.H°(G.HomK(V" V'))-H°(G.HomK(V V))-'H°(G.HomK(V'. V'))-f0

is exact. This clearly is the case if Hl (G, HomK(V", V')) = 0, which is
proved in Lemma 16.7. In fact we shall prove more, namely

Lemma 16.7. Under the hypotheses of Theorem 16.6 we have

H"(G, W) = 0

for n>- 1 and any KG-module W.

Proof. Consider the map m : W-+ W, multiplication by m. This clearly
is a G-module homomorphism. Since the characteristic of K does not
divide m, the map m : W-> W is in fact an isomorphism, having 1/m: W--* W
as its inverse. Hence the induced map m* : H(G, W)->H"(G, W) is an
isomorphism, also. On the other hand it follows from the additivity of
MG, -) that m* is precisely multiplication by m. But by Corollary 16.5
we have mH"(G, W) = 0 for all n> 1, whence H"(G, W)=0 for n> 1. 0

Exercises:

16.1. Define Res, Inf. Cor for homology and prove results analogous to Pro-
positions 16.1, 16.3, Theorem 16.4, and Corollary 16.5.

16.2. Prove that the (co)homology groups of a finite group with coefficients in
a finitely generated module are finite.

163. Let A be a G-module and let A, G be of coprime order. Show that every
extension A'--.E-»G splits.

16.4. Let U be of finite index in G. Compute explicitely Cor: H1(G,Z)-.H1(U,Z).
Show that this is the classical transfer [28].

16.5. Let G be a group with cd G = m (see Exercise 15.6)_ Let U be of finite index
in G. Show that cd U = m. (Hint: The functor H'"(G. -) is right exact. Let A
be a G-module with H"(G, A) + 0. Then Cor: H(U, A)->H"(G, A) is sur-
jective.)

16.6. Prove the following theorem due to Schur. If Z denotes the center of G and
if G/Z is finite, then G= [G, G] is finite, also. (Hint: First show that G'/G' nZ
is finite. Then use sequence (8.4) in homology for N = Z.)
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In this Chapter we shall give a further application of the theory of
derived functors. Starting with a Lie algebra g over the field K, we pass
to the universal enveloping algebra Ug and define cohomology groups
H"(g, A) for every (left) g-module A, by regarding A as a Ug-module.
In Sections 1 through 4 we will proceed in a way parallel to that adopted
in Chapter VI in presenting the cohomology theory of groups. We
therefore allow ourselves in those sections to leave most of the proofs
to the reader. Since our primary concern is with the homological aspects
of Lie algebra theory, we will not give proofs of two deep results of Lie
algebra theory although they are fundamental for the development of
the cohomology theory of Lie algebras; namely, we shall not give a
proof for the Birkhoff-Witt Theorem (Theorem 1.2) nor of Theorem 5.2
which says that the bilinear form of certain representations of semi-
simple Lie algebras is non-degenerate. Proofs of both results are easily
accessible in the literature.

As in the case of groups. we shall attempt to deduce as much as
possible from general properties of derived functors. For example
(compare Chapter VI) we shall prove the fact that H2(g, A) classifies
extensions without reference to a particular resolution.

Again, a brief historical remark is in order, As for groups, the origin
of the cohomology theory of Lie algebras lies in algebraic topology.
Chevalley-Eilenberg [8] have shown that the real cohomology of the
underlying topological space of a compact connected Lie group is iso-
morphic to the real cohomology of its Lie algebra, computed from the
complex Hom9(C, IR), where C is the resolution of Section 4. Sub-
sequently the cohomology theory of Lie algebras has, however, developed
as a purely algebraic discipline, as outlined in the main Introduction.

1. Lie Algebras and their Universal Enveloping Algebra

Let K be a field. A Lie algebra g over K is a vectorspace over K together
with a bilinear map [, ] : g x g->g, called the Lie bracket, satisfying the
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following two identities

[X,x]=0, XEg; (1.1)

[[x.y],z]+[[y.z].x]+[[z.x],y]=0, x, y,zag. (1.2)

(1.2) is called the Jacobi identity. Note that (1.1) and the bilinearity of the
bracket imply [x, y] = - [y, x], x, y c- g.

A Lie algebra homomorphism f : g--+E) is a K-linear map with
f [x, y] = [ f x. f y], x, y e g. A Lie subalgebra h of g is a subspace of g
closed under [, ]. A Lie subalgebra h is called a Lie ideal of g, if [x, y] E h
for all x e g and y c- b. If 11 is a Lie ideal of g then the quotient space g/C)
has a natural Lie algebra structure induced by the Lie bracket in g.

A Lie algebra g is called abelian if [x, y] = 0 for all x, y e g. To any
Lie algebra g we can associate its "largest abelian quotient" gar,; clearly
the kernel of the projection map from g to gab must contain the Lie
subalgebra [g, g] generated by all [x, y] with x, y E g. It is easy to see
that [g, g] is an ideal, so that gab = g,/[g, g]. Any K-vector space may be
regarded as an abelian Lie algebra. Given any K-algebra A we can
associate (functorially) a Lie algebra LA with the same underlying
vector space as A, the Lie bracket being defined by

[x,y]=xy-yx, x,yeA.

We leave it to the reader to verify the Lie algebra axioms for LA.

Next we ask whether there exists a construction for a Lie algebra
analogous to the construction of the group ring for a group. We remind
the reader that the group ring functor is determined by the fact that it is
a left adjoint to the unit functor, from rings to groups, which assigns
to every ring A its group of units (see Exercise VI.1.1). Now, our functor L
from algebras to Lie algebras will correspond to the unit functor, so that
we have to discuss the existence of a left adjoint to L. Such a left adjoint
indeed exists; the image of the Lie algebra g under that functor is called the
universal enveloping algebra of g and is denoted by Ug. (We follow here
the usual notational convention of denoting the universal enveloping
algebra by Ug. despite the fact that U is left adjoint to L.)

We now proceed to give the explicit construction of Ug, state its
adjoint property in Proposition 1.1, and discuss additional properties
in the remainder of the section. For the construction of Ug we need the
notion of the tensor algebra TM over the K-vector space M. Denote,
for n >> 1, the n-fold tensor product of M by T M,

®KM, n-fold.
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Set To M = K. Then the tensor algebra TM is T M, with the multipli-

cation induced by

(mt®m20
=mt®m2®...®mp®mi®m2®...®mq,

where mi, m'e M for 1< i < p, 1 < j < q. Note that TM is the free K-
algebra over M; more precisely: To any K-algebra A and any K-linear
map f : M -> A there exists a unique algebra homomorphism
fo : TM--+A extending f. In other words the functor T is left adjoint
to the underlying functor to K-vector spaces which forgets the algebra
structure. This assertion is easily proved by observing that
fo (ml Ox ... (3 m p) may, and in fact must. be defined by

f (M t) . J (mp) .

Definition. Given a K-Lie-algebra g; we define the universal en-
veloping algebra Ug of g to be the quotient of the tensor algebra Tg by
the ideal I generated by the elements of the form

x®Y-Y®x- [x,y], x,Yeg ;
thus

Ug= Tg/(x(&Y-Y®x-[x,y])

Clearly we have a canonical mapping of K-vector spaces i : g-- Ug
defined by g S Tg-2* Ug, which plainly is a Lie-algebra homomorphism
i : g->L Ug. It is now easy to see that any Lie algebra homomorphism
f : g-LA induces a unique K-algebra homomorphism ft : Ug-A,
since plainly the homomorphism f0 : Tg-*A vanishes on the ideal I.
Thus U is seen to be left adjoint to L. We further remark that the Lie
algebra map i : g-kL Ug is nothing else but the unit of the adjoint pair
U --H L.

Proposition 1.1. The universal enveloping algebra functor U is a left
adjoint to the funetor L. 0

Next we state without proof the famous BirkhoWitt Theorem whichff-
is a structure theorem for Ug.

Let {ei}, i e J. be a K-basis of g indexed by a simply-ordered set J.
Let I = (i1, i2, ..., ik) denote an increasing sequence of elements in J,
i.e., ii e J for l :515 k, and it < i2 < < ik under the given order relation
in J. Then we define e, = ei1 ei2 ... ei,,e Ug to be the projection of

ei,®...Qxei,, eTg.

Theorem 1.2 (Birkhoff-Witt). Let (e,}, i e J, be a K-basis of g. Then the
elements e, corresponding to all finite increasing sequences I (including
the empty one) form a K-basis of U g.
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For a proof of this theorem we refer the reader to N. Jacobson [29,
p. 159]; J.-P. Serre [42, LA. 3]. As an immediate corollary we note

Corollary 1.3. The unit i : g-±LUg is an embedding. 0
Consequently we see that every Lie algebra g over K is isomorphic

to a Lie subalgebra of a Lie algebra of the form LA for some K-algebra A.
Before we state further corollaries of Theorem 1.2 we introduce the

notion of a (left) g-module.
Definition. A left g-module A is a K-vector space A together with a

homomorphism of Lie algebras o : g-*L(EndKA).
We may therefore think of the elements of g as acting on A and write

x a for g(x) (a), x e g, a e A, so that x a e A. Then A is a (left) g-module
if x a is K-linear in x and a and

[x,y]-a=x-(y,a)-y (x a), x,yeg,aeA. (1.3)

By the universal property of Ug the map o induces a unique algebra
homomorphism v, : thus making A into a left Ug-module.
Conversely, if A is a left Ug-module, so that we have a structure map
a : U g- EndK A, it is also a 9-module by g = ai. Thus the notions of a
g-module and a Ug-module effectively coincide. We leave to the reader
the obvious definition of a right g-module. As in the case of A-modules
we shall use the term g-module to mean left g-module.

An important phenomenon in the theory of Lie algebras is that the
Lie algebra g itself may be regarded as a left (or right) g-module. The
structure map is written ad : g-pL(EndKg) and is defined by

(ad x) (z) = [x, z], x, z e g . (1.4)

It is easy to verify that ad does give g the structure of a g-module. For
[x, z] is certainly K-bilinear and (1.3) in this case is essentially just the
Jacobi identity (1.2).

A g-module A is called trivial, if the structure map o: g-->L(EndKA)
is trivial, i.e. if x - a = 0 for all x e g. It follows that a trivial g-module is
just a K-vector space. Conversely, any K-vector space may be regarded
as a trivial g-module for any Lie algebra g.

The structure map of K, regarded as a trivial g-module, sends every
x e g into zero. The associated (unique) algebra homomorphism
E : Ug--> K is called the augmentation of Ug. The kernel Ig of E is called the
augmentation ideal of g. The reader will notice that Ig is just the ideal
of U g generated by i(g).

Corollary 1.4. Let 1) be a Lie subalgebra of g. Then Ug is free as an
1)-module.

Proof. Choose {e;}, i e J', a basis in 1) and expand it by {ej}, j e J,
to a basis in g. Let both J', J be simply ordered. Make J'0J simply
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ordered by setting

if i,jeJ' and i<_j in Y.
i<j if ieJ' and jeJ.

if i,jeJ and i<_j in J.
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It follows from Theorem 1.2 that the elements ej for all finite increasing
sequences in J form a basis of Ug as b-module. 0

The reader may compare Corollary 1.4 with the corresponding result
for groups (Lemma VI.1.3). We note explicitly the following consequence
of Corollary 1.4 and Theorem IV.12.5.

Corollary 1.5. Every g-projective (injective) module is b-projective
(injective). 0

If n is a Lie ideal of g with quotient b, we say that the sequence
n,-+g-»b is exact.

Corollary 1.6. If is an exact sequence of Lie algebras, then
K©v U9 = Ub as right g-modules.

The proof is left to the reader. 0

Exercises:

1.1. Show that the following are examples of Lie algebras over K, under a suitable
bracket operation.
(a) the skew-symmetric n x n matrices over K.
(b) the n x n matrices over K with trace 0.

1.2. Show that the following are examples of Lie algebras over C, under a suitable
bracket operation.
(a) the skew-hermitian n x n matrices over C,
(b) the skew-hermitian n x n matrices with trace 0.

1.3. Show that the set of all elements x E g with [x, y] = 0 for all y e g is an ideal.
(This ideal is called the center of g. Clearly the center is an abelian ideal.)

1.4. Show that, for f : g--* l surjective, the induced map U f : Ug-. U() is
surjective, also.

1.5. Prove that Ig is generated by ig as an ideal of Ug.
1.6. Prove Corollaries 1.5, 1.6.
1.7. Let A be a (non-trivial) left g-module. Define in A a (non-trivial) right g-module

structure. (Hint: Define ax = - xa)
1.8. Let g,, 92 be two Lie algebras over K. Show that g = g, O g2 has a natural Lie

algebra structure, which makes g the product of g, and g2 in the category of
Lie algebras over K.

1.9. Prove that the product in TM makes IT. M), n=0, 1, ... into a graded K-
algebra (see Exercise V.1.5).
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2. Definition of Cohomology; H°, H'

For notational convenience we shall write Hom9(-, -) Ext9(-, -), etc.,
for Homu9(-, -), etc.

Definition. Given a Lie algebra g over K and a g-module A, we define
the n`h cohomology group of g with coefficients in A by

H"(g, A) = Ext9 (K, A), n = 0, 1,...

where K is, of course, regarded as a trivial g-module.
We note that each H"(g, A) is actually a K-vector space. Nevertheless

we shall continue to use the term cohomology group. Plainly, the co-
homology theory of Lie algebras has properties closely analogous to
those listed in Section VI.2 for the cohomology theory of groups. We
therefore shall abstain from. listing them again here (see Exercise 2.2).

We shall compute H°, H'. For any g-module A, H°(g, A) is by
definition Hom9(K, A). By arguments similar to those used for groups in
Section VI.3 we obtain

H°(g,A)={aeAix a=0, for all xag}; (2.1)

we call this the subspace of invariant elements in A and denote it by A9.
In order to exhibit the nature of H' (g, A) we introduce the notion

of Lie algebra derivations.
Definition. A derivation from a Lie algebra g into a g-module A is a

K-linear map d: q->A such that

d([x,y])=x d(y)-y d(x), x,yeg. (2.2)

Notice that this property of d is compatible with (1.1) and the Jacobi
identity (1.2). It is plain that the set of all derivations d : g->A has a
K-vector space structure; we shall denote this vector space by Der(g, A).
Note that if A is a trivial g-module, a derivation is simply a Lie algebra
homomorphism where A is regarded as an abelian Lie algebra.

For a e A fixed we obtain a derivation da : g-->A by setting da(x) = x, a.
Derivations of this kind are called inner. The inner derivations in Der (g, A)
clearly form a K-subspace, which we denote by Ider(g, A).

The reader should compare the following two results with Theo-
rem VI.5.1 and Corollary Vi.5.2.

Theorem 2.1. The functor Der (g, -) is represented by the g-module Ig..
that is, for any g-module A there is a natural isomorphism between the
K-vector spaces Der(g, A) and Hom9(Ig, A).

Proof. Given a derivation d : g---* A, we define a K-linear map
fd:Tg--+A by sending K=T°gSTg into zero and
x1 . (X2---- (x_1 dx") ... ). Since d is a derivation fd vanishes on all
elements of the form t ®(x ®y - y (&x - [x, y]), x, y e g, t e Tg. Since A
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is a 9-module, J a vanishes on all elements of the form

ti (S(xOOY-Y®x-[x,Y])®t2,

X, y E 9, t 1, t2 E Tg. Thus fe defines a map fd : I g--+A, which is easily
seen to be a g-module homomorphism.

On the other hand, if f : Ig-+A is given, we extend f to Ug by setting
f(K) = 0 and then we define a derivation d f : g-.A by d f = f i, where
i : g--> Ug is the canonical embedding. It is easy to check that fid p = f
and d(fd) = d, and also that the map f N d f is K-linear. 0

If we take the obvious free presentation of K

Ig>-+Ug-oK,

then, given a g-module A, we obtain

H1 (g, A) = coker(Homg(Ug. A)-*Homg(Ig, A)). (2.3)

Hence H' (g, A) is isomorphic to the vector space of derivations from g
into A modulo those that arise from g-module homomorphisms
f : Ug--> A. If f(l9)=a, then clearly d1(x)=x a, so that these are
precisely the inner derivations. We obtain

Proposition 2.2. H' (g, A) n Der (g, A)/ Ider (g, A). If A is a trivial
g-module, H 1(g, A) = HomK (gab, A).

Proof. Only the second assertion remains to be proved. Since A is
trivial, there are no non-trivial inner derivations, and a derivation
d : g-> A is simply a Lie algebra homomorphism, A being regarded as an
abelian Lie algebra. 0

Next we show that, as in the case of groups, derivations are related
to split extensions, i.e., semi-direct products.

Definition. Given a Lie algebra g and a g-module A we define the
semi-direct product A x g to be the following Lie algebra. The underlying
vector space of A x g is A Q+ g. For a, b e A and x, y e g we define
[(a, x), (b, y)] = (x,- b - y a, [x, y] ). We leave it to the reader to show
that A x g is a Lie algebra, and that, if A is given the structure of an
abelian Lie algebra, then the canonical embeddings iA : A-> A x g,
ig : g--+A x g as well as the canonical projection pg : A x g-->g are Lie
algebra homomorphisms. The semi-direct product therefore gives rise
to an extension of Lie algebras. with abelian kernel.

A- Axg -°g)'9

which splits by ig : x g. The study of extensions with abelian
kernel will be undertaken systematically in Section 3. Here we use the
split extensions (2.4) to prove the analogue of Corollary VI.5.4.
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Proposition 2.3. The vector space Der (g, A) is naturally isomorphic to
the vector space of Lie algebra homomorphisms f : g-->A x g for which
psf=ls.

Proof. First we note that A may be regarded as an A x g-module via
pA : A x g-g, and that then the canonical projection d' = pA : A x g--+A
becomes a derivation. A Lie algebra homomorphism f : g->A x g,
inducing the identity on g, now clearly gives rise to a derivation
d f = d' f : g-->A. On the other hand, given a derivationd: g->A, we define
a Lie algebra homomorphism fd : g->A x g by fd(x) = (dx, x), x E g.
The two maps f r--d f, fd are easily seen to be inverse to each other,
to be K-linear, and to be natural in A. 0

We conclude this section by establishing the analogue of Corol-
lary VI.5.6, which asserts that the cohomology of a free group is trivial
in dimensions >_ 2. First we introduce the notion of a free Lie algebra.

Definition. Given a K-vectorspace V, the free K-Lie algebra f = f (V)
on V is a Lie algebra over K containing V as a subspace, such that the
following universal property holds: To any K-linear map f : V--+g of V
into a Lie algebra g over K there exists a unique Lie algebra map
f : f V->g extending f. In other words, f is left adjoint to the underlying
functor from Lie algebras to vector spaces which forgets the Lie algebra
structure. The existence of f (V) is proved in Proposition 2.4. Note that
its uniqueness follows, of course, from purely categorical arguments.

Proposition 2.4. Let TV denote the tensor algebra over the K-vector
space V. The free Lie algebra f (V) over K is the Lie subalgebra of L TV
generated by V.

Proof. Suppose given f : V- g. By the universal property of the
tensor algebra the map if: extends to an algebra homo-
morphism TV--+ Ug. Clearly the Lie subalgebra of L TV generated by V
is mapped into g S L Ug. The uniqueness of the extension is trivial. 0

Theorem 2.5. The augmentation ideal If of a free Lie algebra f is a
free f-module.

Proof. Let f = f(V) and let {e} be a K-basis of V, and let f : {e}-.M
be a function into the g-module M. We shall show that f may be extended
uniquely to a g-module homomorphism f' : I f - *M. First note that
uniqueness is clear since f extends uniquely to a K-linear map f : V-*M
and V S I f generates I f. Using the fact that f is free on V, we define a
Lie algebra homomorphism f ' : f --> M x f by extending f (v) = (f (v), v),
v e V. By Proposition 2.3 T' determines a derivation d : f -* M with
d(v) = f (v), v E V. By Theorem 2.1 d corresponds to an f-module homo-
morphism f' : I f ->M with f'(v) = f (v), v e V. Thus {e} is an f-basis
for If. 0
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Corollary 2.6. For a free Lie algebra f, we have H"(f, A) = 0 for all
f-modules A and all n >_ 2. 0

Exercises:

2.1. For a Lie algebra g over K and a right g-module B, define homology groups
of g by

H"(g, B) = Torg.(B, K), n > 0.

Show that H0(g, B) = B/Bg, where Bg stands for the submodule of B generated
by b x; b c- B, x e g. Show that HI (g, B) = ker(B ®9Ig-. B ®9 Ug).
Finally show that for B a trivial g-module, Hl (g, B) = B ®K 9ab

2.2. List the properties of H"(g, A) and H"(g, B) analogous to the properties stated
in Section VI.2 for the (co)homology of groups.

2.3. Regard g as a q-module. Show that Der (g, g) has the structure of a Lie algebra.

3. H2 and Extensions

In order to interpret the second cohomology group. H2(g, A). we shall
also proceed in the same way as for groups. The relation of this section
to Sections 6, 8. 10 of Chapter VI will allow us to leave most of the
proofs to the reader.

Let n>--+g-»[1 be an exact sequence of Lie algebras over K. Consider
the short exact sequence of g-modules Ig'-->Ug-»K. Tensoring with
Uh yields

0->Tori (Uh, K)-> Uh ®9Ig-> U[1 ®9 Ug-* UCJ ®9K -*0 .

with each term having a natural h-module structure. Using Corollaries 1.5,
1.6 and the results of Section IV.12 we obtain

Tor; (U g (D,, K, K) = Tori (U[), K) = Torn (K, K).

Since Tor" (K, K) = nab by Exercise 2.1 we obtain

Theorem 3.1. If n--+g -» Cl is an exact sequence of Lie algebras, then
0-->nab-+Ub ®9Ig->Ih-->0 is an exact sequence of h-modules. 0

From this result we deduce, exactly as in the case of groups,

Theorem 3.2. If n+g-»[) is an exact sequence of Lie algebras and if
A is an [)-module. then the following sequence is exact

0-.Der(h, A)-.Der(g, A)-+Homq(nab, A)-.H2(h, A)--*H2(g, A) . (3.1)

The proof is analogous to the proof of Theorem VI.8.1 and is left to the
reader. 0
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Let A,-49-1) be an extension of Lie algebras over K, with abelian
kernel A. Ifs : t)->g is a section, that is, a K-linear map such that ps = t9,
we can define in iA, and hence in A, an 1)-module structure by
x - is = [sx, ia], a E A, x e 1), where [ , ] denotes the bracket in g. It is
easily verified that, since A is abelian, the 1)-action thus defined on A does
not depend upon the choice of section s. This 1)-module structure on A
is called the 1)-module structure induced by the extension.

An extension of 4 by an 1)-module A is an extension of Lie algebras
A _-+g-»h, with abelian kernel, such that the given b-module structure
in A agrees with the one induced by the extension. Notice that the split
extension (2.4) is an extension of g by the g-module A.

We shall call two extensions A,-).g-»(j and equivalent,
if there is a Lie algebra homomorphism f : g--.g' such that the diagram

A-+ g )o4

if
A-->g' [)

is commutative. Note that, if it exists, f is automatically an isomorphism.
We denote the set of equivalence classes of extensions of 1) by A by
M(1), A). By the above. M(1), A) contains at least one element, the
equivalence class containing the semi-direct product A- `" A x fj l).

With these definitions one proves, formally just as for groups (Section
VI.10), the following characterization of H2(1), A).

Theorem 3.3. There is a one-to-one correspondence between H2(1), A)
and the set M(1), A) of equivalence classes of extensions of 1) by A. The
set M(1), A) therefore has a natural K-vector space structure and M(1), - )
is a (covariant) functor from 1)-modules to K-vector spaces.

The proof is left to the reader; also we leave it to the reader to show
that the zero element in H2(1), A) corresponds to the equivalence class
of the semi-direct product. 0

Exercises:

3.1. Let n --+g-*l) be an exact sequence of Lie algebras and let B be a right 1)-
module. Show that the following sequence is exact

H2(g, B)-,H2(1j, B)->B®gnan-H1(g, B)-'O.

3.2. Assume g = f /r where f is a free Lie algebra. Show that H2 (g. K) = [f, f] n r/[ f , r],
where [f. r] denotes the Lie ideal of f generated by all [f, r] with f e f, r e r.

3.3. Prove the following result: Let f : g->E) be a homomorphism of Lie algebras,
such that f.: gab->1)ab is an isomorphism and f* : H2(g, K)-.H2(h, K) is
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surjective. Then f induces isomorphisms

f.: g/gn-''1/'7n, n = 0, 1,...

where gn and t,, denote the n-th terms of the lower central series (go = g,
gn = Eg, gn-1]).

4. A Resolution of the Ground Field K

By definition of the cohomology of Lie algebras, H"(g, A) may be com-
puted via any g-projective resolution of the trivial g-module K. For
actual computations it is desirable to have some standard procedure for
constructing such a resolution. We remark that copying Section VI.13
yields such standard resolutions. However, for Lie algebras a much
simpler, i.e., smaller resolution is available. In order to give a com-
prehensive description of it we proceed as follows.

For any K-vector space V, and n > 1, we define E. V to be the quotient
of the n-fold tensor product of V. that is, T,, V. by the subspace generated by

X1®X2(9...OO Xn-(sigh)XalOO

for x 1, ..., xn e V, and all permutations a of the set (1, 2, ..., n). The symbol
sign denotes the parity of the permutation a. We shall use <x1, ..., xn>
to denote the element of E" V corresponding to x 1 OO OO xn. Clearly
we have

<x1, ..., xi,..., XP ..., X">= - <xl, ..., Xj, ..., Xi, ..., xn>

Note that E1,V = V, and set E0 V = K. Then E" V is called the n`h exterior

power of V and the (internally graded) K-algebra E V = Q E"V, with

multiplication induced by that in TV. is called the exterior algebra on
the vector space V.

Now let g be a Lie algebra over K. and let V be the underlying vector
space of g. Denote by Cn the g-module Ug ©K E" V, n = 0. 1, .... For short
we shall write u<xl...., xn> for u©<xl, ..., xn>, uE Ug. We shall prove
that differentials do : Cn-+Cn_ 1 may he defined such that

Cn-a"Cn-1-...-SCI-Co (4.1)

is a g-projective resolution of K. Of course Co = Ug, and e : Co-'K is
just the augmentation. Notice that plainly Cn, n = 0, 1, ..., is g-free,
since En V is K-free.

We first show that (4.1) is a complex. This will be achieved in the
5 steps (a). (b)..... (e). below. It then remains to prove that the augmented
complex is exact. This will be a
consequence of Lemma 4.1 below.
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(a) We define, for every y e g, a g-module homomorphism
0(y) : Cn-'Cn, n = 0. 1..... by

0(Y) <xl, ..., xn> _ -y<x1,..., xn)
n

r''+ [' (- 1)i+l <U', xi], x1, ..., xi, ..., xn> ,
i=1

where the symbol zi indicates that xi is to be omitted. Note that
(- 1)i+ 1 <[y, xi], x1, ..., ii, ..., x,> = <x1, ..., [y, xi], -., xe>. We use this
remark to prove that

0([x. Y]) = 0(x) 0(y) - 0(y) 0(x) . (4.2)

Proof of (4.2)
We have

0(x) 0(Y) <xl, ..., xn) =yx<x1,..., Xn)
n n

- Y- x<x1, ..., [Y, xi],..., xn> - Y- Y<x1, ..., [x, xi], ..., xn>
i=1 i=1

n

+ Y- <x1, ..., [x, xi], ..., [Y, Xj], ..., xn>
i.j= 1
i*j

n
r''+ <x1, ..., [x, [y, Xi]]....,

i=1

Using the Jacobi identity we obtain

(0(x) 0(y) - 0(y) 0(x)) <x 1..... Xn) = [Y. X] <x1, .... xn>
n

+ Y- <xl.... [[x. Y], xi]...., xn> = 0
i=1

(b) We define g-module homomorphisms a(y): Ce--. Cn+ 1, n = 0,1,...,
by

We claim that

a(Y)<x1,...,xn>=<Y,x1,...Ixn).

0(x) a(Y) - a(Y) 0(x) = a([x, Y]) 4.3)

Proof of (4.3)

(0(x) a(Y) - a(Y) 0(x)) <x1, ..., xn) _ -x <y, x1, ..., xn)
n

+<[x,Y],x1,-..,xn)+ <Y,x1,...,[x,xi],...,xn)
i=1

+X<y.x1..... xn>- <Y,x1,...,[x,xi],...,xn>It
i=1

= a([x, Y]) <x1, ..., xn) 0
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(c) Next we define g-module homomorphisms do : Cn-*Cn __ 1,
n = 0, 1, 2, _ .. ,such that. for all y e g,

o(y) do 1 + do o(y) = - 0(y), n = 1, 2, .... (4.4)

We set do = 0. We then proceed inductively. Assume d,,- 1 : C,,- 1-+ Cn _ 2

is defined. Since <x1, ..., x,> = o(x,) <x2, ..., x,>, we are forced by (4.4)
to define do by

do<xl.....xn>=doa(x,)<x2,...,xn>

= (-0(x1) - (;(x1)dn-1) <x2, ..., x,>

We remark that do is given explicitly by

do<xl, ..., xn>- (-1)i+1xi<x,......
i, ..., xn>

i=1

+ Y_ (- 1)`+j<[xi xj], xl...., xi, ..., xj, .... x,> ,
1<i<j_<n

since this do obviously satisfies our requirements.
(d) We claim that

(4.5)

0(y)dn - do 0(y) = 0 (4.6)
for n=0,1,2.....

Proof of (4.6)
We proceed by induction on n. For n = 0, (4.6) is trivial. For n >>1,

(0(y)do - do0(y)) <x1, ..., xn) = (0(y)doa(x1) - do0(y)o(x1)) <x2, ..., xn> .

Thus it is sufficient to show that

0(y)dn a(x) - do 0(y) o(x) = 0 .

But

0(y) do o(x) - do 0(y) a(x)

= -0(y)0(x)-0(y)a(x)dn_1-dna(x)O(y)-dna[y,x], by(4.4)and(4.3),
= -0(v)0(x)-0(y)a(x)do_1+0(x)0(y)+ r(x)dn_10(y)+0[y,x]

+a[y,x]do-1. by (4.4).
_ -0(y)a(x)dn_1+o(x)0(y)dn_,+a[y,x]dn_1, by (4.2) and the

inductive hypothesis,
0 by (4.3). 0

(e) Finally, we prove that dn_ 1 do = 0, whence it will follow that (4.1)
is a complex. Clearly do d 1= 0. To prove d o - , do = 0 we proceed by
induction. We have, for n > 2.

do-1 dn<xl, ..., xn> = dn- 1 dna(x1) <x2, ..., xn>
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but by (4.4) we obtain
/dn-1dda(xl)= -dn-1(O(xl)+a(xl)dn-1)

_ -d, 1O(x1)+O(xl)d.-t+o(x1)d,,-2d.-1 =0
by (4.6) and the induction hypothesis. 0

It remains to prove that the complex

C:...- Cn- Cn (4.7)

where s : Co-*K is the augmentation s : Ug-.K, is exact. This is
achieved by regarding (4.7) as a complex of K-vector spaces and proving
that its homology is trivial. Our tactics here are entirely different from
those adopted in proving that (4.7) is a complex. (We use (4.5) which has
not been used previously!)

Let {ei}, i e J, be a K-basis of g, and assume the index set J simply
ordered. By Theorem 1.2 (Birkhoff-Witt) the elements

ek.... ekm<e,,, ..., (4.8)

with

k1 <k2 <- <kn and l1 <12 < <ln

form a K-basis of C. We define a family of subcomplexes FPC of C,
p = O. l.... , as follows: (FPC) _ 1= K, and (FPC),,, n >_ 0, is the subspace
of Cn generated by the basis elements (4.8) with m + n< p. Plainly, the
differential dn. n >_ 0. maps (FPOn into (F,,C)n_ 1, so that FPC is indeed a
subcomplex of C. Plainly also, FP+ 1 C? FPC and UFPC= C. For every
p >_ 1 we define a complex WP by WP = (FPC)n/(FP_ I C)n for n >- 0 and
WE 1 = K. It is immediate from (4.5) that the differential dP in WP is
given by

dn(ek1 eke ... ek..,<ej...... el.,>)

n (4.9)
Y (-1)i+1ek. ...ek ...e1,<el l. ..., el ., ...,
i=1

Note that the summands on the right hand side are not necessarily of
the form (4.8), since we cannot guarantee kn, < li. However, it follows
easily from Theorem 1.2 (Birkhoff-Witt) that the class in WP modFP_ 1 C
represented by an element of the form (4.8) remains the same when the
order in which ekl..... ek,, are written is changed. We remark that, in the
terminology of Section VIII.2. { WP} is the graded object associated with
the object C filtered by FPC.

Lemma 4.1. The complex WP is exact.

We postpone the proof of Lemma 4.1 in order to show how it implies
the desired result on C.
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It follows from Lemma 4.1 that WP) = 0 for all p >_ 1 and all n.
We then consider the short exact sequence of complexes

Fp_ 1

The associated long exact homology sequence then shows that
C) = C) for all n, and all p> 1. Since FO C is the complex

0->K-*K--+0. we have for all n. Hence, by induction,
0 for all n and all p >_ 0. Since C = U FPC it follows easily

that O.
P> O

Proof of Lemma 4.1. In order to show that WP is exact, we define a
K-linear contracting homotopy E as follows. E_

1 : K-* Wo is given by
E _ 1(1K) = 1 < >, and, for n >= 0, we define Z.: W ,,P--+ W,,, by

0. if k, -<- l in J. in particular if in = 0
Enleki ... ekm<ei,, ...,

e e>, if
One readily verifies that E E _ 1 = 1, d P Eo + E - 1 E = 1 and

0

We now summarize our results in a single statement.

Theorem 4.2. Let C = Ug ©K E V where V is the vectorspace
underlying g, and let d : be the g-module maps defined by

Y (- 1)`+)«xi. xj]. x1, ...,..............
1<«j<"

Then the sequence
C: __.,C

is a g-free resolution of the trivial g-module K. 0
We finally note the following important corollary.

Corollary 4.3. Let g be a Lie algebra of dimension n over K. Then for
any g-module A. Hk(g. A) = 0 fork >_ n + 1.

Proof. Fork > n + 1 we have Ek V = 0. 0

Exercises:

4.1. Show that the product in the tensor algebra TV induces a product in
m

EV=E[) E. V. which makes E V into a K-algebra.
"=0

4.2. Suppose that the characteristic of K is different from 2. Show that E V = T V/(v2),
where (v2) denotes the ideal in TV generated by all squares in TV.
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4.3. Let A-+g- t) be an extension of Lie algebras over K. Lets : be a section,
that is, a K-linear map with ps =1b, so that, as K-vector-spaces, g = A p I).
Show that the Lie algebra structure of g may be described by a K-bilinear
function h: Il x b-+A defined by [sx, sy] = s [x, y] + h(x, y), x, y e t). Show
that h is a 2-cocycle in Homb(C, A) where C is the resolution of Theorem 4.2
for the Lie algebra b. Also, show that two different sections s1, s2, yield two
cohomologous cocycles hl. h2.

4.4. Using Exercise 4.3, show directly that H2([), A) = M([), A).

5. Semi-simple Lie Algebras

In the next two sections of Chapter VII we shall give cohomological
proofs of two main theorems in the theory of Lie algebras over a field of
characteristic 0.

The first is that the finite-dimensional representations of a semi-
simple Lie algebra are completely reducible. The main step in that proof
will be to show that the first cohomology group of a semi-simple Lie
algebra with arbitrary finite-dimensional coefficient module is trivial.
This is known as the first Whitehead Lemma (Proposition 6.1). Secondly
we shall prove that every finite dimensional Lie algebra g is the split
extension of a semi-simple Lie algebra by the radical of g. The main step
in the proof of this result will be to show that the second cohomology
group of a semi-simple Lie algebra with arbitrary finite-dimensional
coefficient module is trivial. This is known as the second Whitehead
Lemma (Proposition 6.3). Since this section is preparatory for Section 6,
we will postpone exercises till the end of that section.

In the whole of this section g will denote a finite-dimensional Lie
algebra over a field K of characteristic 0. Also, A will denote a finite-

dimensional g-module.
Definition. To any Lie algebra g and any g-module A we define an

associated bilinear form /3 from g to K as follows. Let o: g-+L(EndKA)
be the structure map of A. If x, y e g then ox, oy are K-linear endo-
morphisms of A. We define /3(x, y) to be the trace of the endomorphism
(ox) (gy)

/3(x,y)=Tr((ox)(gy)), x,yeg. (5.1)

The proof that /3 is bilinear is straightforward and will be left to the
reader. Trivially /3(x, y) = /3(y, x), /3 is symmetric.

If A = g, i.e.. if g is regarded as g-module, then the associated bilinear
form is called the Killing form of g; thus. the Killing form is Tr ((adx) (ady)).

Lemma 5.1.

fl([x,y],z)=/3(x, [Y, z]), x, Y,zeg.
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Proof. Since the trace function is additive and Tr(pW) = Tr(W(p)
for (p. W E EndK A, we have

/3([x,y],z)=Tr((gxgy-gygx)gz)=Tr(gx(gygz-gzgy))=/3(x,[y,z]) 0
Definition. A Lie algebra g is called semi-simple if {0} is the only

abelian ideal of g.
We now cite a key theorem from the theory of semi-simple Lie algebras.

Theorem 5.2. Let g be semi-simple (over a field of characteristic 0), and
let A be a g-module. If the structure map g is injective, then the bilinear
form /3 corresponding to A is non-degenerate.

The fact that g is injective is usually expressed by the phrase that g
is a faithful representation of g in A.

We do not attempt to give a proof of this rather deep result, which is
closely related to Cartan's criterion for solvability of Lie algebras.
Elementary proofs are easily accessible in the literature (G. Hoch-
schild [25. p. 117-122]: J: P. Serre [42. LA. 5.14-LA. 5.20]).

Corollary 5.3. The Killing form of a semi-simple Lie algebra is non-
degenerate.

Proof. The structure map ad:g-*L(EndKg) of the g-module g has
the center of g as kernel (see Exercise 1.2). Since the center is an abelian
ideal, it is trivial. Hence ad is injective. 0

Corollary 5.4. Let a be an ideal in the semi-simple Lie algebra g. Then
there exists an ideal b of g such that g = a Q b, as Lie algebras.

Proof. Define b to be the orthogonal complement of a with respect
to the Killing form /3. Clearly it is sufficient to show (i) that b is an
ideal and (ii) that anb = {0}. To prove (i) let x e g, b e b, a e a. We have
/3(a, [x, b]) = /3([a, x], b) = $(a', b) = 0, where [a, x] = a' e a. Hence with
b e b, [x, b] E b and b is an ideal. To prove (ii) let x, y e anb, z E g; then
/3([x, y], z) = /3(x, [y, z]) = 0, since [y, z] e b and x e a. Since /3 is non-
degenerate it follows that [x, y] = 0. Thus a n b is an abelian ideal of g,
hence trivial. 0

Corollary 5.5. If g is semi-simple, then every ideal a in g is semi-simple
also.

Proof. Since g = a O b by Corollary 5.4, every ideal a' in a is also
an ideal in g. In particular if a' is an abelian ideal, it follows that a' = 0. 0

We now return to the cohomology theory of Lie algebras. Recall that
the ground field K is assumed to have characteristic 0.

Proposition 5.6. Let A be a (finite-dimensional) simple module over the
semi-simple Lie algebra g with non-trivial 9-action. Then H9(g, A) = 0 for
all q>0.
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Proof. Let the structure map o : g->L(EndKA) have kernel b'. By
Corollary 5.4, Il' has a complement h in g, which is non-zero because A
is non-trivial. Since [l is semi-simple by Corollary 5.5, and since o
restricted to l is injective, the associated bilinear form /3 is non-degenerate
by Theorem 5.2. Note that /3 is the restriction to Il of the bilinear form
on g associated with g. By linear algebra we can choose K-bases {ei},
i = 1, ..., m, and {ej, j = 1, ..., m, of h such that /3(ei, e;) = di;. We now
prove the following assertions:

m m

(a) If x e g and if [ei, x] = Y cik ek and [x, et] = Y_ d11ei, then
k=1 1=1

Cij=d;i.

Proof. N([ei, x], e;) = fl(E Cikek, e;) = ci;; but

N([ei, x], e;) = fl (ei, [x, e;]) = fl(ei, E d;i ei) = d;i 0

(b) The element Y eie;e Ug is in the center of Ug; hence for any
i=1

g-module B the map t = tB : B-B defined by t(b) = Y ei (e'- b) is a
i=1

g-module homomorphism.

/

Proof. Let x e g, then

xl 7 eie)= ([x,ei]ei+eixe')= - Y_Cikekei+ Yeixe'
i i.k i

- Y dk i ek ei + Y ek x ek = - ex. ek] + y ek x e'
i.k k k k

=(Yekeklx. 0
\k I

It is clear that, if cp : Bl - B2 is a homomorphism of g-modules. then
tcp=cpt.

(c) Consider the resolution C : Cn Co of Theo-
rem 4.2. The homomorphisms tc. define a chain map r of C into itself.
We claim that r is homotopic to the zero map.

Proof. We have to find maps n=0,1,..., such that
dl Eo = To and d.+ 1 E + E _ 1 d = T., n >_ 1. Define E to be the g-module
homomorphism given by

Z.<xl,..., x.> = > ek<ek, xl, ..., xn> .
k=1
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The assertion is then proved by the following computation (k varies
from 1 to m; i, j vary from 1 to n):

(dn+-Yn+Zn-I dn) <x1, ..., Xn> = Y ekek,<X1, ..., X.>
k

+ (- 1)1ekxi(ek, X1, ..., Xi, ..., Xn>
i, k

+ (-1)iek<Cek>XileX1,...,Xi,...,Xn>
i,k

/ \+ (- 1)i+jek<[x,, Xj], eke X1, ..., Xi, ..., Xj, ..., Xn>
k.i<j

+
(-1)i+1Xiek<ekeXle...,Xi,...,Xn>

i, k

+ Y (- 1)i+jek<ek, CXi, Xj], X1, ..., Xi, ..., Xj, ..., Xn>
k,i<j

- Tn<XI, ..., x.> + (- 1)' Cek, Xi] <e', X1, ..., Xi, ..., Xn>
i, k

l- 1) Qk<Ceke Xil, X1, ..., Xi, ...I Xn>+
i, k

Using (5.2) the two latter sums cancel each other, and thus assertion (c)
is proved. 0

Consider now the map t = t 4 : A--+A and the induced map

t* : H9(.q, A)_*H9(q, A).

By the nature of tA (see the final remark in (b)), it is clear that t* may be
computed as the map induced by t : C-+C. Hence, by assertion (c), t* is the
zero map. On the other hand t : A-iA must either be an automorphism
or the zero map, since A is simple. But it cannot be the zero map, because

the trace of the linear transformation t equals Y /3(ei, e;) = m + 0.
i=1

Hence, it follows that H9(g, A) = 0 for all q > 0. 0
We do not offer exercises on this section, but we do recommend the

reader to study a proof of Theorem 5.2!

6. The two Whitehead Lemmas

Again let g be a finite dimensional Lie algebra and let A be a finite
dimensional g-module. We prove the first Whitehead Lemma:

Proposition 6.1. Let g be semi-simple, then H1(g, A) = 0.

Proof. Suppose there is a g-module A with H1(g, A) * 0. Then there
is such a g-module A with minimal K-dimension. If A is not simple. then
there is a proper submodule 0 * A' C A. Consider 0->A'->A--+ A/A'->0
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and the associated long exact cohomology sequence

A')-H'(9, A)-H'(9, Al,4')--+.

Since dimK A' < dimK A and dimK A,,',4'< dimK A it follows that

H' (9, A') = H 1(9, A/A') = 0.

Hence H' (g, A) = 0, which is a contradiction. It follows that A has to be
simple. But then A has to be a trivial g-module by Proposition 5.6.
(Indeed it has to be K; but we make no use of this fact.) We then have
H' (g, A) = HomK (gab, A) by Proposition 2.2. Now consider

[9,9]r-->9-"9ab
By Corollary 5.4 the ideal [g, g] has a complement which plainly must
be isomorphic to gab, in particular it must be abelian. Since g is semi-
simple, gab = 0. Hence H' (g, A) = HomK (gab, A) = 0, which is a contra-
diction. It follows that H' (g, A) = 0 for all g-modules A. 0

Theorem 6.2 (Weyl). Every (finite-dimensional) module A over a semi-
simple Lie algebra g is a direct sum of simple g-modules.

Proof. Using induction on the K-dimension of A, we have only to
show that every non-trivial submodule 0 + A' C A is a direct summand
in A. To that end we consider the short exact sequence

A', -.,A--»A" (6.1)
and the induced sequence

0-*HomK(A", A')--+ HomK(A, A')-*0, (6.2)

which is exact since K is a field. We remark that each of the vector
spaces in (6.2) is finite-dimensional and can be made into a g-module by
the following procedure. Let B, C be g-modules; then HomK(B, C.) is a
g-module by (xf) (b) = x f (b) - f (xb), x e g, b e B. With this under-
standing, (6.2) becomes an exact sequence of g-modules. Note that the
invariant elements in HomK(B, C) are precisely the g-module homo-
morphisms from B to C. Now consider the long exact cohomology
sequence arising from (6.2)

0--'H°(9, HomK(A", A,))-,H°(g. HomK(A. A'))

-+H°(9, HomK(A', A'))-+H' (g, HomK(A", A'))-'... (6.3)

By Proposition 6.1, H' (g, HomK(A", A')) is trivial. Passing to the
interpretation of H° as the group of invariant elements, we obtain an
epimorphism

Hom9(A, A')-» Hom9(A', A).

It follows that there is a g-module homomorphism A--+A' inducing the
identity in A'; hence (6.1) splits. 0
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The reader should compare this argument with the proof of Maschke's
Theorem (Theorem VI.16.6).

We proceed with the second Whitehead Lemma.

Proposition 6.3. Let g he a semi-simple Lie algebra and let A be a
(finite-dimensional) g-module. Then H2 (g, A) = 0.

Proof. We begin as in the proof of Proposition 6.1. Suppose there
is a g-module A with H2(g, A)+0. Then there is such a g-module A
with minimal K-dimension. If A is not simple, then there is a proper
submodule0 t A' c A. Consider the associated
long exact cohomology sequence

...-,H2(g, A')-H2(g, A)-->H2(g, A,lA')--->...

Since A' is a proper submodule, the minimality property of A leads to
the contradiction H2(g, A) = 0. Hence A has to be simple. But then A
has to be a trivial g-module by Proposition 5.6. Since K is the only
simple trivial g-module, we have to show that H2 (g, K) = 0. This will yield
the desired contradiction.

By the interpretation of H2 given in Theorem 3.3, we have to show
that every central extension

K,--h-P»9 (6.4)
of the Lie algebra g splits.

Let s : g--+ I) be a K-linear section of (6.4), so that ps=19. Using the
section s, we define, in the K-vector space underlying b, a g-module
structure by

x y=[sx,Y], xe9, ye[)

where the bracket is in b. The module axioms are easily verified once
one notes that s([x, x']) = [sx, sx'] + k, where k e K. Clearly K is a
submodule of the g-module b so defined.

Now regard b as a g-module. By Theorem 6.2 K is a direct summand
in 11, say b = K[)'. It is easily seen that this h" is in fact a Lie subalgebra
of it is then isomorphic to g. Hence h = K Q+ g as Lie algebras and the
extension (6.4) splits. 0

We shall shortly use Proposition 6.3 to prove Theorem 6.7 below
(the Levi-Malcev Theorem). However, in order to be able to state that
theorem, we shall need some additional definitions. First we shall
introduce the notion of derived series, derived length, solvability, etc.
for Lie algebras. It will be quite obvious to the reader that these notions as
well as certain basic results are merely translations from group theory.

Definition. Given a Lie algebra g. we define its derived series go, 91,
inductively by

go=9,9n+1 =[9,,,9n], n=0, 1,... ,
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where [S, T], for any subsets S and T of q, denotes the Lie subalgebra
generated by all [s, t] for s e S, t e T.

We leave it to the reader to prove that g,, is automatically an ideal in g.

Definition. A Lie algebra g is called solvable, if there is an integer
n >-- 0 with g = {0}. The first integer n for which g = (0) is called the
derived length of g. The (easy) proofs of the following two lemmas are
left to the reader.

Lemma 6.4. In the exact sequence of Lie algebras, g is
solvable if and only if 1) and g/l) are solvable. 0

Lemma 6.5. If the ideals a and b of g are solvable then the ideal a + b
generated by a and b is solvable. 0

An immediate consequence of Lemma 6.5 is the important fact that
every finite-dimensional Lie algebra g has a unique maximal solvable
ideal r. Indeed take r to be the ideal generated by all solvable ideals of g.

Definition. The unique maximal solvable ideal r of g is called the
radical of q.

Proposition 6.6. g/r is semi-simple.

Proof. Let a/r bean abelian ideal of g/r; then the sequence r+a-* a/r
has both ends solvable, hence a is solvable by Lemma 6.4. By the maxi-
mality of r, it follows that a = r, whence g/r is semi-simple. 0

Theorem 6.7 (Levi-Malcev). Every (finite-dimensional) Lie algebra g
is the split extension of a semi-simple Lie algebra by the radical r of g.

Proof. We proceed by induction on the derived length of r. If r is
abelian, then it is a g/r-module and H2 (g/r, r) = 0 by Proposition 6.3.
Since H2 classifies extensions with abelian kernel the extension
r>--+g-»g/r splits. If r is non-abelian with derived length n >_ 2, we look
at the following diagram

r-9.=g/r
1 1 II

r/[r, r] -g/[r, r] -" g/r

The bottom sequence splits by the first part of the proof, say by
s : g/r g/[r, r]. Let Il/[r, r] be the image of g/r under s; clearly
s : g/rl)/[r, r] and [r, r] must be the radical of b. Now consider the
extension Since [r, r] has derived length n -l.
it follows, by the inductive hypothesis, that the extension must split,
say by q :b/[r, r] - b. Finally it is easy to see that the top sequence of
(6.5) splits by t = qs, t : g/r---' 11/[r, r] -II C g. 0
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Exercises:

6.1. Let g be a Lie algebra. finite-dimensional over a field of characteristic 0. Use
the exact sequence of Exercise 3.1 and the Whitehead Lemmas to prove that
rn [g, g] r], where r is the radical of g. ([g, r] is called the nilpotent
radical).

6.2. Let fl: g x be the Killing form of the semi-simple Lie algebra g over the
field K of characteristic 0. Show that

.f(x,Y,z)=f([x,Y],Z), x,Y,zeg

defines a 3-cocycle in Homq(C, K), where C denotes the resolution of Theo-
rem 4.2. In fact (see [8, p. 113]),f is not a coboundary. Deduce that H3(g, K) $ 0.

6.3. Using Exercise 6.2 show that, for g semi-simple, H2(g,Ig)*0. (Ig is not finite
dimensional!)

6.4. Prove Lemmas 6.4, 6.5.
6.5. Establish the step in the proof of Theorem 6.7 which asserts that [r, r] is the

radical of h.

7. Appendix: Hilbert's Chain-of-Syzygies Theorem

In this appendix we prove a famous theorem due to Hilbert. We choose
to insert this theorem at this point because we have made the Koszul
resolution available in this chapter. Of course. Hilbert's original formula-
tion did not refer explicitly to the concepts of homological algebra !
However, it is easy to translate his formulation, in terms of presentations
of polynomial ideals. into that adopted below.

Definition. Let A be a ring. We say that the global dimension of A is
less than or equal to m (gl. dim. &< m) if for all A-modules A and all
projective resolutions P of A, Km(A) = ker(Pm_ 2) is projective.
Thus gl.dim. A< m if and only if Ext" (A, B) = 0 for all A, B and n > m.
Of course we say that gl.dim. A = m if gl.dim. A < m but gl.dim. A -1 m - 1.
(See Exercise IV.8.8.)

Let K be a field and let P = K [x 1, ..., x,,] be the ring of polynomials
over K in the indeterminates x1, ..., X. We denote by P, the subspace of

homogeneous polynomials of degree j, and consider P = (B P, as inter-
j=o

nally graded (see Exercise V.1.6). Consequently, we consider (internally)
graded P-modules; an (internally) graded P-module A is a P-module A

which is a direct sum A = Aj of abelian groups .4j, such that
j=o

x; Aj S Aj+ 1, i = 1, 2, ..., in. The elements of Aj are called homogeneous
of degree j. It is clear how to extend the definition of global dimension
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from rings to internally graded rings: the definition employs. of course,
the concept of (internally) graded modules. Then Hilbert's theorem reads:

Theorem 7.1. The global dimension of P = K [x1, ..., is m. More-
over, every projective graded P-module is free.

The proof of this theorem will be executed in several steps; not all
these steps require that K be a field, so we will specify the assumptions
at each stage. Now K can be considered as a graded P-module through
the augmentation e: P---K. which associates with each polynomial its
constant term. Thus K is concentrated in degree 0.

Note that P may be regarded as the universal enveloping algebra of
the abelian Lie algebra a, where x1, ..., xform a K-basis of a. The Lie
algebra resolution for a of Theorem 4.2 is known as the Koszul resolution,
or Koszul complex. By Theorem 4.2 we have

Proposition 7.2 (Koszul). Let D = P ®K E a, and let d: D,,-+D,,_ 1
be defined by

ndn(P®<x....... xjn>)=
Y- (-1)i+1pxJ'®<xJ,,...,Xi,,...,xJn>
i=1

where Then is a P-free
resolution of K regarded as graded P-module. 0

We note in passing that Proposition 7.2 admits a fairly easy direct
proof (see Exercise 7.1).

Proposition 7.3. Let M be a graded P-module. If K is a commutative
ring and if M ®r K = 0 then M = 0.

Proof. Let 1 be the augmentation ideal in P, that is.

I+P E .. K

is exact. Then the homogeneous non-zero elements of I all have positive
degree. Now the sequence

M®PI-'* -3M®PP= -M®pK-->O

is exact so that the hypothesis implies that

/I,: M ®PI -+M ®PP

is surjective. Moreover, M ®pP = M and, when the codomain of u,k is
interpreted as M,p,k takes the form

µ,k(m(&f)=mf. meM. fel. (7.1)

Now suppose M + 0, and let m + 0 be an element of M of minimal
degree. Then (7.4) leads to an immediate contradiction with the statement
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that µ* is surjective. For if
s

m=It* > (m;®fA),

where we may assume mi, f; homogeneous and non-zero, then
s

m Y mi f;, deg f; > 1, so deg m, < deg m. contrary to the minimality
=1

of the degree of m. 0

This proposition leads to the key theorem.

Theorem 7.4. Let B be a graded P-module. If K is a field and if
Tori (B, K) = 0 then B is free.

Proof. It is plain that every element of B ®PK can be expressed as
b ®1, b e B, where 1 is the unity element of K. Thus we may select a
basis {b; ®1 }, i e I, for B ®P K as vector space over K. Let F be the free
graded P-module generated by {b;}, i e I, and let (p: F-+B be the homo-
morphism of graded P-modules given by cp(b1) = b., i e I. Notice that cp
induces the identity (p,,,

cp*=1:F®PK-.BQpK.

We show that cp is an isomorphism. First cp is surjective. For, given the
exact sequence F4B-»C, we obtain the exact sequence

F®PK-'+B®PK-»C QPK

so that C ®PK = 0 and hence, by Proposition 7.3, C = 0. Next tp is
injective. For, given the exact sequence we obtain the exact
sequence

->Tori(B, K)-.R QPK-->F ®PK-B ®PK.

Since Tor; (B, K) = 0 it follows that R OQ P K = 0 and, by a second
application of Proposition 7.3, R = 0. 0

Proof of Theorem 7.1. Let B be any projective graded P-module.
Then Tor '(B, K) = 0 and B is free by Theorem 7.4, thus proving the
second assertion of Theorem 7.1. By Proposition 7.2 it follows that
Torm+

1 (A, K) = 0 for every graded P-module A. But

Torm+ 1 (A, K) = TorP(Km(A), K).

Hence Theorem 7.4 implies that Km(A) is free, so that gl.dim. P<_ m. To
complete the proof of the theorem it remains to exhibit modules A, B
such that Torm(A, B) $ 0. In fact, we show that

Torm (K, K) = K. (7.2)
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For, reverting to the Koszul resolution, we observe that Em a= K, so
that Dm ®p K = K; and that dp 1 : D, ®p K--> Dm_ l ®K is the zero
homomorphism since dm<xl, ..., x> = E ± xm> and
x ; K = 0. Thus (7.2) is established and the Hilbert chain-of-syzygies
theorem is completely proved. 0

Exercises:

7.1. Give a direct proof of Proposition 7.2 by constructing a homotopy similar
to the one used in the proof of Lemma 4.1.

7.2. Let J be a graded ideal in the polynomial algebra P = K [x l , ... , x ], i.e. an
internally graded submodule of the P-module P. Prove that proj.dim. J< n - 1.
(Hint: Consider a projective resolution of J and extend it by J-+P-»Pl'J.
Then use Exercise IV.7.7.)

7.3. Show that a flat graded P-module is free.



VIII. Exact Couples and Spectral Sequences

In this chapter we develop the theory of spectral sequences: applications
will be found in Section 9 and in Chapter IX. Our procedure will be to
base the theory on the study of exact couples, but we do not claim, of
course, that this is the unique way to present the theory; indeed, an
alternative approach is to be found e.g. in [7]. Spectral sequences
themselves frequently arise from filtered differential objects in an abelian
category - for example, filtered chain complexes. In such cases it is
naturally quite possible to pass directly from the filtered differential
object to the spectral sequence without the intervention of the exact
couple. However, we believe that the explicit study of the exact couple
illuminates the nature of the spectral sequence and of its limit.

Also, we do not wish to confine ourselves to those spectral sequences
which arise from filtrations although our actual applications will be
concerned with such a situation. For many of the spectral sequences of
great importance in algebraic topology refer to geometric situations
which naturally give rise to exact couples, but not to filtered chain
complexes. Thus we may fairly claim that the approach to spectral
sequences via exact couples is not only illuminating but also of rather
universal significance.

We do not introduce grading into the exact couple until we come to
discuss convergence questions. In this way we simplify the description
of the algebraic machinery, and exploit the grading (or, as will be the
case, bigrading) precisely where it plays a key role in the theory. We
distinguish carefully between two aspects of the convergence question
for a given spectral sequence E = {(E,,, First, we may ask whether
the spectral sequence converges finitely; that is, whether E., the limit
term, is reached after a finite number of steps through the spectral
sequence. Second, we may ask whether E., is what we want it to be;
thus, in the case of a filtered chain complex C, we would want E., to be
related to H(C) in a perfectly definite way. Now the first question may be
decided by consulting the exact couple; the second question involves
entities not represented in the exact couple. Thus it is necessary to enrich
the algebraic system, and replace exact couples by Rees systems (Sec-
tion 6), in order to be able to discuss both aspects of the convergence
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question. We emphasize that those topological situations referred to
above - as well, of course, as the study of filtered differential objects -
which lead naturally to the study of exact couples lead just as naturally
to the study of Rees systems.

We admit that our discussion of convergence questions is more general
than would be required by the applications we make of spectral sequences.
However, this appears to us to be justified, first, by the expectation that
the reader will wish to apply spectral sequences beyond the explicit scope
of this book - and even, perhaps, develop the theory itself further - and,
second, by the important concepts of (categorical) limits and colimits
thereby thrown into prominence, together with their relation to general
properties of adjoint functors (see 11.7). However the reader only interested
in the applications made in this book may omit Sections 6, 7, 8.

Although we use the language of abelian categories in stating our
results, we encourage the reader, if he would thereby feel more
comfortable, to think of categories of (graded, bigraded) modules. Indeed,
many of our arguments are formulated in a manner appropriate to this
concrete setting. Those readers who prefer entirely "categorical" proofs
are referred to [10] for those they cannot supply themselves. The
embedding theorem for abelian categories [37, p. 151) would actually
permit us to think of the objects of our category as sets, thus possessing
elements, insofar as arguments not involving limiting processes are
concerned; however, many of the arguments are clearer when expressed
in purely categorical language, expecially those involving categorical
duality.

We draw the reader's attention to a divergence of notation between
this text and many others in respect of the indexing of terms in the
spectral sequence associated with a filtered chain complex. Details of
this notation are given at the end of Section 2, where we also offer a
justification of the conventions we have adopted.

1. Exact Couples and Spectral Sequences

Let 21 be an abelian category. A differential object in 21 is a pair (A, d)
consisting of an object A of 21 and an endomorphism d : A-.A such
that d2 = 0. We may construct a category (21, d) of differential objects
of 21 in the obvious way; moreover, we may construct the homology
object associated with (A, d), namely, H(A, d) = kerd/imd, so that H
is an additive functor H : (91, d)-*21. We may abbreviate (A, d) to A and
simply write H(A) for the homology object. We will also talk of the
cycles and boundaries of A, writing Z(A), B(A) for the appropriate
objects of W. Thus H(A) = Z(A)/B(A).
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Definition. A spectral sequence in 21 is a sequence of differential
objects of 21,

E = {(E., dn)} , n = 0, 1, 2, ... ,

such that 1, n = 0, 1, .... A morphism qp : E-*E' of spectral
sequences is a sequence of morphisms qp : of (2i, d) such that
H((P.,) = n = 0, 1, .... We write e, or (9(2[), for the category of
spectral sequences in 2i.

Instead of showing directly how spectral sequences arise in homolo-
gical algebra, we will introduce the category of exact couples in 21 and a
functor from this category to (9; we will then show how exact couples
arise.

Definition. An exact couple EC = {D, E, a, /J, y} in 2I is an exact
triangle of morphisms in A,

D ' D

E

A morphism 0 from EC to EC' = {D', E', a', fi', y') is a pair of morphisms
x : D-*D', 2 : E--+E', such that

a'x=rca, j'x=1f1, Y'2=Ky.

We write (RE (21), or briefly (K. for the category of exact couples in W.
We now define the spectral sequence functor SS: In this section
we will give a very direct description of this Functor; in Section 4 we will
adopt a more categorical viewpoint and exhibit quite explicitly the way
in which the spectral sequence is contained in the entire ladder of an
exact couple.

We proceed, then, to define the spectral sequence functor. Thus, given
the exact couple (1.1), we define d : E- E by d = fly. Since y fl = 0, it is
plain that d2=0, so that (E, d) is a differential object of 2C. We will show
how to construct a spectral sequence (E,,, such that (Eo, do) = (E, d).
Set D1 = aD, El = H(E, d) and define morphisms al, fl, y, as follows:

a1 : D1-.D1 is induced by a ,

l31 : D1- E1 is induced by floc' , (1.2)

y l : E1-+D1 is induced by y .

These descriptions are adapted to a concrete abelian category (e.g., a
category of graded modules). The reader who wishes to express the
argument in a manner appropriate to any abelian category may either
turn to Section 4 or may assiduously translate the arguments presented
below.
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Thus the meaning of a, presents no problem. As to /il, we mean
that we set

#,(ax)=[Qx],
where [z] refers to the homology class of the cycle z; and, as to y,, we
mean that

Y,[z] = Y(z)

To justify the description of fi, we must first show that fix is a cycle; but
(f y)# = 0. We must then show that [fix] depends only on ax or, equiva-
lently, that fix is a boundary if ax = 0. But if ax = 0, then x = yy, y e E,
so that fix = fyy = dy and is a boundary. To justify the description of
y, we must first show that y(z) belongs to D, . But D1= ker /f and fly(z) = 0
since z is a cycle. We must then show that y(z) depends only on [z] or,
equivalently, that y(z) = 0 if z is a boundary. But if z = /3y(y). then
y(z) = yfy(y) = 0. Thus the definitions (1.2) make sense and. plainly, fl,
and y, and. of course, a, are homomorphisms.

Theorem I.I. The couple

Y\. /0
E,

is exact.

Proof. Exactness at top left D1: x 1 y 1 [z] = ay(z) = 0. Conversely,
if x e D1 = aD and ax = 0, then x e ker fi and x = yy, y e E. Thus
dy = fiyy = 0, y is a cycle of E, and x = y 1 [y].

Exactness at top right D, : fl, a, (x) = fl, (ax) = [f x] ; but x e D, = ker fi,
so fix = 0, so /3, a, = 0. Conversely, if Rl (ax) = 0 then fix = f y y, y e E, so
x = yy + x0, where x0 e ker fi = D1. Thus ax = ax0 = al (xO).

Exactness at E1: y1fi1(ax)=y1[ax]=yf(x)=0. Conversely, if
y 1 [z] = 0, then z = fix, so [z] = f 1(ax). 0

We call (1.3) the derived couple of (1.1). We draw attention to the
relation

E1 =y-1((xD)/f(a-1(0)) (1.4)

which follows immediately from the fact that E1 = H(E) = Z(E)/B(E).
By iterating the process of passing to the derived couple, we obtain

a sequence of exact couples EC(= EC0), EC1, ..., EC,,, ..., where

and thus a spectral sequence (E,,, n = 0, 1, ..., where d = i y,,. This
defines the spectral sequence functor

S S :

we leave to the reader the verification that SS is indeed a functor. An
easy induction establishes the following theorem.

I
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Theorem 1.2. E" = y - t (a" D)//.3(a -"(0)), and do : En-* E. is induced by
fla-"y 0
Indeed we have, for each n, the exact sequence

a"D "" a"D #- En-''" a"D L" +a"D, (1.5)

where an is induced by a, /3n is induced by 13a-", and yn is induced by y.
Thus we have a short exact sequence

0--+coker --01"-+E ''" ker -->0 (1 6)an n an .

where 13n, yn are induced by F'", yn, and

cokeran=a"D/a"+1D=D/aDuoc-"(0). (1.7)

keran=a"Dna-t(0). (1.8)

We close this introductory section by giving a description of the
limit term of a spectral sequence. We will explain later in just what sense
E.. is a limit (Section 5). We will also explain how, under reasonable
conditions frequently encountered in practice, the limit is often achieved
by a finite convergence process, so that E«, is actually to be found
within the spectral sequence itself (Section 3). However it does seem
advisable to present the construction of E., at this stage in order to be
able to explain the basic rationale for spectral sequences; in applications
it is usually the case that we have considerable (even, perhaps, complete)
knowledge of the early terms of a spectral sequence and E., is closely
related to an object which we wish to study; sometimes, conversely,
we use our knowledge of E«, to shed light on the early terms of the
spectral sequence. An important special case of the relation of E0 to E.
is given in the next section. The relation between E«, and the spectral
sequence itself will be discussed further in Sections 3 and 6.

Our description of Ea, will again be predicated on the assumption
that 21 is a category of modules. Since, in general, E.. involves a limiting
process over an infinite set, this is really a loss of generality, which will
be made good in Section 5. However, the description of E., in the con-
crete case is much easier to understand, and shows us clearly how E.
is a sort of glorified homology object for the entire spectral sequence.

Let us write En,n+ t for the subobject of E. consisting of those elements
of E. which are cycles for dn, thus

E"." I = Z(E")

(The notations of this paragraph will be justified in Section 4.) There is
then an epimorphism o = r,,,, : E".,+t-»En+t, and we may consider
the subobject En,n+2 of En,n+t consisting of those elements x of En,n+t
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such that a(x) is a cycle for dn+ 1,

En,n+2 = (x E En,n+l l a(x) E En+l,n+2 =Z(En+)}

If x c- E,,.ri+2, then a2(x) e Ei+2 and we define by

En.n+3 = {x a En.n+2l a2(x) E En+2,n+3 = Z(En+2)1

By an abuse of language, we say that x c- En,n+ 1 if it is a cycle for dd;
x e En,n+2 if it is a cycle for d, do+1; x c- En,n+3 if it is a cycle for
dn, dn 1, do+2 ; .... We may thus construct the subobject En « of E.
consisting of those x in En which are cycles for every d r >_ n. Plainly
a = an,n+ 1 maps En, « onto En+ 1, x so we get the sequence

"' ))

E ,

an element of E. is represented by an element x of some En, :

and x represents 0 if and only if it is a boundary for some d, (r > n).
Thus we may say that x c- En, x 4r 0, survives to infinity if it is a cycle for
every d,, r >_ n, and a boundary for no d r >_ n; and E. consists, as a set,
precisely of 0 and equivalence classes of elements which survive to
infinity.

It is again plain that E. depends functorially on the spectral
sequence E, yielding a functor

lim:(9 -->2I, (1.10)

at least in the case when 21 is a category of modules. For an arbitrary
abelian category 21 we need, of course, to rephrase our description of the
functor lim and to put some conditions on the category 21 guaranteeing
the existence of this functor. Such considerations will not, however, be
our immediate concern, since we will first be interested in the case of
finite convergence. This is also the case of primary concern for us in
view of the applications we wish to make.

Exercises:

1.1. Prove Theorem 1.2.
1.2. Establish (1.5).
1.3. Show that E. is determined, up to module extension, by a : D--+D.
1.4. Show that SS : (RE ->(9 is an additive functor of additive categories. Are the
categories (Cr, (9 abelian?
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1.5. Let C be a free abelian chain complex and let Z,4Z--*4, be the obvious
exact sequence. Obtain an exact couple

H(C)--.H(C)

H(C®Zm)

and interpret the differentials of the resulting spectral sequence.
1.6. Carry out a similar exercise with Hom (C, Zm) replacing C®Zm.

2. Filtered Differential Objects

In this section we describe one of the commonest sources of exact
couples. We consider an object C of the category (21, d) and suppose it is
filtered by subobjects (of (21, d))

CC(P-1)CC(P)C...CC, -oc<p<oc. (2.1)

Thus each C(P) is closed under the differential d on C, that is, dC(P) C C(P).
Denote the category of filtered differential objects in 21 by (21, d, f).

Clearly morphisms in (21, d, f) respect filtration and commute with
differentials.

If we consider the short exact sequence

0-sC(P-1)- C(P)yC(P)/C(P-')--,0,

we obtain a homology exact triangle

H(C(P-1))? ) H(C(P))

(2.2)

H(C(P)/CIP- 1)).

Now let D be the graded object such that DP = H(C(P)) and let E be the
graded object such that EP=H(C(P)/C(p-1)). Then we may subsume(2.2),
for all p, in the exact couple

D a )D

E

in the graded category 21Z, where dega = 1, deg fl = 0, degy = -1. This
process describes a functor

H : (21, d, f)-* ((211) (2.4)
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from the category of filtered differential objects of 21 to the category of
exact couples of W. Notice that if we simply extract from the exact
couple the E-term we have a functor E : (21, d, f)-* W. This functor may
be factorized in the following important way.

Given any abelian category 'B, we may form the category (93J) of
filtered objects of 0,

...CB(P-1)CB(P)C...CB, -oo<p<oo. (2.5)

A morphism cp : B-->B' of filtered objects then sends B(P) to HIP, for all p.
From (2.5) we construct the graded object whose p" component is
B(P)/B(p- 1). Then we plainly have a functor

Gr: (93, f')-->'$z .

which is said to attach to a filtered object of '.B the associated graded
object in 23z. Now if 93 = (U, d), and if X e(21,d, f), Gr(X)e(21,d)z = (91z, d)
and so we may apply the homology functor H to Gr(X) to get an object
of 21z. Plainly

E = H = Gr : (91. d. f)--+91z.

On the other hand, starting from (2.1) we may pass to homology and
obtain a filtration of M = H(C) by

...CM(P-1)CM(P)C...CM, (2.6)

where
M(P' = H(C)(P' = im H(VP) C H(C).

By abuse of notation let us also write H for the functor associating (2.6)
with (2.1). Thus, now,

H:(91,d,f)->(2,.f)

so that we get a functor
Gr-H:(U,d,f)-.21z.

The functors H and Gr do not "commute"; indeed, in the cases we will
be considering, passage through the spectral sequence will provide us
with a measure of the failure of commutativity. Thus, as pointed out,
H Gr yields E = E0 from a filtered object in (2i, d); and, by imposing
certain reasonable conditions on the filtration, Gr H will yield E.. as
we shall see; moreover these reasonable conditions will also ensure that
E., is reached after a finite number of steps through the spectral sequence,
so that no sophisticated limiting process will be involved.

The assumption then is that we are interested in determining H(C)
and that we can, to a significant extent, determine H(C(P)ICIP- 1)). The
spectral sequence is then designed to yield us information about the graded
object associated with H(C) filtered by its subobjects im H(C(P)). The
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question then arises as to how much information we can recover about
H(C) from the associated graded object. In this informal discussion let
us again revert to the language of concrete categories. Then two con-
ditions which we would obviously wish the filtration of M = H(C) (2.6)
to fulfil in order that the quotients M(P)/M(P- t) adequately represent M are

(i) n m(P) = 0 (ii) U M(P) = M
P P

For if (i) fails there will be non-zero elements of M in every M(P) and thus
lost in Gr(M); and if (ii) fails there will be non-zero elements of M in no
M(P) and thus unrepresented in Gr(M). If both these conditions hold,
then, for every x e M, x $ 0, there exists precisely one integer p such that
x 0 M('), r < p, x e M('), r >-- p. Thus every x e M, x $ 0, is represented by a
unique homogeneous non-zero element in Gr(M) and, of course, con-
versely, every such homogeneous non-zero element represents a non-zero
element of M. Thus all that is lost in the passage from M to Gr(M) is
information about the module-extensions involved; we do not know
just how M'P- t) is embedded in M'P' from our knowledge of Gr(M).

Evidently then we will be concerned also to impose conditions under
which (2.8) (i) and (ii) hold. We thus add these requirements to our
earlier criterion, for a "good" spectral sequence, that Gr H(C) = E,.
Such requirements are often fulfilled in the case when 2I is itself a graded
category so that (2.1) is a filtered chain complex of 21; we then suppose,
of course, that the differential d lowers degree by 1. Then the associated
exact couple

Da D

where
E

D = {DP.'}, DP.9 = H9(C(P)) ,

E = {EP. q}, E P. 9 = H9(C(P)/C(P- t))

is an exact couple in IN z' z and the bidegrees of a, P. y are given by

dega=(1,0), deg/3=(0,0), degy=(-1, -1). (2.10)

It then follows from the remark following Theorem 1.2 that, in the n`h
derived couple and the associated spectral sequence, we have the bidegrees

(2.11)
-1), -1).

In the next section we will use (2.11) to obtain conditions under which
E. = Gr H(C), and (2.8) holds for M = H(C). Of course, a similar story
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is available in cohomology; the reader will readily amend (2.10), (2.11)
to refer to the case of a filtered cochain complex.

Remark on Notational Conventions. We have indexed spectral
sequences to begin with Eo ; and have accordingly identified the E-term
of the exact couple (2.9) with E0. Conventions adopted in several other
texts effectively enumerate the terms of the spectral sequence starting
with E1. Thus, if we write E" for this rival convention, it is related to our
convention by

En=En*1

This difference of convention should be particularly borne in mind when
the reader meets, elsewhere, a reference to the E2-term. For it often
happens that this term (i.e., our E1-term) has a special significance in
the context of a given spectral sequence; see, for example, Theorem 9.3.
A justification for our convention consists in the vital statement in
Theorem 1.2 that d" is induced by it is surely convenient that the
index n is precisely the power of a-1.

A further matter of notational convention arises in indexing the
terms of (2.9). Some texts put emphasis on what is called the comple-
mentary degree, so that what we have called DP,", EP-" would appear as

DP.9-P, EP.9-P. Where this convention is to be found, in addition to that
already referred to, the relation to our convention is given by

EP+9=EP9-P

n n+1

of course. translation from one convention to another is quite automatic.
We defend our convention here with the claim that we set in evidence the
degree, q, of the object being filtered in the case of a spectral sequence
arising from a filtered chain complex; it is then obvious that any differ-
ential lowers the q-degree by 1. Some authors call the q-degree the
total degree.

Exercises:

2.1. Show that the category (2I, d) is abelian.
2.2. Assign degrees corresponding to (2.11) for a filtered cochain complex. What

should we understand by a cofiltration? Assign degrees to the exact couple
associated with a cofiltered cochain complex.

2.3. Assign degrees in the exact couples of Exercises 1.5. 1.6.
2.4. Interpret E. for the exact couples of Exercises 1.5, 1.6 when m is a prime and C

is of finite type, i.e., each C. is finitely-generated.
2.5. Show that, in the spectral sequence associated with (2.1),

EP = im H(C "-')/C(" -' - 1)) 9 H(C(P)/CAP -1)) .

2.6. Let tp, 4' : C--. C be morphisms of the category (91, d, f) and suppose (p ^ W
under a chain-homotopy f such that E(C(P)) c C'(P+k) for fixed k and all p.
Show that (pk ^-'7pk : Ek-.Ek.



3. Finite Convergence Conditions for Filtered Chain Complexes 265

3. Finite Convergence Conditions for Filtered Chain Complexes

In this section we will give conditions on the filtered chain complex (2.1)
which simultaneously ensure that Gr, H(C) = E,,, that (2.8) (i) and (ii)
hold, and that E., is reached after only a finite number of steps through
the spectral sequence (in a "local' sense to be explained in Theorem 3.1).
At the same time, of course, the conditions must be such as to be fulfilled
in most applications. A deeper study of convergence questions will be
made in Section 7.

Insofar as mere finite convergence of the spectral sequence is con-
cerned we can proceed from the bigraded exact couple (2.9). However,
if we also wish to infer that the E« term is indeed the graded object
associated with H(C), suitably filtered, and that conditions (2.8) (i) and (ii)
for the filtration of M = H(C) hold, then we will obviously have to proceed
from the filtration (2.1) of C. First then we consider finite convergence
of the spectral sequence.

Definition. We say that x: D--+D in (2.9) is positively stationary if,
given q, there exists po such that x : I. q for p >_ po. Similarly we
define negative stationarity. If a is both positively and negatively station-
ary, it is stationary.

Theorem 3.1. If a is stationary, the spectral sequence associated with
the exact couple (2.9) converges finitely: that is, given (p, q), there exists r
such that EP q = EP+1 = =

Proof. Consider the exact sequence
DP-1,9-4 DP,4-4 EP9-4 DP1,9-1 4Dp.9- (3.1)

Fix q. Since a is positively stationary, it follows that each a in (3.1) is an
isomorphism for p sufficiently large. Thus 0 for p sufficiently large.
Similarly EP, q = 0 for p sufficiently small*. Now fix p, q and consider

EP+r+1,9+1 dr,Erp-r-1,4-1. (3.2)

By what we have proved it follows that, for r sufficiently large,
EP +r+ 1,q+1 =os EP` 1,q-1 =0

so that En+r+l,q+i=0, En--i,q-1=0 for all n0. Thus, f o r r suffi-
ciently large, E, "= EP+1. With our interpretation of E« it follows also,
of course, that EP+ 1 = ... = since the whole of is a cycle
for every d, s >_ r, and only 0 is a boundary for some d, s > r. 0

We next consider conditions on (2.1) which will guarantee that
im Hq(0P))/im Hq(0p-1), while also guaranteeing that a is

stationary so that the spectral sequence converges finitely. We proceed
by obtaining from (2.1) a second exact couple.

* "Small" means, of course, "large and negative" !
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Let b be the bigraded object given by
DP-9 = H9(C/C(P-1)) . (3.3)

(Our reason for adopting this convention is explained in Section 6; but
we remark that it leads to a symmetry between (2.10) and (3.5) below.)

Then the exact sequence of chain-complexes

0_. VP)/C(P- 1)-.c/C(P-11-'C/C(P) 0

gives rise to an exact couple of bigraded objects

where
dega=(1,0), degf =(- 1, - l), deg7=(0,0). (3.5)

We now make a definition which will be applied to D, E and D.

Definition. The bigraded object A is said to be positively graded if,
given q there exists po such that AP"9 = 0 if p <po. Similarly we define a
negative grade.

We have the trivial proposition
Proposition 3.2. If D (or D) is positively (negatively) graded, then

a (or a) is negatively (positively) stationary. 0

Theorem 3.3. The following conditions are equivalent:
(i) a is positively stationary.

(ii) E is negatively graded,
(iii) a is positively stationary.

Of course, we can interchange "positive" and "negative" in this
theorem.

Proof. In the course of proving Theorem 3.1 we showed that (i)r(ii)_
Conversely, consider the exact sequence

EP,9+1-4DP-1.9 4DP9-, EP,9 (3.6)

If E is negatively graded, then, given q, EP q+ 1 = 0, EP 9 = 0, for p suf-
ficiently large. Thus a is an isomorphism for p sufficiently large, so that
(ii)'(i).

The implications (ii) .(iii) are derived similarly from the exact
couple (3.4). 0

We now complete our preparations for proving the main theorem of
this section. We will say that the filtration

CLIP 1)=C(P)=C ...CC, -co<p<cc (3.7)
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of the chain complex C is finite, if, for each q, there exist pi pl with

(i) O)=0 for p<po,
cps

(3.8)
(ii) Cq = Cq for p >_ p t .

We will say that (3.7) is homologically finite, if. for each q, there exist
Po, p, with

(i) Hq(C(P)) = 0 for p <Po ,

(ii) Hq(C(P)) = Hq(C) for p >_ pl .
(3.9)

Proposition 3.4. If the filtration of the chain complex C is finite, it is
homologically finite.

Proof. Plainly (3.8) (i) implies (3.9) (i). Also (3.8) (ii) implies that,
given q,

L'qP) = Cq, CI+ i = Cq+ i , for p large .

Thus Hq(00) = Hq(C) for p large. 0
Theorem 3.5. If the filtration of the chain complex C is homologically

finite, then
(i) the associated spectral sequence converges finitely;

(ii) the induced filtration of H(C) is finite;
(iii) Ec = Gr - H(C); precisely,

EP "q = (Gr Hq(C))p = im Hq(0p))/im Hq(Vp- 11.

Remark. In the case where the conclusions of Theorem 3.5 hold we
say that the spectral sequence converges finitely to the graded object
associated with H(C), suitably filtered. We will abbreviate this by saying
that the spectral sequence converges finitely to H(C), or simply by the
symbol

EI.q-Hq(C)
.

Proof. (i) Plainly (3.9) (i) asserts that D is positively graded; and
(3.9) (ii) is equivalent to the statement that D is negatively graded, as is
seen immediately by applying homology to the sequence

op),_., C---» C/Op) .

By Proposition 3.2, a is negatively stationary and a is positively stationary.
By Theorem 3.3, a is positively stationary, hence a is stationary and we
apply Theorem 3.1 to obtain (i).

(ii) This is trivial, but we note that (3.9) is a stronger statement than
conclusion (ii).

(iii) Consider the following extract from the n" derived couple of
the exact couple (2.9) - see (2.11) for the bidegrees of the maps -

Dn+n - B.+En,q Yn.Dn-1.q-1. (3.10)
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We fix p, q and suppose n large so that EP, = E " by (i). Now
D. imHq(C(P)) g Hq(C(P+")). It follows from (3.9) (ii) that,
for n large, D +",q = Hq(C)(P) = im Hq(C(P)) S Hq(C). Similarly, for n large,
Dn +n- 1,q = Hq(C)(P- 1) = imHq(C(p-1)) S Hq(C); and an is then just the
inclusion Hq(C)(P- 1) S Hq(C)(P). Also

Dn-1,q-1=an DP-n-t,q-1=imHq-1(C(P-n-1))cHq-1(C(P t))

and, for n large, this is zero by (3.9) (i). Thus for n large, P. induces

(Gr = Hq(C))P - E0q ,

completing the proof of (iii) and of the theorem. 0

Again the reader is invited to formulate Theorem 3.5 for a filtered
cochain complex. Notice that we may formally obtain a "translation"
by the sign-reversing trick of replacing (p, q) by (- p, - q). We will feel
free in the sequel to quote Theorem 3.5 in its dual form, that is, for
cochain complexes.

Exercises:

3.1. Show that the validity of Theorems 3.1, 3.3 depends only on dega and degfly
(= degd), and not on the individual degrees of fi and y.

3.2. Adapt Theorems 3.1, 3.3, 3.5 to the case of cochain complexes.
3.3. Show that the spectral sequences of the exact couples (2.1), (3.4) coincide.
3.4. (Comparison Theorem). Let cp : C-IC be a morphism of homologically finite

filtered chain-complexes. Show that if 9* : E,=- E' , for any r then

9.: H(C)-=--H(C').

3.5. Let C be a filtered chain complex of abelian groups, in which

op) = 0, p < 0

C1r1 = Cq, p > q .

Show that if C satisfies the following conditions (i), (ii), (iii). then E;" is finitely
generated for all p, q.

(i) Hq(C) is finitely generated for all q.
(ii) E°,0 is finitely generated.
(iii) For all p, if El P is finitely generated. then EI'q is finitely generated for all q.
Also show that if C satisfies the conditions (i'), (ii), (iii), then E;' is finitely
generated for all p. q.

(i) Hq(C) is finitely generated for all q.
(ii') is finitely generated.
(iii') For all r, if E°' is finitely generated, then EP-P` is finitely generated for
all p.
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4. The Ladder of an Exact Couple

In this section we give a more categorical approach to the process of
deriving an exact couple and hence, by iteration, obtaining the associated
spectral sequence. Although this alternative viewpoint does, we believe,
illuminate the arguments given in Section 1 and explains more precisely
the nature of the E., term, we present it here primarily in order to facilitate
the discussion of spectral sequences and their convergence in the absence
of the type of strong finiteness condition imposed in Section 3.

The basic idea of this section is the following. Suppose given a
diagram in A,

Al C1

A BI +C
in which y/3 factors through g and through o. We may then take the
pull-back of (y. o) which, since g is monic, simply amounts to taking
y-1(C1). If the pull-back is

Bo,
- +C

l 1

leo.I
IQ

B )C

then, since y/i factors through o, there exists a unique morphism
Qo, I :A --+Bo, 1 such that go, 1 P0.1 = P. Thus we have the diagram

Al

A PO' B o.1 YO' C1 (4.2)

leo.1PB
IQ

(PB = pull-back)

A aB 'C
and, plainly, yo, 1 Po, 1 factors through o. For if K is the kernel of o, then

yifactors througho

We say that the sequence (Qo,1, yo, 1) is obtained from the sequence (/3, y)
by the Qe-process, and we write

QQ(Q, Y) = (fi0,1, Yo, 1) . (4.3)

Now we may apply the dual process to (4.2); that is, we take the push-out
of (f 0,1, o) which, since o is epic, amounts to constructing coker f o,1 x
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where, as before, K is the kernel of a. If the push-out is

Al >1

I- F0'1

A -a°,.Bo,1

then, since yo,1 flo, 1 factors through a, there exists a unique morphism
yl : B1-' C1 such that Yi co,1= Yo, 1 Thus we have the diagram

4 PO IQ-
Al e`B1 r`3.C1

A a°, .,Bo,l Y0-`,Cl (4.4)

II

PB
A eB Y C

We say that (f31, y) is obtained from (flo, 1, yo, 1) by the Q. -process, and
we write

so that
Qa(Qo, 1, Yo. 1) = (IJ , Y1) (4.5)

(fl1,Y1)=QQQQ(Q, y). (4.6)

On the other hand we may plainly reverse the order in which we apply
the two processes. We then obtain the diagram

Al s . B1 Y, - C1

II JQ1o PB IQ (PB = pull-back)

and

Al B-P'Y`. C (4.7)

4 PO (PO = push-out)

A

(Q1,0,Yl,0)=Q,(Q,Y), (F'1,71)=QQ(Q1,o,Y1,o)=QQQ,,(Q,Y). (4.8)

Theorem 4.1. QQ Q,,= QQ QQ.

Proof. It is clear, in fact, that B1 is obtained from B by first cutting
down to the subobject y-'(C1) and then factoring out flu-'(0), whereas
B1 is obtained by the opposite process, that is, first factoring out #o-1(0)
and then cutting down to the subobject corresponding to y-1(C1). Thus

B1=B1=y-1(C1)/fQ-1(0). (4.9)

Moreover, /1 and /1 are induced on A1=A/Q-1(0) by f3, and yl, yl are
induced by y. 0
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The reader requiring a more category-theoretical argument will find
it in [10], to which he should refer for a detailed careful approach to
the arguments of this and subsequent sections. (Actually the categorical
argument appears in the proof of Theorem III. 1.4 in the case when
A---B--+C is short exact.)

We may now eliminate the bars over fl, y B1 in (4.7). This enables
us to enunciate the next proposition.

Proposition 4.2. The square

B0.1
aoi"B1

1Q0.1
JQI.o

a1-oB

is bicartesian (i.e., a pull-back and push-out).

Proof. The square may be written

Y_'(C1)1) Y-1(C1)/QQ(0)

B »B/fl6-'(0)

with the obvious morphisms, and this is plainly bicartesian.

Proposition 4.3. Consider the diagram

C2

lei

Cl

El

IQ

A B Y -C

where y fl factors through og, . Then, if (f3', y') = Qe(/3, y), y' fl' factors
through o 1 and

Qeei = Qe' Qe. (4.10)

Proof. Let y fl = ono i 5. Then oy' f' = ool 5 so that y' /3' = o 1 b. Then
(4.10) follows either by observing that the juxtaposition of two pull-back
squares is again a pull-back, or that restricting to y-1(C2) is equivalent
to first restricting to y(C1) and then restricting to y-' (C2) ! 0

Proposition 4.3 has a dual which we enunciate simply as follows: if
yi factors through a 1, o, A ° » A 1-' > A2, then

Qa,a=Qa,Qa (4.11)
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Since we will be principally concerned with the case when yfi = 0, the
factorization hypothesis present in the construction of Qe, Qa will not
usually detain us. In the light of Theorem 4.1 we may write

Qe=Q'Qa=Q"Q' (4.12)

and then (4.10), (4.11) imply

Q QL QQ = Qea,elaa a (4.13)

Getting closer to the situation of our exact couple, we prove

Theorem 4.4. If the bottom row of (4.4) is exact, so are all rows of
(4.4) and (4.7).

Proof. That the middle row of (4.4) is exact is plain, since

y-1(0)C1'-'(C1)
The rest of the statement of the theorem follows by duality. 0

We now apply the processes Qe. Qa to the study of exact couples.
Given a : D-*D we split a as an epimorphism a followed by a mono-
morphism o.

D -44D, a=,o6.

Inductively, we set 1?O = o, co = a, and, having defined

Dn-1 ))Omen'4Dn-1'0-1

we define an = an-1 Lon-1 : Dn-->D" and split an as

an=Lon6" (4.14)

Of course, D" = a"D = D/a-"(0) and an is obtained by restricting X. We
further set

Vn=091 ... pn-1 : Dn-'D, 11n=Un-1 ... 016: D--+Dn.

Then a": D---- D splits as

D'"--) Dn,"n-+D, an=vnlln (4.15)

Remark. The description above is not quite adequate to the (bi)-
graded case. We will explain the requisite modifications at the end of this
section.

Consider now the exact couple (1.1) which we write as

D-D-4E-4 D-D . (4.16)

Carrying out the Qry" -process we obtain

Ym.n. Dna. Dn, (fm.n, ym,n) = Qn (N, y) . (4.17)
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Theorem 4.5. The sequence (4.17) is exact

Proof. We have already shown exactness at Em,n (Theorem 4.4). To
show that Em,n -Y-" Dn -"-+ D. is exact, first take m = 0 and consider

E O,. Y'- D,,-!--,D,,O,n

PB (PB = pull-back)

E- Y )D D
Then Eo, n = y -' (D,) so that yo,,,Eo,,,= yE n D, = a -1(0) n Dn = an 1(0),
since an is the restriction of a.

The general case now follows. For the diagram

D. 6""'Em
, n

YY," ,- D.

qnf PO fl-In II (PO = push-out)

D Ton-- E'o,n YO..
Dn

shows that ym,n Em,n = yo,,, Eo,n ; and the remaining exactness assertion
of the theorem follows by duality. 0

Note that

Em,n = y- I(Dn)IQf1m 1(0) = y-
1(a"D)/Qa-m(0)

. (4.18)

In particular, En,n = E,, and (4.17) in the case m = n is just the n`1 derived
couple. Moreover, we may apply the QQ"- and Q, processes to (4.17).
Then Proposition 4.2 implies

Theorem 4.6. The square

Em,n+1 Em+l,n+1

I Qm, I Qm+I,n

E ,Em,n m+ l,n

is bicartesian. p

The notation of this theorem enables us to describe E,,,, as a double
limit in a very precise way. For we will find that, in the notation of
Section 1,

Em, oc =1l m(E.,.; Qm,n)
n

(see Exercise 11.8.8), and thus E,,,, = lim Emor
M

Eoo = lim 1lim(Em,n; Qm,n, am,n)
m n

(4.19)

(4.20)
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We will explain (4.19) and (4.20) more fully in the next section, where
we will also see that

E. = llim lim(Em,,,; Qm,n, am,n) (4.21)
n m

However, we will here break temporarily with our severely categorical
formulations to give descriptions of Em , E. appropriate to a concrete
category. We then observe that Em, = n Em,n and that Em, c,, Ec have

descriptions analogous to Em n in (4.18) namely,

Em co=,y-1(a°°D)/Ia-m(0), (4.22)

E. = y -1(a°° D)/ft a-' (0), (4.23)

where we define

f D= n afD, a (0)= U a-m(0).
n m

(4.24)

These descriptions follow from the characterization of Em,", E in
Section 1. Also we point out that if we define

where

Eao,n = Jim (Em,n: am.n) = Em,n/U a-k(0), (4.25)
m k

ak-am+k-1,. ... am+1,nam,n,

then E. = lim E,,.n, and4
n

Em, n = Y -1(an D)/Q a - '(0). (4.26)

Of course, (4.22), (4.23), (4.26) may be formulated categorically; we need
to note that

a°° D =1lim (Dn, ion), D/a (0) = lim (Dn, an), (4.27)

where the meaning of the limit (lim or lim) in a general category will be
explained in the next section.

The nth rung of the ladder of an exact couple is, as we have said.
just the n`h derived couple. We have seen that there is actually an
(m, n)t° rung, connected to the original couple by the Q'-process; thus

D. a. D. 8m.. . Em
n Y

, D,, an D,,IIrl. 1- 1- (4.28)

D " - D E ID P D
fl..n = Nn, Yn. n = Yn, En. n = En
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We will see in the next section how to extend this to include in = 00,
or n = oo, or both. Meanwhile we describe, as promised, the modifica-
tions necessary to cover the case of a (bi)graded couple.

Our point of view is that the vertical morphisms of a ladder should
always be degree-preserving, so that the morphisms in any vertical
family all carry the same degree. To achieve this we must complicate
our procedure in obtaining the ladder, precisely in the factorization of a
as ea. For we will want o and a to be degree-preserving and thus we
factorize x as

W

a = owo, (4.29)

where co is an isomorphism carrying the (bi) degree of a. More generally,

an = Vn wn ?1n

where w" : D,,-=+ D,, carries the degree of a".
Thus (4.28) is replaced by

Dm, «m ,Dm, m,n- n n

V.

and, of course,

an wn = wn IXn .

(4.30)

(4.31)

If we wish to obtain an exact couple from the n`h rung, we have to decide
(arbitrarily, from the category-theoretical point of view) which of
D,,, D,, is to be regarded as D. It is standard practice, in view of classical
procedures, to choose D. = D; . Then we set

/Nn=&wn , yn=yn

and thus obtain the rules

deg an = dega, deg /jn = deg /3 - n deg IX, deg yn = degy, (4.32)

degdn=deg/jnyn=degfl+degy-n dega, (4.33)

agreeing with (2.11). Of course, the degree of d" is independent of whether
we regard D,, or D, as D.

Exercises:

4.1. Prove directly, without appeal to duality, (i) (4.11), (ii) Theorem 4.4. (iii) the
exactness of (4.17).

4.2. Give detailed proofs of (4.18), (4.22), (4.23).
43. Describe E.,, in a way analogous to the description of E,,,,. in Section 1.
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4A. Show that E,,,,,, is determined by a : D--+D up to a module extension.
4.5. Use Theorem 4.6 to show that or,, n5 00) is entirely determined by the

spectral sequence.
4.6. Consider (4.1). Describe the QB-process when y factors through e. Dualize.

5. Limits

In this section we formulate the theory of limits and colimits in so far
as it is necessary to establish the crucial Theorem 5.3 below. Our general
discussion is, of course, based on the material of Section 11.8.

Let C be an arbitrary category and I a small index category which
we may assume here to be connected. We have the diagonal, or constant,
functor P : C--+C' and we suppose that P has a right adjoint R : V,CF.
Then, according to Proposition 11.7.6 and Theorem 11.8.3, we may
suppose RP = 1, and the counit S : PR-+ 1 satisfies SP = 1, RS = 1. Then,
for any functor F : I ->C, the limit of F, limF, is defined by

limF = R(F), (5.1)

and S yields the morphisms 6j: R(F)-Fi completing the description of
the limit.

We point out that the universal property of llim F is as follows. Let
morphisms cpi : X --+F(i), i e 1, be given such that, for all a : i--+ j in 1,
the diagram

is commutative. Then there exists a unique morphism cp :
such that S; cp = cpi : X -*F(i), i E I. Indeed cP is given as R(ip) where
O : P X --+F is the morphism of I' corresponding to the set of
morphisms (pi.

Similarly. a left adjoint L to P yields the colimit;

limF=L(F), F:I-- (E, (5.2)

and the unit s:1--).PL yields the morphisms e;:Fi-*L(F) completing
the description of the colimit.

According to Theorem 11.8.6 any right adjoint functor preserves
limits. Thus, in particular, limits commute. We proceed to make this
assertion precise and explicit.

Consider a functor F : I x J--+(E, where 1, J are two (connected)
index categories. We may regard F as a functor I--+4V or as a functor
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J-* (y; in other words, there are canonical identifications

)J (5.3)

and we will henceforth make these identifications. Let P : (E--.tS x J,
P1 : E-t!', P2 : E-tY be the diagonal functors and suppose that

Pi HRi, i=1,2. (5.4)

There is a commutative diagram

with diagonal P.

Theorem 5.1. There is a natural equivalence R2 R J1 = R 1 RZ . Setting
either equal to R, we have P H R, RP = 1 and the counit 6: PR--+ 1 is given
by S=S1-Pi52R1 if R=R2Ri, or 6 =62 .p2g1R2 ifR=R1R2.

Proof. The first assertion is a special case of Theorem 11.8.6. The rest
follows readily from Proposition 11.7.1 and we leave the details to the
reader. 0

This theorem asserts then that limits commute; similarly, of course,
colimits commute. However, it is not true in general that limits commute
with colimits (see Exercise 5.4). Nevertheless, since the pull-back is a
limit and the push-out is a colimit, Theorem 4.1 constitutes an example
where this phenomenon does in fact occur.

We now consider the following situation. We suppose given the
diagram

(l; P' V

P21 \P 1p,
(5.5)

V -_, t5I x J

...-,An+1 a.
A,, a )AO

...,Bn+l 6n 'Bn 90 .Bo

(5.6)

in C and let A _llim (An, an), B. =1lim (Bn, #,,). Then there is a limit
diagram (where a, /3 are given by the counit (see (5.1)))

ACC
a

Theorem 5.2. If each square in (5.6) is a pull-back, then (5.7) is a pull-
back.

This theorem can be regarded as a special case of Theorem 5.1.
However, we prefer to give a direct proof.

9).+1 9)n W 1 100
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Proof. We have to show that (5.7) is a pull-back diagram. Suppose
then given W : X--+ AO and X: X +Bc0, with 4poV=Qx. We then obtain
morphisms Wo = W : X -> Ao and X l = 6l x, where 6,:B,.--+B, is given
by the counit (see (5.1)). Clearly cpo lpo = fio X1 ; hence, since each square
in (5.6) is a pull-back, there exists a unique Wl : X-*A, satisfying the
usual commutativity relations. Proceeding by induction we obtain a
family of morphisms {p: X -- A;} with a; W; = W; _ , for i >_ 1. Hence
there exists a unique morphism W c0 : X -> Ac0 with 6; WcO = W;, where
6; : A(,,-> A; are given by the counit, and a W. = W. Similarly {cp;W; : X -> B;}
give rise to the map x : X->Bc, so that, by the universal property we
then have (p. W. = x. Hence it follows that W.. satisfies the required
conditions. We leave it to the reader to prove the uniqueness of W,"'
satisfying these conditions. 0

Notice that this result applies to an arbitrary category, provided
only that the limits exist.

We use this theorem, and its dual, to prove the basic result on exact
couples in an abelian category and the limit of the associated spectral
sequence.

We recall from Section 4 the notations (see (4.14), (4.15))

on:Dn--+Dn+l, Qn:Dn+l'-*D,,,
(5.8)

Then we set

rin:D-»Dn,

I =1l m (Dn, Qn),

vn:Dn ,-+D.

U = lim (Dn, an) (5.9)

and let

v : I,-+D, ri : D---o U (5.10)

be the canonical morphisms. We apply the Q' -process to the exact
couple (1.1).

Theorem 5.3. In the notation Of Theorem 4.6 we have

E. = lim lim(Em,n; Qr,n 6m,n) = lim lim(Emn; pn,n 6m,n) (5.11)
m n n m

The Qry process yields

(5.12)

D --!-+ 2 D_ ---a+ D'

where a', a" are induced by a and the top row is exact.

Notice that in the concrete setting of Section 4 we have (see 4.27)

I=n anD=acD, U=D/U a-m(0)=D/a-°°(0). (5.13)
n m
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Thus Theorem 5.3 effectively establishes all the facts given in Section 4,
relating to E., since we may, of course pass to the limit starting from any
derived couple of the given exact couple.

Proof. Let us execute Qry as Q, Qv. We thus obtain

U a' - U-E...- y°=°°> 1 a" ->

D a .D PO.oo..E a"
U. oc

Jv

D a -DBE ?-)D-a ) D

(5.14)

However, by Theorem 5.2, Eo, = limEo,n = n Eo,n, and so is, in fact,
n

the subobject of E designated as Eo, in Section 1. Of course, the
identical argument would establish that if we pulled back from the m`''
derived couple we would obtain Em , , as defined in (4.19), and that
coincides with the description given in Section 1. We now apply Q,.
The dual of Theorem 5.2 now establishes that we obtain the top row with

E,, c. = lim Em. ao =1 1
Em. n I

m m n

provided only that we establish that

D "+jn+1 n+l.co

(5.15)

Dn 6.,," En,.

is a push-out, for all n. It is plainly sufficient to show this for n = 0, so
we look at D a)D1 e. E rt, Imo' ,I

I fia
itTOoc_____

II

D- -D PO m . Eo
ao

yo,m 1-° ->I

(5.16)

Now the middle row of (5.14) is exact - the argument is exactly as for
Theorem 4.5. Thus both the rows of (5.16) are exact and from this it
readily follows that (5.15) (with n = 0) is a push-out. (From this it also
follows that an. . is an epimorphism, but this can be proved in many ways.)
Since E. was defined in Section t as lim Em, ., we have established that

M

E,,,,, =E.. Now since we could have executed Qn as Q° Q,1 it follows
immediately that

E., = lim limEm,n
n M
n m

IV

PB I

so that (5.11) is established.
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The exactness of the top row of (5.14) follows exactly as in the proof
of Theorem 4.5 and the determinations (4.22), (4.23), (4.26) of E,,,,., E.,

respectively now follow from the appropriate exact sequences. 0
Remark. The reader should note that Theorem 5.3 as stated is valid

in any abelian category in which the appropriate limits exist. There are
no arguments essentially involving elements and diagram-chasing.

Of course, (4.22), (4.23) and (4.26) require modification in an arbitrary
abelian category; the best description is then the statement of the
appropriate exact sequence; thus

D. D. em. m . E., I a" 1, (5.17)

U a U 1 -1:, 1, (5.18)

U a U Ea,0 `",D,, °`" )D,,. (5.19)

Of course the limit term could also be characterized by means of the
Q" -process, but this would conceal the fact that it depends only on the
spectral sequence and not on the exact couple.

The reader should also notice that the exact couple (1.1) ceases to be
an exact couple "in the limit" but remains an exact sequence (5.18).
We wish to stress that the exact couple disappears because we are
carrying out both limiting and colimiting processes. It is thus a remarkable
fact embedded in (5.11) that these two processes commute in our special
case.

There would have to be some trivial modifications of detail in the
case of a graded category as explained at the end of Section 4. It is un-
necessary to enter into details.

Exercises:

5.1. Complete the details of the proof of Theorem 5.1.
5.2. Show that Theorem 5.2 is a special case of Theorem 5.1.
5.3. Show that the usual definition of the direct limit of a direct system of groups

is a special case of the given definition of colimit.
5.4. Let D(i, j) be a doubly-indexed family of non-zero abelian groups, 0<_ i < oo,

0:!5;J < oo. Let I°D° = J, where J is the ordered set of non-negative integers,
and let F: I x J--+ 21b be given by

F(io,jo)= QQ D(i,J)
a'o. J a Jo

Complete the functor on I x J by the projections F(io, jo)-oF(i1, Jo), if i15 io,
and the injections F(io,Jo)-.F(io,Jl), if Jo Show that

lim lim F 4 lim lim F.-> - (-
J I I

J

5.5. Deduce that (5.15) is a push-out (for n=0) from the exactness of the rows of
(5.16).



6. Rees Systems and Filtered Complexes 281

6. Rees Systems and Filtered Complexes

In Section 2 we studied filtered differential objects, and pointed out that,
under certain conditions, the E. term of the associated spectral sequence
was obtained by applying the functor Gr,- H to the given filtered
differential object. Explicit conditions in the case of a filtered chain
complex were given in Section 3. Our main objective in this section is to
examine the problem in complete generality, so as to be able to obtain
necessary and sufficient conditions for

E,,, Gr - H(C). C e (21. d, f) . (6.1)

These conditions will then imply the relevant results of Section 3. Thus
this section, and the next, can be omitted by the reader content with the
situations covered by the finite convergence criteria of Section 3. Such a
reader may also ignore Section 8, where we discuss, in greater generality
than in Sections 2 and 3, the passage from H(C) to Gr H(C).

We will generalize the framework of our theory in order to simplify
the development. Given an abelian category 21, consider triples (G. A. 0)
consisting of a differential object G of (21, d). a differential subobject A
of G and an automorphism 0: G such that OA CA. We thus obtain
a category 2(21, d). If (see (2.1))

...CCP 1)CC(P)C...CC -00<p<0C
is an object of (21, d, f). we obtain a functor

F : (21, d, f)-(2X7, d) (6.2)
by setting

G(C) = (1 C
Pe Z

A(C) = O VP'
Pea

(with the evident differential of p-degree 0), and defining 0: G(C)--1- G(C)
to be the morphism of degree + 1 which is the identity on each component.
Thus we will later use the functor F of (6.2) to apply our results on triples
(G, A, 0) to filtered differential objects, by considering the triple F(C),
Ce(21,d,f).

Given (G, A, 0) e 2(21, d), set B = OA. There are then exact sequences
of differential objects (using the habitual notation of modules)

S1 : B,' A-4 A/B

SZ : A/BAG/B
(6.3)

S 3 : A G G/A

S4: B G- G/B
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If we write 0 for the isomorphisms G = G, A = B, G/A = G/B, then these
four sequences are connected by morphisms as follows

S1
4 (i. S 3 U JB.l))5

2 (6.4)

where we use the symbol 0 to represent any isomorphism induced by the
isomorphism 0: (G, A)-+(G, B). Passing to homology, using the same
symbols as in (6.3) for the induced homology morphisms and Uwi for the
connecting homomorphism associated with the sequence Si, i = 1. 2, 3, 4,
we obtain the diagram

H(B),, .H(A)

where the morphisms (6.4) imply the commutativity relations

1A 1 = 1B, J.JB -.JA, 1J =JB 1A ,

(041=(01, Jw3=(02, iw4=w3J,

01A ='B01 OJA =JBO, 0w3 = w40 .

We use the isomorphism 0: S3-,S4 to bring triangle ® into coincidence
with triangle ® in (6.5). That is, we write

D = H(A), E = H(A/B), D = H(G/A), T = H(G), (6.7)

a=i0, fl =j, Y=0-1w1;
a=70, T= (02,

7=0i;

(6.8)

=(03, =1A, FP =JA,

and obtain the diagram

D 0 +D

in which Q1 and ® are exact couples, ® is an exact triangle, and

f=Q, (6.10)
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Moreover, there is an automorphism o: F- *F such that

Op=qqa, i O=aip, APB-i(0 =T/3. (6.11)

We call (6.9), where the morphisms satisfy (6.10), a Rees system in W.
If there is given an automorphism 0 satisfying (6.11) we say that the Rees
system is special. We thus get (with the evident definition of the
morphisms) two categories ¶R(21, d), S(2I, d) and an underlying functor
U : S-% In fact, in this book, all the Rees systems we meet will be
special. However, we prefer to retain the notion of a Rees system, since
not all our arguments require the existence of 0. We thus have described
a functor R : Z(U, d)-G(U, d). Notice that every exact couple, EC,
may be regarded as a Rees system by setting

O = EC,

OO =EC,

r=o,
1 =1,

and this Rees system is trivially special. Thus we have a full embedding
E : l (21)- S(21, d). Notice also that, for the triple F(C), where C is
a filtered differential object, the exact couple (2.9) coincides with (1 in
(6.9). Thus, by extracting the exact couple QQ from the Rees system (6.9)
we get a functor E : S(2I, d)- +(RE(21); and we have

EE= 1,

and the following elementary proposition.

Proposition 6.1. The diagram

(21, d, f) H (K(21Z)
IF

KITE

Z(21Z, d) -a(`RZ d)

(6.12)

commutes. 0

Theorem 6.2. In the Rees system (6.9) the spectral sequences of the
couples QQ and Qz coincide.

Proof. The relations (6.10) assert that we have a morphism of &E,

Applying the spectral sequence functor. we get

pz -SSc .

But SS(l;, 1) is then a morphism of spectral sequences which is the
identity at the E0-level. It is, therefore, the identity. 0
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Thus we have a unique spectral sequence associated with any Rees
system,

SSQQ =SSQs. (6.13)

In view of (6.13) it is natural to ask whether we may generalize the
process. described in Section 1, for deriving an exact couple to obtain the
derived system of a Rees system. We now present this generalization.

We base ourselves on the Rees system (6.9). We may plainly pass to
the derived couples of the couples QQ and Qs - since, by (6.13), their spectral
sequences coincide - and then 1) induces a morphism (i;l, 1) of the
derived couples, where 1 : D1-*D1. Now consider the diagram

D1 D1

D F---*D .

Plainly o is a factor of i p ; f o r is the kernel of fi and / 3 = $ = O .

Similarly a is a factor of cp, so that if we apply the 6Q-process to (q,, cp)
we get

D ,-(P16=(P, (6.14)

Moreover, the proof of Theorem 4.5 applies here to show that. since QQ
is exact, namely,

so is the derived triangle

(6.15)

Thus we have proved

Theorem 6.3. The Rees system (6.9) induces a derived Rees system

D

(6.16)

Dl

Proposition 6.4. Given a Rees system (6.9) and its derived system (6.16),
we have y/1=oy1a1a.

Proof. This follows immediately from the definitions of N1, 71 given
in Section 1. A proof valid in any abelian category is given in [10;
Prop. 7.16]. 0
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Proposition 6.5. If (6.9) is special then (6.16) is special with the same
0:F=F.

Proof. Suppose given 0 satisfying (6.11). Then

0(,1a=09=(pa=T'Ua=P1a16,

so that 0 (p, = (p 1 a 1. Similarly lp 1 0 =5,,T. Finally

f'] a,

so that op10-1p1=Ytl1 0

Our principal interest lies, of course, in the Rees system associated
with F(C), where C is a filtered chain complex, and we use this application
to motivate our next discussion. We are going to want to know when
E,,,, - Gr - H(C), so we look for Gr, ' H(C) within the Rees system
associated with F(C). We may immediately prove

Proposition 6.6. For the triple F(C), we have

Gr H(C) = iA H(A)/iB H(B) = ker jA/ker jB .

Proof. Plainly, if G = G(C), A = A(C). then

iAH(A)= QimH(CIP)),
P

iBH(B) = QimH(C(P-1)).

P

Thus iA H(A)/iB H(B) = (@im H(C'P))/im H(C"P -1)) = G r . H(C). The
P

second equality follows from exactness. 0

It has been established that the couples QQ and Z® lead to identical
spectral sequences such that E = E0 = H(A/B), so that we should look for
conditions under which

Er - iAH(A)/iBH(B). (6.17)

Now, in the notation of the Rees system (6.9), obtained from (6.5),
we have the relations

iA H(A)/i B H(B) _ (p D/0 cp D , (6.18)

ker jA/kerjB = ker

We set, for any Rees system (6.9),

F+_TDIVaD, F-=kerairp/kerip. (6.19)

Then, in the Rees system associated with F(C), we have

F+ = Gr o H(C), (6.20)
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and, moreover,

Proposition 6.7. In a special Rees system (6.9) 0 induces an isomorphism

Remark. There is an isomorphism F- = F+ in any Rees system, even
if it is not special (see Theorem 7.25 of [10]).

Thus we are concerned, in studying the filtered chain complex C,
to decide whether

E,,,, = F+ . (6.21)

We draw particular attention to the fact that the convergence criterion
(6.21) is stated entirely within the Rees system, and we will give necessary
and sufficient conditions for (6.21) to hold in the next section. The exact
couple QQ (or Qz) of (6.9) plainly cannot contain the information to decide
whether E. = Gr L H(C), since C does not appear in p1 , only the filtering
subcomplexes CIP). Thus it is preferable to replace the category (K by the
category (B in setting up the chain of functors leading from filtered chain
complexes to spectral sequences. Specifically (see Proposition 6.1) we
have the commutative diagram

(91z,d.f) R SS E,(g(wZxz)

11' _ If II

(2CZ d,.f) H, (M(2Czxz) ss((Wzxz)
;

(6.22)

and the top row of (6.19) has the advantage over the bottom row that,
in the Rees system RF(C), we retain the information necessary for
deciding whether Ex = Gr H(C). whereas in H(C) we can only decide
internal questions relating to the convergence of the spectral sequence
(e.g.. whether it converges finitely). We wish to emphasize this point
because many spectral sequences (for example. that which relates
ordinary homology to a general homology theory in algebraic topology)
do not arise from a filtered chain complex. but do lead naturally to a
(special) Rees system.

We close this section by rendering explicit all the objects appearing
in the Rees system (6.9) obtained from a filtered chain complex C and
listing the bidegrees of the morphisms. Of course, the exact couple p1
in (6.9) is just (2.9) and the exact couple Qz in (6.9) is just (3.4).

Notice, first, that the term r = H(C) is only graded, although we may,
conventionally, bigrade it, as explained below. Then, referring to (6.9),

D = {DP- '% DP' Hq(C(P))

D = {DP-9}, DP.9 = HQ(C/C(p-1)) ;

E = EM = H (C(P)/C(p- 1))
(6.23)

9

F = {FP.9}, FP,9 = Hq(C)
;
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dega=(1,0), degf=(0,0), degy=(-1, -1);
dega=(1.0). dee13=(-1. - 1). deev=(0.0):

(b.24)
degg=(- 1, - 1), deg(p=(U,0), deg9 =(1,U) ;
0: F--+F is the identity morphism of degree (1, 0).

Here the p-degrees of (p, iP are, of course, purely conventional; what is
important is that the p-degree of ip (p is 1.

Passing to the nth derived Rees system of the Rees system (6.9)
obtained from a filtered chain complex C, we obtain the bidegrees

-1);

(6.25)
degl;,,=(-1, - 1),

We remark that the asymmetry between the degrees in the derived
couples of Q and Qz arises from our conventional insistence on regarding
D and D as subobjects of D and D, respectively. We would preserve
symmetry by regarding D. as a subobject and D as a quotient object.

We revert finally to the convention (3.3),

DP ,q = Hq(C/C(P- 1))

This convention was, as explained) above, essential if we were to have
symmetry between the degrees in the couples lD and ) of the Rees
system RF(C) - and so a chance of symmetry on the degrees of the
derived couples. It is also consistent with the view that Gr, H(C) is
really a "self-dual" construction; one either considers the family of
morphisms H(C(P))->H(C), passes to the induced epimorphisms of
cokernels coker (pP-1 ), coker (pP, and takes kernels - or one considers
the family of morphisms H(C)_ `> H(C/C(P-1)), passes to the induced
monomorphisms of kernels ker ip P -' i P, and takes cokernels.

Exercises:

6.1. Identify the morphisms of (6.9), including 0, for the Rees system of the triple
F(C), and establish the commutativity relations (6.10), (6.11).

6.2. Interpret the relations 5 0 1 rp = y /3, cp 10- (p = Y i /31 for the Rees system of
the triple F(C).

6.3. Establish the remark following Proposition 6.7.
6.4. Do the couples p and QQ of (6.9) together contain all information necessary

to determine if E - Gr - H(C)?
6.5. Obtain a special Rees system for a filtered cochain complex, paying special

attention to the degrees of the morphisms involved.
6.6. Formulate the ladder of a Rees system !
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7. The Limit of a Rees System

In this section we introduce the limit of a Rees system; our particular
interest is in obtaining necessary and sufficient conditions for the iso-
morphism (6.21) E = l+ and to show how these conditions include
those of Section 3.

We use the limiting processes introduced in Section 5, and obtain
from (6.9), first, the diagram

I U

F E 1u

wr I U

The morphisms jL, y, fl . 7. were defined in Section 5. The morphisms
fir, u are obtained by applying limit and colimit functors to the mor-
phism : D--D. The morphism Tu is obtained by means of the mor-
phisms (p,,: of the successive derived Rees systems using the
universal property of the colimit; and similarly for (p p. We have the exact
sequences

U

U P« , Y« =,iYc, (7.3)

follow from the corresponding commutativities of the successive derived
Rees systems. We claim

Theorem 7.1. The sequences

T wLI L!.I
are exact.

Proof. Since u, (pu are induced by , cp by passing to quotient objects,
the exactness of U-* UST follows immediately from that of B--4+D--+F.
Similarly for the second sequence. 0

Recall (6.19) that I'+ was defined as (pD/cpaD and I'- as keraip/kercp.
We immediately infer

Proposition 7.2.

F- = kera"ip,/kerilp, .
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Proof. Obviously cpu U = cpD, cpua' U = cpaD. As to the second ex-
pression, we may appeal to duality (the two expressions actually are dual,
although their expressions disguise the fact!), or invoke the diagram

j__ I
II I T,

I'-I, F) -1,5 0

We also observe that, in a special Rees system with 0: F-=), F, the
third of the identities (6.11) "goes to the limit", yielding

cOTB- tc v =Ycf.. (7.4)

We now put the facts together to yield the main theorem of this section.

Theorem 7.3. The Rees system (6.9) gives rise to the limit diagram

cokera' cokera' 4+»I'+

cokera' E> ' kera" (7.5)

kera" = ker a"
with exact rows and columns.

Proof. The exact sequence (5.18) yields the exact sequences involving
y*; The diagram

U--4u+U-`°cpv U

la ,i

U-U 'Um cpvU
immediately yields, by passing to cokernels. the exact sequence

cokera'-->cokeraY--'L,*f'+ .

However, l;' is monomorphic, in view of the diagram

UIU U

E = E,,,,
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with exact columns. By duality we obtain the exact sequence

F-'- kera" kera" .

Finally, we set 5+ = ip - 0-1 (Proposition 6.7) and establish the com-
mutativity of the upper right hand square by appeal to (7.4). 0

It is now obvious from Theorem 7.3 that T+ - E via a natural iso-
morphism if and only if cokera' = 0 and kera" = 0. To make this state-
ment quite precise, we need here the notion of a homomorphic relation
between two objects X and Y of an abelian category 21; this is simply
a subobject of X(D Y. We also speak of a homomorphic relation from
X to Y. Now it follows from Theorem 7.3 that we have an exact sequence

cokera' 2"') 4E.®r+ (7.6)

so we obtain a homomorphic relation e from E. to T+ which is
im{/,, (p+). Evidently e is natural.

Now a homomorphic relation can only be an isomorphism if it is
a morphism (for the general theory of homomorphic relations see [22] ).
Thus we are led to the following important corollary, rendering precise
the conclusion refered to above.

Corollary 7.4. The homomorphic relation e from E., to F+ is an iso-
morphism if and only if

coker5'=0, kera"=0. 0 (7.7)

Thus the conditions (7.7) are the necessary and sufficient conditions
for the validity of (6.21); and hence of (6.17), Ew = i,,H(A)IiBH(B), for
a Rees system arising from a triple (G, A, 0). We may apply this to the
case of a differential filtered object

...COP-1)CC(P)C...CC, -oC,<p<00,

by means of the functor F (6.2). Then F+ = iAH(A)/iBH(B) = Gr o H(C).
With a view to interpreting conditions (7.7) in this case, we define the
subobject IP of H(C(P)) as

IP= neII(C(P-k)),
k

where a : H(Op-1))- H(C(P)) is induced by the inclusion; and we define
the quotient object U, of H(C/C(P)) as

UP = H(C/C(P))l U a -k (0) ,
k

where x : H(C1OP))--*H(C1C(P+1)) is induced by the inclusion of CAP) in
OP"). We conclude

Theorem 7.5. In the spectral sequence arising from a filtered differen-
tial object C, the homomorphic relation a from E,,, to Gr H(C) is an
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isomorphism if and only if

IPna-1(0)=0, a'UP=UP+1, for all p, (7.8)

where a' is induced by a. 0
Let us finally observe how condition (3.9), that C be homologically

finite, automatically - indeed, trivially - guarantees (7.8). For, in this
case, we are dealing with a filtered graded differential object C and (3.9)
(i) implies that Ip,y = 0 for all p, q so that IP = 0 for all p, while (3.9) (ii)
implies that Up.q = 0 for all p, q so that UP = 0 for all p.

More generally, we may paraphrase (7.8), in the case of a filtered
(graded) differential group C almost precisely as follows. We say that an
element of H9(C(P)) has filtration - oo if it belongs to Ip.q that is, if it is
in the image of H9(C(')) for all r :!!g p; and we say that an element of
Hq(C(P)) is stable if it is non-zero in every Hq(C(')), r >_ p. We apply similar
terminology to H (C/C(P)). Then (7.8) may be translated as saying:
"elements of HQ(0P)) of filtration - oc are stable; stable elements of
Hq(C/C(P)) have filtration - xo".

Exercises:

7.1. Specify the morphisms q , (pr of (7.1).
7.2. Prove (7.4).
7.3. Apply Theorem 7.5 to filtered cochain complexes.
7.4. Show that, in a category of modules, a': U--+U is monomorphic. Give an

example to show that a": I-.I need not be epimorphic.
7.5. Identify the sequence cokera'>--.E.-»kera" in the case of the spectral

sequences associated with the couples of Exercises 1.5, 1.6. (These are called
the Bockstein spectral sequences.) Consider both the case where C is of finite
type and the general case.

8. Completions of Filtrations

Suppose given two filtered differential objects C and C and a morphism
(p : C---+C. Thus we have

... C C(P-1) S C(P) C ... C C
p

t lP-1) t (P(P) 1-P (8.1)

C C'(P-1) C C'(P) C ... C C'

Then q induces a morphism of the associated spectral sequences. say,

(P,: EE'.
Now it is easy to prove that the terms Em of Section 4 (see 4.17) depend
naturally on the spectral sequence E (see Corollary 3.16 of [10]), and,
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in particular, the term E.,, m, n > k, depends naturally on the part of the
spectral sequence E beginning with Ek. We thus have immediately, in
view of (5.11),

Proposition 8.1. If cp, : Ek- *E', then cp, : k< n:!5; cc. 0

Theorem 7.5 now gives us conditions under which we may infer from
cp* : E.=>Ea that

co :Gr,H(C)=*Gr:H(C'). (8.2)

Of course we really want to draw the inference that

cp,: H(0-z+H(C') (8.3)

and this section is mainly motivated by this problem: to give a reasonable
set of conditions under which (8.2) implies (8.3). Certainly, the condition
of homological finiteness for a filtered graded differential object immedi-
ately yields the proof of (8.3), given (8.2); for if C and C' satisfy this con-
dition then the filtrations of Hq(C), H9(C') are finite and a finite induction
yields the desired conclusion. Thus this section may be omitted by those
content to confine themselves to applications involving homologically
finite filtered chain complexes.

Our aim, then, is to give conditions more general than those of
homological finiteness which will still yield the conclusion (8.3) from
(8.2). We introduce the notation

Xp-1 , XP , X -2-i. XP -,E-» Xp+l (8.4)

where
... C Xp-1CXpC ... CX. -co<p<00 (8.5)

is a filtered object in the abelian category 21, l;'. v' are the inclusions.
rip is the cokernel of v", so that X p = X/X', and l; prig = q p1. Thus X
plays the role of H(C) in the discussion. We may refer to

X?L*X, Xptl

as the cofiltration associated with the filtration (8.5).

Definition. We say the filtration (8.5) is left complete if

(X; vp) = lim(Xp, cp) ;

we say the filtration is right complete if
xx(X, rip)= lim (Xp' Sp),

we say the filtration (8.5) is complete if it is left complete and right
complete.
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Remarks. (i) A finite filtration is obviously complete. (ii) If 'U is a
category of modules then (8.5) is left complete if and only if X = U XP.

P
However the description of right completeness is even in this case more
complicated. For we require two properties: (i) n XP = 0 (dual to the

P
property singled out as characterizing left completeness) and (ii) given
a compatible set of elements xP e XP (i.e., gP(xp) = xP+l), we require the
existence of x e X with qp(x) = xP. We will see below just why this extra
condition arises and we will give an example to show that it is essential.

Our aim is to show that, if the filtration of H(C) is complete, then
(8.3) follows from (8.2). To this end we consider the following situation.
We suppose that, for all p, vP : XPN X factorizes as XP Y-'L* X, where
p is independent of p. Set YP = Y/XP and let r1'P : Y-» YP be the projection.
Then P : X ,-»XP+1 induces P : YP-* YP+1, and we have the commuta-
tive diagram

XP-1 p' Jl'p YAP ..YP 4L,..YP+1

1µP I µP a I

XP -1 ; p y XP , "P . X nom.. XP 4P X"
I

Proposition 8.2. If (X; q ,) = l+ im (XP, P), then (Y; rj P)= llim (YP, P).

Proof. The right hand square of (8.6) is a pull-back since ker P = ker P.
It thus follows from Theorem 5.2 that

Y_ a.YP

1µ-0 PP

X gP..XP
is a pull-back, where (Y_ U.: ni'P) = llim(YP, P). But plainly

Y YP

X"P »XP
is also a pull-back, so that (Y; ri'P) = (Y_.; rip). 0

Now let us write Xq for XP/Xq, q < p. There is then a commutative
square

X4P
X4P+1

I $I

l aq+i

XP ¢-P'- X P+
q+1 q+1
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which is easily seen to be bicartesian. From Proposition 8.2 (and its
dual) we infer

Proposition 8.3. (i) If the filtration (8.5) is right complete, then

lim(X9, aqp) = XP
q

(ii) If the filtration (8.5) is left complete, then

lim (XQ, pQ) = Xq.
P

0

We may now prove our main theorem.

Theorem 8.4. Let W : be a morphism of filtered objects in the
abelian category 2t. Thus

XP :-.- X "R » XP

I VP
i:'

I WP

X'P

Suppose that W induces W.: Gr(X)-- Gr(X'). If the filtrations of X and
X' are left complete then WP is an isomorphism. If the filtrations of X and
X' are right complete then WP is an isomorphism. If the filtrations of X
and X' are complete then W is an isomorphism.

Proof. We are given that W induces an isomorphism

W* XP/XP-1-Z+

X'P/X'P-'

It then follows by induction on p - q that W induces an isomorphism
W': X'--.X". For we have the commutative diagram

Xq-1 ; X4
-XP-1

I W. I W.
I W.Xp-1;XP--»XP

9 9 P-1'
Thus W induces an isomorphism of the square (8.7) with the correspond-
ing square for X'.

Now if the filtrations of X and X' are left complete it follows from
Proposition 8.3 (ii) that WQ: X9->X9 is an isomorphism for all q. Simi-
larly, if the filtrations of X and X' are right complete. WP : XP->X'P is
an isomorphism for all p. The final assertion of the theorem then follows
immediately from (8.8). 0

We now take up the following question: suppose given a filtered
object X in the abelian category W. Is it possible to associate with X,
in a functorial manner, a filtered object Y such that (i) the filtration of Y
is complete, and (ii) Gr Y = GrX? We will show how this may be done.
The process will be described as completing the filtration of X.
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We return to (8.4) and construct lim(XP, 1, P). Thus we obtain

XP-1'4y XP VP X np..Xp -P-,..X,+1

T Ap+1

XP-I IXPrv )X -- - 9- - Xp --4z -Xp+l
where (X'. v`°"P) = lim(Xp iP). Note that A may be neither monomorphic
nor epimorphic; but, if 21 is a category of modules, A is monomorphic.
We now construct lim (Xp, l p ). With an obvious notation we obtain

XP-1, f--*X" -IX lip ..XP ..XP-1
IA 1A1

1+1
XP-1 1--'I +XP ?+ Xao np Xp .. Xp+ (8.10)

jKPI

I ." .1K it II
XP-1 1p Xp X°° nOOao X'" X°°

We call the bottom row of (8.10) the completion of the top row.
Theorem 8.5. The completion is a complete filtration of Y=(Xoo)_.o

and GrY = GrX.
Proof. By construction the filtration of Y is right complete. That it

is left complete follows from the dual of Proposition 8.2.
Now, given (8.4), we obtain GrX either by

(GrX)p = coker l; P
or by

(GrX)p =

Since P is unchanged in passing from the first row of (8.10) to the second,
and gyp' is unchanged in passing from the second row to the third, it
follows that GrY = GrX. 0

Plainly the completion process as described is functorial. Moreover,
it is self-dual in the following sense. Starting from (8.4) we may first
construct llim(Xp, cP) and then construct the appropriate lim. We claim
that if we do this we obtain (compare (8.10))

XP-1 '° IXp _
VP , x "P .. XP 4P NXp+I

I -P I -
II IIeP P

X 1>Oc -.' X X, 4P )) Xp+l (8.11)-'XP 00

Txp

j
AP+I

I

cc

xp

XP --
Xp

- - - X_ oo X

I.- 1

with the same bottom row as in (8.10).
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In particular,

(X W)- « = (X_ X ,

lim lim(Xy: `OP, r) = lim lim(X9:'Oy, 09) .-* 4
9 P P

q
9

(8.12)

The proof of these facts is similar to that of Proposition 8.2. The reader
is advised to obtain proofs for himself as an exercise (see also [11]). It is
also easy to prove, along the same lines, that the diagram

X°° X

X _°

(8.13)

is bicartesian.
Of course, the filtration (8.5) is left-complete if 2 is an isomorphism

(so then is 1) and right-complete if x is an isomorphism (so then is RK).
Our remark (ii) following the definition of completeness drew attention
to the fact, that, in a category of modules, 2 is monomorphic, so it is only
necessary to check that A is epimorphic. On the other hand, x may fail to
be epimorphic even for modules. As an example, let X = Z, a count-

n>0
able direct sum of infinite cyclic groups, and let XP be given by

XP=X, P>0
= EE z. p<0.

n>-P

This yields a filtration of X

C XP-1 C XP C ... C X, (8.14)

which is certainly left complete ! Passing to the associated cofiltration
we obtain

X ""XP-4z"XP" ,

where
XP=0, p>0

Z, p<0
0<n<<-P-1

and rj,, P are the obvious projections. However, in this case,

X_cO= F1z
n>0

and x : X--+X- a, is the canonical injection Q Z S fl Z. Thus in this
n20 n>_0

case n XP = 0 (corresponding to the fact that x is monomorphic), but the

filtration (8.14) fails to be right complete.
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Exercises:

8.1. Prove (8.12).
8.2. Prove that (8.13) is bicartesian.
8.3. Prove that, in (8.13), is a split short exact se-

quence. Prove the similar result for cokernels.
8.4. Give examples where, in (8.13), (i) A is not epimorphic, (ii) K is not monomorphic.
8.5. Check the facts stated for the filtration (8.14) and complete the filtration.
8.6. Give two examples from this chapter in which a limit commutes with a colimit.

9. The Grothendieck Spectral Sequence

Let (B, a', a") be a double complex as defined in Chapter V, Section 1.
Thus we have an anticommutative diagram

Br.s)Br-l.s

1

I (9.1)

a a"a'+ a' a"=o.

for each r, s. It will be convenient in this section to replace (9.1) by
a commutative diagram; this we achieve by setting

d, = a'
(9.2)

d"=(-1)'a" on Br,s.

Of course, we retain the same total differential a = a' + a" in Tot B. We
will regard the diagram

Br,sd'Br-1,s

Br,s-1 Br-l,s-1

as basic and refer to d', d" as the horizontal, vertical differentials in B,
respectively. We may also refer to a', a" as horizontal, vertical differentials.

The complex Tot B may now be filtered in the following two natural
ways:

1FP(Tot B)n = Q Br,s , (9.4)
r+s=n
r<P

2FP(Tot B)n = O Br,s . (9.5)
r+s=n
s<P

We shall refer to the filtration (9.4) as the first filtration of Tot B, and to
the filtration (9.5) as the second filtration of Tot B. From these filtrations
we obtain two spectral sequences.
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Using the same notation as in (V. 1.2) and (V. 1.3) we have

Proposition 9.1. For the (first) spectral sequence associated with the
filtration (9.4) we have

EP,"=HP(Hq_P(9.6)
For the (second) spectral sequence associated with the filtration (9.5)

we have

2E0'1=Hq_P(B*,P,e'),
2Ei'q=HP(Hq-P(B.s'),e"). (9.7)

Proof. We prove (9.7) only, and so permit ourselves to write FP for2FP.

Clearly, FP(Tot B),,/FP-1 (Tot B)q = Bq_ p, p. Moreover the differential
8 = 0'+ 8" on Tot B induces on this quotient the horizontal differential CO'.
This establishes the first assertion of (9.7).

Now do in the spectral sequence is the composite

Hq(FP/FP-1) r,Hq-i(Fp-1) 'Hq-,(FP-1/FP-2).

We choose a representative of x e Hq(FP/FP-') to be an element b e Bq_P,P
such that i?'b = 0. Then yx is the homology class of 0"b, and flyx is
therefore just 0" x, where 8'* is induced on H(B.8') by 0". 0

Remark. We may, of course, write d', d" for 8', a" in the statement of
the proposition.

Definition. We say that the double complex B is positive if there
exists no such that

B,, = 0 if r < no or s < no. (9.8)

Proposition 9.2. If B is positive, then both the first and the second
spectral sequences (9.6), (9.7) converge finitely to the graded object associ-
ated with B)}, suitably (finitely) filtered.

Proof. By Theorem 3.5 we only have to verify that the filtrations
(9.4), (9.5) are finite. But plainly, given (9.8),

1FP(Tot B) = 0 if p< no-l,
1FP(Tot B) = (Tot B) if p> n - no ;

and similarly for the second filtration. 0

We are now ready to state and prove the existence and convergence
theorem for the Grothendieck spectral sequence.

Suppose given three abelian categories 21,'.B, E and additive functors
F : 2t->93, G: '.B-* (1=. Assume that 2i and O have enough injectives; this
means, of course, that objects in 2I and 23 have injective resolutions. We



9. The Grothendieck Spectral Sequence 299

thus can construct the right derived functors of F, G, and G o F. Theorem
9.3 will relate these derived functors by a spectral sequence, assuming an
additional hypothesis. We shall say that an object B in fB is (right)
G-acyclic, if

R4G(B) =
10,
G(B)' q 0 (9.9)q1.

Theorem 9.3 (Grothendieck spectral sequence). Given F : 91, 0,
assume that if I is an-injective object of 91, then F(I) is G-acyclic.

Then there is a spectral sequence corresponding to each object

A of 21, such that

(9.10)

which converges finitely to the graded object associated with {R4(GF) (A)},
suitably filtered.

Before starting the proof, we emphasize that there are other forms
of the Grothendieck spectral sequence, involving left derived functors
instead of right derived functors, or contravariant functors instead of
covariant functors. These variations the reader will easily supply for
himself, and will accept as proved once we have proved Theorem 9.3.

Proof. Take an injective resolution of A in 21.

I : 10 -I1 I2 .... .

Apply F to obtain the cochain complex in 23,

FIo-+FI1 --+FI2-.... .

Suppose we have constructed a commutative diagram in F8

FIo-->FI1 -*FI2 --> .--

III
Jo,0 J1,0'J2,o-'

I

Jo1-3J1
I

1 'J
I
2,1-*

(9.11)

(9.12)

such that each row is a cochain complex and the rt column is an
(augmented) injective resolution of FI r = 0, 1, 2, ...
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Apply G to obtain the double (cochain) complex B,

GJo,od -,GJ,,0-d"GJZ,o-' ...

GJo.I -L.+GJL, -L GJ2,i- ' ...

I C I
d,td..

GJ0,2-a GJI,2-" GJ2,2- ...

(9.13)

First we study the spectral sequence based on the first filtration (9.4) of
TotB. Thus EP-4 is computed by applying the vertical differential so
that, since F(I) is G-acyclic,

IER4=GFIq, p=q,
=0, p+q

Computing I El, we find

IEi9=R4(GF)(A), p=q, (9.14)
=0, p+q.

Now, by the dual of (2.11), deg d, = (r + 1, 1) for the rt differential d, of
the spectral sequence. Thus (9.14) implies that

d,=0, r>_1,
so that, for all r > 1,

IEc,4 = R4(GF) (A) ,r p = q ,
9.15)

and consequently
=0, p+q,

IEPao4 = R4(GF) (A), p = q ,
9.16)

=0, p+q
Then Proposition 9.2 ensures that H4(Tot B) is (finitely) filtered by sub-
objects whose successive quotients are I EP, 4. Since, for fixed q, only one
IEP-4 can be non-zero, we conclude

H4(Tot B) = R4(GF) (A). (9.17)

This exhausts the utility of the first spectral sequence. We now turn to
the second spectral sequence; we will permit ourselves to write E instead
of 2E in discussing this spectral sequence. We will find that it is necessary
to construct (9.12) in a very specific way in order to obtain a valuable
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result from the second spectral sequence. In fact, we construct an in-
jective resolution of FI in the category of cochain complexes in 93,
relative to monomorphisms which induce cohomology monomorphisms
(see IX.1).

We write F, for FI, and display the cocycles and coboundaries of
the cochain-complex
as

Z2--+F2-» . (9.18)
We prove

Lemma 9.4. We may resolve (9.18) as

Zo -.FO -»B, -Z, '---->F, -+>B2 -->

K0.0-*JO.o
I

1 1 1 1 1 1

1 0,1 --+J.,t--"Llt,1,K1,1 -'Jlt,i__ *12.1

1 1 1 1 1 1

(9.19)

where each column is an (augmented) injective resolution of the object
appearing at its head, and

K,,s4 Jr Som. L,+t,S
is exact.

Proof. We already know (Lemma 111. 5.4; see also the proof of Theo-
rem IV.6.1) how to resolve Zoo-->Fo--»B,. Given the resolution of B1, we
choose an arbitrary resolution of Z,/B, and resolve B,>--+Z,-»Z,/B,.
We thus obtain a resolution of Z,. We then use an arbitrary resolution
of B2 to yield a resolution of Z,-.F,--»B2, and so we step steadily to
the right along (9.18). 0

When diagram (9.12) is constructed according to the prescription of
Lemma 9.4, we will speak of (9.12) as a resolution of FI.

We note that by construction of (9.19) the sequence

Z,/B.'--->Kr,o/Lr,o-'Kr,t/Lr,,-Kr,2/Lr,2-+..., r=0, 1,2,... (9.20)

is an injective resolution of Zr/Br.
Now since all the objects in the resolution of (9.18) are injective, all

monomorphisms split. Thus when we apply the additive functor G to
the resolution we maintain all exactness relations.

In particular we note that

G(Kr,s/Lr,s) = GK,,.,/GL,,.,, (9.21)
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since L, s +K, S splits. Finally we recall that

Z,/B, = R' F(A) . (9.22)

We complete the proof of Theorem 9.3 by supposing (9.12) con-
structed, as in Lemma 9.4, to be a resolution of F!. We now study the
spectral sequence E = 2E, based on the filtration (9.5). Thus EP, q is com-
puted by applying the horizontal differential to (9.13), so that, by (9.21),

EP, q = Hq -P(GJ*, P, d')

=GKq-P,PIGLq_P,P

= G(Kq-P,W L9-P P)

E,. is now computed by applying the vertical differential. In view of
(9.20) and (9.22), we have

El,q = RPG(Zq-P/Bq-P)

=(RPG) (Rq-PF) (A) .

Since (9.13) is positive, Proposition 9.2 guarantees good convergence
and the theorem follows from (9.17) and Proposition 9.2. 0

Remark. We will show below that it is essential to construct the
diagram (9.12) as in Lemma 9.4 to obtain the desired result. (See Remark
(i) following the proof of Theorem 9.5.)

We will apply Theorem 9.3 to obtain a spectral sequence, due to
Lyndon and Hochschild-Serre, in the cohomology of groups. We will
defer other applications of Theorem 9.3 to the exercises.

Thus we now consider a short exact sequence of groups

N,i.K- Q (9.23)

in other words, N is a normal subgroup of K with quotient group Q.
Let 2I be the category of (left) K-modules; let 23 be the category of (left)
Q-modules, and let be the category of abelian groups. Further, consider
the functors

2I_F23_+(F (9.24)

where F(A) = HomN(Z, A) = AN, the subgroup of A consisting of elements
fixed under N; and G(B) = HomQ(Z, B) = BQ. It is then plain that A'
acquires the structure of a Q-module by means of the action

(px) a=xa, xeK, aeA,

in such a way that F is indeed an additive functor from 21 to 23; G is
evidently an additive functor from 93 to (E, and

KGF(A) = HomK(Z, A) = A . (9.25)
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We are now ready to prove

Theorem 9.5 (Lyndon-Hochschild-Serre). Given the short exact se-
quence of groups

N-4K- Q

and a K-module A, there is a natural action of Q on the cohomology groups
Hm(N, A). Moreover, there is a spectral sequence such that

El.q = H°(Q, Hq-°(N, A))= HI (K, A),

which converges finitely to the graded group associated with {H"(K, A)),
suitably filtered.

Proof. We must first verify the hypotheses of Theorem 9.3 for the
functors F and G of (9.24). We have already remarked that F and G are
additive, so it remains to show that, if I is an injective K-module, then
IN is G-acyclic; in fact, we show that IN is an injective Q-module. For the
functor F is right adjoint to F : B-+ 9C, where F(B) is the abelian group B
with the K-module structure given by xb = (px) . b. Since F plainly
preserves monomorphisms, F preserves injectives (Theorem IV. 12.1).

Thus we may apply Theorem 9.3, and it is merely a question of
identifying the (right) derived functors involved. Since ZK is a free
ZN-module, it follows that a K-injective resolution of A is also an
N-injective resolution. Moreover, given any such K-injective resolution
of A,

I0 -+1--+ IZ-+ ...
the complex

HomN(71, A)-+HomN(Z, Io)->HomN(Z. J )-.

acquires the structure of a Q-complex. Thus the cohomology groups
Hm(N, A) also acquire the structure of Q-modules and

RmF(A) = Hm(N, A) (9.26)

as Q-modules. Since, plainly,

R'" G(B) = Hm(Q, B),

Rm(GF) (A) = Hm(K, A),

the theorem follows by quoting Theorem 9.3. 0

Remarks. (i) As we have indicated, Theorem 9.5 makes it plain that
the diagram (9.12) must be constructed as in Lemma 9.4 in order to
achieve the required result. For, since, in this case, the functor F : W-93
maps injectives to injectives, the identity map of the cochain complex
FI0-*FII -+FI2-+ could be regarded as an example of (9.12). But,
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for this diagram, we plainly have

EP,e =
0, otherwise.

so that we achieve nothing. Thus, although it may not be absolutely
essential to choose (9.12) to be a resolution of FI, in the sense of Lemma
9.4, we must certainly avoid arbitrary choice. Moreover, we see that we
do not gain in simplicity of demonstration of Theorem 9.3 by replacing
the hypothesis that F(I) is G-acyclic by the more restrictive hypothesis
that F(I) is injective.

(ii) The form of the Grothendieck spectral sequence, involving left
derived functors instead of right derived functors, to which we have
already drawn the reader's attention, readily implies a spectral sequence
analogous to that of Theorem 9.5, but stated in terms of homology
instead of cohomology. Given (9.23), we choose our categories 21,'B, E
as in the proof of Theorem 9.5 but now F : 21-x'8 is given by

F(A)=7L®NA,
and G : B-+1 is given by

so that

(R4(GF) (A), p = 0,

G(B)=7L®QB,

GF(A) =71 ®KA .

One reasons that F preserves projectives, since F is left adjoint to
F : 23-->2C, which is the same F as in the proof of Theorem 9.5, and which
preserves epimorphisms. The rest of the argument may certainly be left
to the reader. We give below some exercises which exploit the homology
form of the Lyndon-Hochschild-Serre spectral sequence.

The question also arises of the functoriality of the Grothendieck
spectral sequence with respect to the object A. The conclusion - as in
so many applications of spectral sequence theory - is that the spectral
sequence of Theorem 9.3 is functorial from n = 1 onwards;
indeed, the determination of E0 in the proof of the theorem shows that
this is as much as could be hoped for. The proof of this fact, involving
the notion of homotopy of morphisms of double complexes, is deferred
to the exercises (see Exercise 9.7).

Exercises:

9.1. Confirm that, in Lemma 9.4, we have constructed an injective resolution of
F! relative to monomorphisms which induce cohomology monomorphisms.

9.2. In the spectral sequence of Proposition 9.1 show that there is an exact sequence

H2(Tot B)- El, 2 a`. El 1-H1(Tot B)- E} 1-.0 .
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Identify the terms in the special case of the Grothendieck spectral sequence
and in the Lyndon-Hochschild-Serre spectral sequence. Compare with the
sequences (VI. 8.2).

9.3. Apply the Grothendieck spectral sequence to the following situation. Let
n-g-)*4 be a short exact sequence of Lie algebras over K, and let A be
a g-module. Consider the functors F: F(A) = A), and
G : 9724- 9tb, G(B) = Hom4(K, B). Deduce a spectral sequence (Hochschild-
Serre) with Ef" = HP(I), H9-P(n, A)), converging to the graded vector space
{H9(g, A)), suitably filtered. Identify the sequence of Exercise 9.2 in this case.

9.4. Carry out the program outlined in Remark (ii) at the end of the section.
9.5. Let N-.K-»Q be exact with N central in K, and let A be a trivial K-module.

Show that Hm(N, A), Hm(N, A) are trivial Q-modules.
9.6. Let G be a finite p-group. Show that if IGI = p", then IHZ(G, Z)1 S p"(n-0/2 and

that this inequality is best possible. {IGI is the order of the group G).
9.7. Let gyp, V : B-+B be morphisms of double complexes. We say that rp, V are

homotopic, and write q ^- ip, if there exist families of morphisms

Er,s: Z:s: Br,$-'Br.s+l

such that d"E'=E'd", d'Z"= 1"d, and

vp-rp=d'E'+E'd'+d"E"+E"d.

Show that rp o-- v, is an equivalence relation. and that, if W ip, then

Tot rp ^ Tot V , E1(Tot (p) = E1(Tot V) ,

where El refers to either spectral sequence of Proposition 9.1. Deduce that the
Grothendieck spectral sequence is functorial in A, from El onwards, including
the identification of E*," with the associated graded object of R9(GF) (A),
suitably filtered.

9.8. Use the spectral sequences associated with a double complex to show the
balance of Ext4. (Hint: Let 1 be an injective resolution of B and let P be a
projective resolution of A. Form the double (cochain) complex Homn(P, I)
and consider its associated spectral sequences (Proposition 9.1).) Find a similar
proof for the balance of Toro.

9.9. Let the group G be given by the presentation (x,y;xm=y'=x-'y-'xy),
where m is an odd prime. Show that x generates a normal subgroup of order m2,
with quotient of order m. Thus we get a group extension

with natural generators x of C.2 and T of C., where y is the image of y. Show
that the action of C. on C.2 is given by y o x = x"Use Exercise VI. 7.6 to
compute the E1 term of the Lyndon-Hochschild-Serre spectral sequence in
homology for the extension (*). Conclude that H"(G) = 0 for 0 < n < 2m - 1,
n even, and that, for 0 < n < 2m - 1, n odd, there is an exact sequence
Zm>-.H"(G)-»Z,". Show that for n = 2m-1 this latter result is not true.



IX. Satellites and Homology

Introduction

In Chapters VI and VII we gave "concrete" applications of the theory
of derived functors established in Chapter IV, namely to the category
of groups and the category of Lie algebras over a field K. In this chapter
our first purpose is to broaden the setting in which a theory of derived
functors may be developed. This more general theory is called relative
homological algebra, the relativization consisting of replacing the class
of all epimorphisms (monomorphisms) by a suitable subclass in defining
the notion of projective (injective) object. An important example of such
a relativization, which we discuss explicitly, consists in taking, as our
projective class of epimorphisms in the category 91A ofA-modules, those
epimorphisms which split as abelian group homomorphisms.

The theory of (left) satellites of a given additive functor H : 2[-+2;
between abelian categories, with respect to a projective class I of epi-
morphisms in 2[, is developed in Section 3, and it is shown that if H is
right I-exact, then these satellites coincide with the left derived functors
of H, again taken relative to the class 9, as defined in Section 2. Examples
are given in Section 4.

In the second half of the chapter we embark on a further, and more
ambitious, generalization of the theory. We associate with functors
T: U- 91:, J : U- 23, where U, 93 are small categories and 2[ is abelian,
objects H (J, T) of the functor category [23, 2[] which deserve to be
called the (absolute) homology of J with coefficients in T. This is achieved
by taking satellites of the Kan extension J evaluated at T, so that some
category-theoretical preparation is needed in order to develop these
ideas. Relative J-homology may also be defined by prescribing projective
classes of epimorphisms in the functor category [U, 2[]. Examples are
given in the final section to show how this notion of J-homology
generalizes the examples of homology theories already discussed in this
book; moreover, the Grothendieck spectral sequence, described in
Chapter VIII, is applied to this very general situation to yield, by further
specialization, the Lyndon-Hochschild-Serre spectral sequence.



1. Projective Classes of Epimorphisms 307

The chapter closes with indications of further applications of the idea
of J-homology. We mention, for example, the homology theory of
commutative K-algebras, which we regard as an example of this type of
homology theory. However, we do not enter into the set-theoretical
questions which arise if. as in this case, the categories U, 23 can no longer
be assumed to be small. The exercises at the end of the final section are,
in the main, concerned with further applications of the theory and should
be regarded as suggesting directions for further reading beyond the scope
of this book.

1. Projective Classes of Epimorphisms

Let 21 be an abelian category and let I be a class of epimorphisms in W.
Definition. The object P in 21 is called projective rele, where E : B-+ C

is an epimorphism in 21, if E : 21(P, B)-+91(P, C) is surjective. P is called
I-projective if it is projective rel a for every E in.?.

It is clear that P1 Q+ P2 is projective rel a if, and only if, both P1 and P2
are projective rel E.

Definition. The closure, C(I), of I, consists of those epimorphisms E
in 21 such that every 1-projective object of 2?1 is also projective rela.
Plainly 9 c CM and C(C(I)) = C(I). The class a is closed if 1 = C(I).

We will henceforth be mainly concerned with closed classes of epi-
morphisms (though we will often have to prove that our classes are
closed). We note the following elementary results.

Proposition 1.1. A closed class of epimorphisms is closed under
composition and direct sums. 0

Proposition 1.2. A closed class of epimorphisms contains every projec-
tion n : AQB-»A.

Proof. Every object is projective reln. 0
Of course, Proposition 1.2 includes the fact that a closed class

contains all isomorphisms and the maps B-*O.
The following are important examples of classes of epimorphisms in

the category "A of (left) A-modules.
(a) .9o, the class of all split epimorphisms. This is obviously a closed

class; for every object is 10-projective, and if e : B, C is not split, then C
is plainly not projective rele.

(b) .91, the class of all epimorphisms in W A. This is, even more
obviously, a closed class; and the 11-projectives are precisely the
projectives.

(c) 12i the class of all epimorphisms in 9J?A which split as epimorphisms
of abelian groups. This is, much less obviously, a closed class. We leave
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the proof to the reader, with the hint that, for any abelian group G, the
A-module A ®G is 92-projective (see also example (b) in Section 4).

(d) -03, the class of all pure epimorphisms of abelian groups. Recall
that an epimorphism E : B-, C is pure if, and only if, given any n. then to
every c e C with nc = 0 there exists b e B with Eb = c and nb = 0 (see
Exercise 1.1.7). We leave it to the reader to show that P is 0'3-projective
if, and only if. P is a direct sum of cyclic groups. and that the class .93 is
closed. (For the "only if" part in that statement, one needs the deep
result that a subgroup of a direct sum of cyclic groups is again a direct
sum of cyclic groups [19].)

Definition. Let G' be a closed class of epimorphisms in W. A morphism
pp in 21 is i-admissible if, in the canonical splitting 9 = Le, t monic.
E epic, we have E e 9. An exact sequence in 2I is 4'-exact if all its morphisms
are 4'-admissible. A complex in 21,

is called 4-projective if each K. is 9-projective; K is called 4'-acyclic if the
augmented complex

t-'...-,Ko-'Ho(K)-.,0

is 9-exact. K is an 4'-projective resolution of A if it is 4'-projective,
6'-acyclic, and Ho(K) = A.

The following comparison theorem is an obvious generalization of
Theorem IV.4.1; we omit the proof for this reason.

Theorem 1.3. Let K : K > K _ 1- , -, K0, and

L:

be two complexes in 21. If K is 4'-projective and L is 4'-acyclic, then every
morphism tp : H0(K)-+H0(L) lifts to a morphism of complexes cp : K-+L
whose homotopy class is uniquely determined. 0

Definition. A closed class .6 of epimorphisms in 21 is said to be
projective if, to each object A of 21 there is an epimorphism E: P--+A
in 9 with P G'-projective. If K,4 P is the kernel of E, we call K ,0, P
an 4-projective presentation of A.

Obviously; if 4' is a projective class, every object admits an 4-pro-
jective resolution.

All the notions of this section may plainly be dualized to a considera-
tion of classes ..# of monomorphisms in 21 leading finally to the notion of
injective classes of monomorphisms. We leave the explicit formulations
to the reader.
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Finally we remark that a class iff of epimorphisms gives rise in a
natural way to a class . ff of monomorphisms, namely the class con-
sisting of all kernels of epimorphisms in 6.

Exercises:

1.1. Prove that the class 9Z in WA is closed.
1.2. Prove Theorem 1.3.
13. Suppose that .1 is a projective class of epimorphisms. By analogy with

Theorem I.4.7, give different characterizations for P to be -projective.
1.4. Prove the facts claimed in example (d). Dualize.
1.5. Let y : A--.A' be a ring homomorphism. Let UY : 931A'--'. "A be the forgetful

functor (see Section IV. 12). Define a class f' of epimorphisms in 9 A. as
follows: The epimorphism E : B'-* Cis in 9' if, and only if, the homomorphism
UYE' : UYB'--, U1 C in 93 A Splits. Is the class 8' projective?

1.6. Interpret the 9-projectives, for 11' a projective class, as ordinary projectives in
a suitable category.

1.7. Identify relative projective G-modules (see Section VI. 11) as - projectives for
a suitable class ' of epimorphisms. Do a similar exercise for relative injective
G-modules.

2. 9-Derived Functors

We now imitate the development in Chapter IV. Let 21, '.B be abelian
categories, let T : 21-p 23 be an additive functor and let .f be a projective
class in W. Given an object A in 21, let KA be an 9-projective resolution
of A. Then Theorem 1.3 enables us to infer that the object
depends only on A and yields an additive functor 21-23 which we call
the n" left 9-derived functor of T, and write L,, T, or merely L T if the
context ensures there is no ambiguity.

The development now proceeds just as in the "absolute" case ('
we will only be explicit when the relativization introduces a complication
into the argument. This occurs in obtaining the first of the two basic
exact sequences.

Theorem 2.1. Let 0-*A'->A-+A"->O be a short .9-exact sequence
in W. Then, for any additive functor T : 21-+23 there exist connecting
homomorphisms w : L T(A")-+Ln_ 1 T(A') such that the sequence

T(A')->L 1
T(A')-+

. +L0 T(A')->L0 T(A)-+L0 T(A")-+0

is exact.

Proof. As in the absolute case, the proof hinges on the following
key lemma.
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Lemma 2.2. The short tf-exact sequence 0-+A'-A-+A"-a0 may
be embedded in a diagram

K' K " -+K"

P' ) P
x -9* P"

(2.1)

le
1E je

A') A

with all rows and columns 9-exact and P', P, P" 9-projective.

Proof' of Lemma. The construction of (2.1) is exactly as in the absolute
case. Thus we take 9-projective presentations of A' and A"; set
P = P'@ P", A' being the injection and A" the projection; define E as
(a' E', 0>, where 0: P"-+A lifts s", so that a" 0 = E"; and y is the kernel of E.
The extra points requiring verification are (i) E e ', (ii) x" a t®; it is, of
course, trivial (see Proposition 1.2) that A" e e.

In proving (i) and (ii) we must, of course, use the fact that 1f is closed.
Thus we suppose Q.6-projective and seek to lift an arbitrary morphism
cp : Q-.A into P,

P E.-A.

Equivalently, we seek W': Q-+P', W": Q-+P", such that ow" = cp.
Now since e" is in 1', we may lift a"cp : Q--->A" into P", that is, we find
W": Q-+ P" with E" W" = a" p. Let i embed P" in P. Then A" t = 1, e i = 0,
so a" cp =Err tp" =Err 7 rr l l p" = a" e : '4)rr = arr a ,4,rr. Thus (p = rX' Lo + O tp"

o : Q-A'. Since E 'is in 9, we may lift g into P', that is, we find tp' :
with e tp' = g. Then p = a' e'tp' + 0 tp" and (i) is proved.

To prove (ii), we again suppose Q 1'-projective and consider the lifting
problem

Q

K-'' K".

We first lift p" cp into P, that is, we find a : Q-> P with A" a = p" cp. Then
so that ea=aT,T:Q-4A'.Since E is in d, we

lift T to i : Q-+ P' with E ti = T. Set 6 = a - 2' i. Then A" Q = p" cp and
Ea=Ea-E2'T'=Ea-a'e'i=a'T-a'T=O. Thus F=pW with W: Q--+K.
Finally, p" K" tp =1" p tp = A" U = µ" cp, so K" W = cp and (ii) is proved. 0
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The reader should now have no difficulty in deriving Theorem 2.1
from Lemma 2.2. We state the other' basic exactness theorem without
proof.

Theorem 2.3. Let 0-4 T'- T--+ T"-*O be a sequence of additive
functors 2i- 23 which is i-exact on .9-projectives. Then, for any object A
in 'U, there exist connecting homomorphisms
such that the sequence

...-+L T(A)-+L T(A)-L,, T"(A)- T'(A)_,...

. L0 T'(A)-+L0 T(A)- *L0 T"(A)-+O

is exact. p

Definition. A functor T : 2I-+0 is called right i-exact if, for every
.9-exact sequence

A'-+A-+A"-->0

the sequence TA'-+ TA-+TA"-+0 is exact.

Proposition 2.4. A right 9-exact functor is additive.

Proof. Since zero objects of 21 are precisely those A such that
A- AAA--+O is exact (and hence i-exact), it follows that if T is right
i-exact then T(0) = 0. The proof is now easily completed as in the
absolute case by considering the 9-exact sequence

0--+A->A([ B--+B->0. 0

Proposition 2.5. T is right i-exact if, for every short 8-exact sequence
0-+A'-+A-*A"-+O, the sequence TA'-4TA->TA"-*O is exact. 9

Proposition 2.6. For any additive functor T, Lo T is right 9-exact.

Proof. Apply Proposition 2.5 and Theorem 2.1. 0

Theorem 2.7. For any additive functor T : 21- * B there is a natural
transformation i : LOT--+ T which is an equivalence if, and only if, T is
right i-exact.

Proof. Let -P, ^-+P0 be an 40-projective resolution of A. Then

TP, --. TPo->L0 T(A)-.O

is exact, by definition; and

TP,--+TPo--.TA

is differential. This yields to : Lo T(A)--+ TA. The standard argument now
yields the independence of TA of the choice of resolution and the fact
that T is natural. If T is right 9-exact, then T P, T A--+0 is
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exact, so that T is an equivalence. The converse follows immediately
from Proposition 2.6, so the theorem is proved. 0

We will content ourselves here with just one example, but will give
many more examples in Section 4. Consider the projective class 493 of
pure epimorphisms in the category of abelian groups (see example (d) in
Section 2). It may then be shown that the left 6i3-derived functors
L"(A px -) are trivial for n >_ 1. Taking T = Hom (-, B) as base functor,
we can construct the right 403-derived functors R" T. It turns out that

T is trivial for n 2. Define Pext (-, B) = R1 T(-). Then, if
0-+A'-+A-.A"->0 is a pure exact sequence, we have exact sequences
0-+ Hom (A", B)-4 Hom (A, B)-> Hom (A', B)-+ Pext (A", B)-+ Pext (A, B)
- Pext(A', B)-+0; 0-+Hom(B, A')-+Hom(B, A)-+Hom(B, A")
-+ Pext (B, A')-+ Pext (B, A)- * Pext (B, A")-+0.

We remark again that everything we have done here is readily
dualizable to right X-derived functors, based on an injective class ,l of
monomorphisms. The reader should certainly formulate the theorems
dual to Theorems 2.1, 2.3.

Exercises:

2.1. Prove Theorems 2.1, 2.3.
2.2. Evaluate L TP where T is additive and P is 9-projective.
2.3. What is LmLn T?
2.4. Show that Lf. T is additive.
2.5. Prove the analog of Proposition IV. 5.5.
2.6. Compute for the class go in 91A the functors R"HomA(-.B).
2.7. Prove the assertions made in discussing the example relating to 93 at the end

of the section.
2.8. Prove, along the lines of Theorem 111. 2.4, that Pext(A, B) classifies pure

extensions.

3. 9-Satellites

Let JO again be a projective class of epimorphisms in the abelian category
21 and let 23 be an abelian category.

Definition. An 61-connected sequence of functors T= {T} from 21 to 'B
consists of

(i) additive functors T : 21-+23. j = . -1.0. 1.....
(ii) connecting morphisms wj: T (A")-+ T_ t (A'), j = . -1.0. 1.... .

corresponding to each short 9-exact sequence 0-+A'-+A-+A"-.0.
which are natural in the obvious sense (i.e., the w; are natural trans-
formations of functors from the category of short i-exact sequences in 21
to the category of morphisms in 23).
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Proposition 3.1. If T is an '-connected sequence of functors, the
sequence

..-,Tj(A')-,T(A)-,T(A") w4Tj-(A')- 7 _1(A),...

is differential for each short 9-exact sequence 0--+A'---+A--+A"--+O in W.

Proof. The sequence is certainly differential at T(A). That it is
differential at TT(A") follows by naturality from the diagram

0= 0 =-A->A -* 0

iui
0* A'

that it is differential at T _ 1(A') follows by naturality from the diagram

0 A'-) A

0=-A )0. 0

An example of an i-connected sequence of functors is afforded by
the left 9-derived functors of an additive functor S (we set Lj S = 0, j < 0).

It is clear what we should understand by a morphism of i-connected
sequences of functors tp: T-+T': it consists of natural transformations
(p;: T-+ T'. j = . -1, 0, 1. ... such that. for every if-exact sequence

the square
T(A")---.T-1(A')

1411 147j-1

T'(A") 2 . T'_
1(A')

commutes for all j. We are now ready for our main definition of this
section.

Definition. Let H : W--+18 be an additive functor. An 9-connected
sequence of functors S = {S;}, with So = H, is called the left i-satellite
of H if it satisfies the following universal property:

To every i-connected sequence of functors T and every natural
transformation cp : TO-So there exists a unique morphism cp : T-S
with TPo = cp.

We immediately remark that, since the left i-satellite is defined by a
universal property, it is unique up to canonical isomorphism. We may
thus write S; = S; H if the satellite exists (we may suppress 9 if the
context permits). We also remark that it follows from the definition of a
left satellite that S; = 0 for j < 0. For, given a left I-satellite S, we define
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a connected sequence of functors S' = {S;} by

_ S;, j>O w;, j>0
S' 0, j<O 0, j50.

It is then plain that S'also satisfies the universal property of a left satellite.
Hence, by uniqueness S = S' and Sj = 0, j < 0. We next take up the
question of existence of left satellites.

Theorem 3.2. If H : 21-Q3 is a right 9-exact functor, where d is a
projective class of epimorphisms in 21, then the i-connected sequence of
functors {La H} is the left 9-satellite of H, L' H = S' H (L H = 0, j < 0).

Proof. Since H is right 9-exact, H = Lo H. Thus we suppose given
an i-connected sequence of functors T and a natural transformation
cp: To-.LOH and have to show that there exist unique natural trans-
formations tpj: T j--* LL H with go = cp, such that the diagram

T(A")21-'T_t(A')

11pi I.PJ-1 (3.1)

L,H(A")-4Lj_1H(A')

commutes for all short i-exact sequences 0--* A'-* A-* A"-> 0.
We first remark that for j < 0, cp; is the trivial map. For j = 0 we have

go = cp, and, for j > 0, we define g j inductively. Thus we suppose cpk
defined for k< j, j >_ 0, to commute with cok as in (3.1), and we proceed
to define cps+1. Let O-+K->P--+A-+O be an 9-projective presentation
of A. Then we have a commutative diagram

-T+1P T+1A TK -+ TP

O -Lj+1HA'J`,LjHK
with the bottom row exact. This yields a unique candidate for
(P;+ 1: T j, 1 A-t L;+ 1 HA. We prove that Pj+ 1 is a natural transformation,
independent of the choice of presentation, in the following lemma.

Lemma 3.3. Let

0---=, K ---+P -,A -0

iii
O-K'-+P' ) A'---+ 0

be a morphism of 8-projective presentations. Let co,+ 1 : Ti + 1 A-+ L;+ 1 HA
be defined by means of the top row, cpj+ 1: T j, 1 A'-+ L;+ 1 HA' by means
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of the bottom row. Then the diagram

T+1A Ti+1a )T,+IA'

IQj+,
I (PJ+1

Lj+1 HA
Lj+1Ha,Lj+1 HA'

commutes.

Proof of Lemma. Embed (3.2) in the cube

T+1A TjK
\ Tj+,a

Wj+i

Lj+1HA

Lj+ 1Ha

Tj+1A'

Lj+ 1 HA'

+Tj

1.LjHK'

315

(3.2)

All remaining faces of the cube commute and a j+1 : Lj+1 HA'-*LjHK'
is monomorphic. Thus the face (3.2) also commutes. 0

It remains to establish that the definition of (p j+ 1 yields commutativity
in the square

T+1A" TA'

14Qj+l 10i

Lj+1HA" ° ' LjHA'

corresponding to the short cf-exact sequence 0-1.A'-*A-*A"--1.0. Let

0 ->K" -4 P" A" '0

0- A'----*,, -=,A"-+0
be a morphism from an d-projective presentation of A" to the given
i-exact sequence, and consider the squares

T+lA"TK" TK" --=-TA'

L1+1HA"-)LjHK" LjHK"-LjHA'
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The first commutes by definition of (p;+1, the second by the naturality of
cp;. Moreover, the naturality of w;+ 1 in the definition of an 9-connected
sequence of functors, applied to (3.4), ensures that the composite of the
two squares (3.5) is just (3.3). This completes the proof of the theorem. 0

Corollary 3.4. If H : 21- 93 is an additive functor, then

Sj(LOH)=L!H, j>_0.

Proof. It is sufficient to observe that LOH is right 9-exact and
LfLOH=LjH, since LOHP=HP for any 9-projective P. 0

We remark that we have not established the existence of 9-satellites
of arbitrary additive functors, nor have we established the existence of
!-satellites of right 6w-exact functors if .9 is merely supposed to be a
closed class of epimorphisms in 21 (the definitions of this section make
perfectly good sense without supposing c ' to be a projective class). This
second question is reminiscent of the discussion in Chapter IV of charac-
terizations of derived functors without the use of projectives. A discussion
of the question may be found in Buchsbaum [5]; see Exercise 3.3.

Again, we may dualize. Here we should be somewhat explicit as the
notational convention relating to f-connected sequences of functors
has the connecting morphisms w, from the domain T A" to the codomain
T + 1 A' (instead of T_ 1 A'). The dual of Theorem 3.2 then reads

Theorem 3.5. If H : 21- 93 is a left A-exact functor, where ,,l is an
injective class of monomorphisms in 21, then the ll-connected sequence of
functors {R-" H) is the right .l-satellite of H, (R-# H = 0, j < 0). That is,

R-#H=S'H. 0
We will also have need of a contravariant form. Obviously a projective

class .9 in 21 gives rise to an injective class f'* in 21°PP. If H : W--+93 is
contravariant. then we regard H as a functor 2i°PP-+23 and if H is left
g°*-exact, we infer that {Rf*H} is the right 9*-satellite of H. Note that
RiH is defined by means of an 9*-injective resolution in 21°PP, that is.
by means of an tf-projective resolution in W.

Exercises:

3.1. Using the projective class 9 = 9, in '1 A. show that ExtIA(-. B) is the right
8-satellite of HomA(-, B). Using the injective class of all mono-
morphisms in M,,, show that ExtA"(A, -) is the right . s?-satellite of Homo (A, -).
Using the fact that ExtAn(A, -) gives rise to a connected sequence also in the
first variable, show that the universal property of ExtAn(-, B) yields a natural
transformation

ri : ExtAn(A, B)-. Extt(A, B).
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Using the fact that Ext; (P, B) = 0 for all d' projectives P, show that n is a
natural equivalence.

3.2. Do a similar exercise to 3.1 for the bifunctor - ®A - instead of HomA(-, -).
3.3. (Definition of satellites following Buchsbaum [5].) Let 21,'8 be abelian cate-

gories, and let H : 2t-.'B be a (covariant) additive functor. Suppose that l3
has limits. For A in 21 consider the totality of all short exact sequences

E: 0-.B-'

Define a partial ordering as follows: F < E if there exists cp : E-+ E and
W : B-+ B' such that the diagram

0----+ B ----. E ----+A-- 0

is commutative. Consider then HE= ker(HB-HE). Show that for F <E the
map HW : HB-+HB' induces a map OE : HE- HE., which is independent of
the choice of cp and W in (*). Define S1 A= jim_ (HE. 0[). (Note that there is
a set-theoretical difficulty, for the totality of sequences E need not be a set.
Although this difficulty is not trivial, we do not want the reader to concern
himself with it at this stage.) Show that S1 is made into a covariant functor
by the following procedure. For a : A-'A and for E:show
that there exists E : 0--+B--+E--+A--+O such that there is a commutative diagram

0-- B-. E---.A--.0

0--->B,E-'A--.O .

Using (**) define maps and, passing to the limit, define a morphism
a* : S, A-*S1A. Show that with this definition S1 becomes a functor. Starting
with H, we thus have defined a functor S1= S1(H). Show that S, is additive.
Setting So =H, define S (H) = S1(S_ 1), n= 1, 2, ... .

Given a short exact sequence

0--+A'--+A--+A"-+O,

show that the definition of S1A" yields a morphism w=col : S1A HA'. By
induction define morphisms w,,: S _, A'. n =1.2, .... Show that
S = (Si, co) is an i-connected sequence of functors, where 9 = 41 is the class
of all epimorphisms in 21. Finally show that S has the universal property
required of the left t°-satellite of H.

Dualize.
Consider the case of a contravariant functor.
Replace of = 91 by other classes of epimorphisms in W.

3.4. Show that for H not right exact, the left satellite of H is not given by the left
derived functor of H.

3.5. Give a form of the Grothendieck spectral sequence (Theorem VIII. 9.3) valid
for f-derived functors.
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4. The Adjoint Theorem and Examples

For the definition of satellites and derived functors of functors
we had to specify a class of epimorphisms 9 in W. For the construction
of derived functors it was essential that the class .9 be projective. We now
discuss how the theory of adjoint functors may be used to transfer
projective classes of epimorphisms from one category to another.

Let 1' be a projective class in the abelian category 21 and let F :
U : where 21' is also abelian, be a pair of adjoint functors. We
will suppose U faithful, so that if Us is an epimorphism in 21 then E
is an epimorphism in 21'. In particular f' = U`9 will be a class of
epimorphisms. We now prove the theorem which gives effect to the
objective described in the first paragraph; we will then give various
examples.

Theorem 4.1. Under the hypotheses above, 40' = U-' of is a projective
class of epimorphisms in 21'. The objects FP where P is 9-projective in 21
are g'-projective and are sufficient for 8'-presenting objects of 91', so that
the of'-projectives are precisely the direct summands of objects FP.

Proof. First observe that F sends '-projectives to ff'-projectives.
For if P is 49-projective and e': A; -* A2 is in s', then UE' a 6", so that
(UE'),k :21(P,UAi)-»21(P,UA''2). But this means that

E* :2P(FP, A'1)-"21'(FP, A2)

so that FP is 6'-projective.
Next we prove that 1fi' is closed. Thus we suppose given a': A1'---)* A'

such that, for any 9'-projective P; the map a*: 2i'(P', A'1)-»2I'(P', A'2)
is surjective. Take, in particular, P' = FP, where P is 6'-projective. Then
it follows that (Ua')* :21(P, UA2) for all f'-projectives P.
Since 9 is a projective class it follows first that Ua' is epimorphic and
then that Ua' a 9. Thus a' E 6", so 9' is closed.

Finally we prove that every A' may be 6-presented. First we 6'-present
UA' by P-* UA', E e 9. Let s': FP-'A' be adjoint to s; it remains to show
that E' e 9'. We have the diagram

P- UFP UA', Us'-6=E

where S is the co-unit of the adjunction. Thus UE', and hence E', is epi-
morphic. Also if cp : Q-* UA' is a morphism of the 6'-projective Q to UA',
then cp may be lifted back to P and hence, a fortiori, to UFP. Thus,
since 6" is closed, UE' E 9 so that E' e 9'. Finally we see that if A' is 1"-
projective it is a direct summand of FP, i.e., there is t: A'--* FP with
E'1=1. Q

We may also appeal to the dual of Theorem 4.1. We now discuss
examples. Our examples are related to the change of rings functor
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U = U'' : SJtA. +9JJte associated with a ring homomorphism y : A-->A'
(see Section IV. 12). Thus, henceforth in this section, 2I = 9J2,,, W'= 9J?,,..
Recall that, if A' is a (left) A'-module, then UA' has the same underlying
abelian group as A', the A-module structure being given by

).a' = y(2)a'.

As a special case, A =7L and y is given by y(1) =1A' (y is called the unit).
Then UA' simply forgets the A'-module structure of A' and retains the
abelian group structure; we refer to this as the forgetful case.

In general, as we know, U has a left adjoint P: 931A-* JJ1A', given
by F'(A) = A' ®, A, and a right adjoint F': 9J1A __+ 11A', given by
F(A) = HorA (A', A), A E WJIA. Thus U preserves monomorphisms and
epimorphisms (obvious anyway); it is plain that U is faithful.

(a) Let ' = 91 be the class of all epimorphisms in 133A. Then 91 is the
class of all epimorphisms in SJJ?A, since U preserves epimorphisms. We
observe that, by the argument of Theorem 4.1, we can present every
A'-module by means of a module of the form A' ®, P, where P is a

projective A-module. If we take the functor C OA'- : TA'- Wb, the
left f1-satellite may be seen by Theorem 3.2 to be the connected sequence
of functors Tor ' (C, -).

(b) We get a more genuinely relative theory by taking 9 =10o, the
class of all split epimorphisms in 9Jtn. Then 90' consists of those epi-
morphisms in 1 A, which split as epimorphisms of A-modules. Thus,
in the forgetful case, 9; is the class t2 of Section 1. Of course, every
A-module is do-projective, so we may use the A-modules A' ®, B for
9;-projective presentations in )Jln.. If we again take the functor
C ®,,. - :'JJMA,->9Ib, the left go-satellite is computed by means of left
9o-derived functors and it is customary to denote these derived functors
by or. if y : A---,A' is an embedding, also by Tor;," *. A, (C. - ).
We obtain results for this relative Tor (exact sequences. balance between
left and right), just as for the absolute Tor.

(c) Let ,# = .fit be the class of all monomorphisms in 9Jt,t. This class
is injective, and, since U preserves monomorphisms the class
,#1= U 1.41 consists of all monomorphisms in 9)?,,.. Thus, by the dual
of Theorem 4.1 #1 is injective. Note that, in the forgetful case, this
implies that the A'-modules Horn (A', D), where D is a divisible abelian
group, are injective, and also provide enough injectives in 9Jln. (compare
Theorem I.8.2). Now consider the left &1-exact functor

S=Hom,,.(C,

Then we may apply Theorem 3.5 to infer that the right ill-satellite of
Hom,,. (C, -) consists of the connected sequence of right-derived
functors Ext". (C, - .
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(d) Now let ,f = . fo, the class of all split monomorphisms in 9Jt,1.
This is an injective class, and ,&o' = U -1. o is the class of those mono-
morphisms in 9J1A which split as monomorphisms in 9J1A. Again, this
is an injective class and we have enough .moo-injectives consisting of the
A'-modules Home (A', A), where A is an arbitrary A-module. We refer
again to the functor Home. (C, -) : 9J A Wb, which is, of course, left
.#o-exact. Theorem 3.5 ensures that the right . ///;-satellite of HomA. (Cl -)
consists of the connected sequences of right . &;-derived functors of

which we write Ext"(C, -) or, if y: A-*A' is an em-
bedding, also by Ext(A' A)(C, -). Again, the reader should check that
these relative Ext groups have the usual properties; see also Example (e)
below.

(e) Here we exploit the contravariant form of Theorem 3.2. We revert
to the projective classes 1fi, i = 0, 1, of (a), (b) and now regard the pro-
jective class ei in 9J1A as an injective class d; * in M. P. The contravariant
functor Home.(-, C):9J1e.-+91b is left exact. We may thus describe
the right cf *-satellite of HomA (-, C) in terms of the right e, *-derived
functors of Hom,1. (-, C). If i = 1. we obtain the usual Ext functors,
Extra. (-, C); if i = 0, we obtain the relative Ext functors denoted by
Extra(-, C) or, if y is an embedding, by Q.

Exercises:

4.1. In analogy with Exercise 3.1, prove a balance theorem for Tore a (-, -) and
Ext(e.A')(-, -)

4.2. Attach a reasonable meaning to the symbols Ext"o(-,B), Toro(-,B).
43. Let 9'C 8 be two projective classes. If (L. T) P= 0 for n 1 and all 9'-pro-

jectives P' (P' is then called t9-acyclic for T), prove that L T = for all n > 1.
(Hint: Proceed by induction, using 18'-projective presentations.)

4.4. Use Exercise 4.3 to show that Ext",(Z, -)= Ext"2(Z, -) where .,#1 denotes
the injective class of all monomorphisms in 9 G = VlzG, and .4Y2 denotes the
injective class of all monomorphisms in 9.% which split as homomorphisms
of abelian groups. Obtain a corresponding result with Ext replaced by Tor.

4.5. Generalize the argument of Exercise 4.4 by replacing the ring ZG by a suitable
ring A. (One cannot generalize to arbitrary rings A!)

5. Kan Extensions and Homology

In this section we describe a very general procedure for obtaining
homology theories: we will first give the abstract development and then
illustrate with examples.

Let U, 8 be two small categories and let J : U--+!B be a functor.
Let 9i be a category admitting colimits (for example M. 931A). Now
given a functor S : 93-* 21, S' J : U-* 2C is a functor so that J induces a
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functor between functor categories.

J* : [93, 9i]-+[U, 21] , (5.1)

by the rule J*(S) = S J. We prove

Theorem 5.1. If 21 admits colimits, then J* : [23, 21]-. [U, 21] has a
left adjoint.

Proof. For any object V in 23, form the category 3, of J-objects
over V as follows. An ohject of Sv is a pair (U, tp) consisting of an object
U of U and a morphism W : J U-. V. A morphism rp : (U, tp)- (U', tp')
is a morphism cp : U-. U' in U such that the diagram

commutes. With the evident law of composition, 31, is a category. Given
a functor T : U-. 21, we define a functor Tv : by the rule

Tv(U,tp)=T(U). Ty(cp)=T(cp). (5.2)

We now set
J T(V) = lim Tv. (5.3)

This makes sense since 21 admits colimits. Notice that J T(V) is a certain
object Av of 21, furnished with morphisms Qv(U, W): Tv(U, 4 )-+Av,
such that

ev(U', 4") Tv((P) = Qv(U, w) (5.4)

for cp : (U, W)-(U', V+') in 3v ; and satisfying the usual universal property.
Now let 0: V1- V in Z. It is then easy to see that 0 induces a mor-

phism B : Av,-*Av, determined by the equations

e Qv,(U1,V'1)=Qv(Ul,04'1), (5.5)

for 1p 1 : J U1- V1. Moreover. the rule

JT(V)=Av, JT(B)= B (5.6)

plainly yields a functor J T: '93-*21.
We next show that J is a functor, J : [Ii, 91]-* [23, 21]. Let S, T : U-* 21

be two functors and let A: T-* S be a natural transformation of functors.
Then we define a natural transformation Av : Tv-*Sv of functors 3v-*2I
by setting 2v(U, t') = A(U): Tv(U, 4)->Sv(U,1p). Let 1 Sv consist of the
object By together with morphisms av(U, tp) : Sv(U, tp)-*Bv. We then
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determine a natural transformation ) : J T-+J S of functors U-121 by
the rule

(V)° MU,i')=av(U,u') )V(U,V') (5.7)

Plainly, .. is a natural transformation; plainly, too, if we set JUL) = .
then J is a functor [U,21]_['J3,%21]. It remains to show that J is left
adjoint to J*. We now suppose given functors T : U--.91, S: 23- U and
a natural transformation r : JT-+S. We define a natural transformation
T'=rl(T):T->SJ by

T'(U)=T(JU)' oju(U, 1), U in U, (5.8)

TU T(JU) SJU.
Also given a natural transformation a : T- SJ, we define a natural trans-
formation F = i (a) : J T--' S by

NV), w(U, ip) = Sip a(U) . (5.9)

V in $, U in U, V':JU-*V in
It is easy to verify that T', rl, F, i are natural; we conclude by showing
that , and i are mutual inverses. First, if T : JT-->S, then

T'(V)`QV(U,ip)=Sip i(U)=Sip T(JU)LPru(U,1).

Now consider the diagram

TU TIJU) .SJU

IJTW SW

JTV `V) ,SV.

The triangle commutes by the definition of JTip (5.5). and the square
commutes by the naturality of r. Thus

T'(V)' Pv(U,V')=Sy!-T(JU) Qru(U, 1)=T(V)-QV(U,i),

so that 77 = T, or i7rl = 1.
Next, F'(U) = F(J U) oju(U, 1) = a(U), by (5.9), so that F'= a, or

n vl =1. This completes the proof of the theorem. 0
Note that if, for some V e 23, 23(J U, V) is empty for every U e U, then

J T(V) is just the initial object in 2i, so that this case need not be regarded
as exceptional.

Definition. The functor J : [U, U]-> [23, 21] is called the (left) Kan
extension.

The term "extension" is justified by the following proposition.

Proposition 5.2. If J : U-i 2 is a full embedding, then, for any
T : U-. 9I, J T does extend T in the sense that (J T) J = T.
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Proof. Let U e U and consider the category ' .,v. There is a sub-
category of 3jv consisting of just the object (U, 1) and its identity
morphism. Now, given any object (U1, yet) of 3jv, there is a unique
morphism cp : (U1, W,)-+(U, 1) with Jcp = tpl, since J is a full embedding.
It is then obvious that 1 Tjv is just T U, with ojv(U1, tpt) = T(cp). This
proves the proposition. fl

Remark. We have, in this proof, a very special case of a cofinal
functor, namely the embedding of the object (U, 1) in3ju; it is a general
fact that colimits are invariant under cofinal functors in the sense that
lim T=1 TK, where K : (F--+Z is a cofinal functor of small categories
and T : Z-91. For the definition of a cofinal functor, generalizing the
notion of a cofinal subset of a directed set, see Exercise 5.4.

We now construct the Kan extension in a very special situation. Let
U = 1 be the category with one object 1 and one morphism. Then clearly
[1, 21] may be identified with 21. Let V e 23, and let J = KV : 1--). 23 be the
functor KV(1) = V ; then the functor K*V : [23, 2fl-+ [1, 2l] = 2I is just
evaluation at V. i.e.. for T : 23 - 21 we have KV* T = T V.

Proposition 5.3. The Kan extension k,,: 2I-+[23, 21] is given by

(1A)V'= u A, =A' (5.10)
VE'A(V. V')

with the obvious values on morphisms.

Proof. Of course it is possible to prove the implied adjointness
relation directly. However, we shall apply the general construction of
Theorem 5.1. So let J = Kv, then 3t,. is the category with objects

(1, v) = v : J(1) = V-+ V'

and identity morphisms only. For the functor T:1-+2I with T(1) = A
the functor T,.: ,,3v.-+21 is given by TV.(1, v) = T(1) = A (see (5.2)).
Hence, by (5.3), the Kan extension of T evaluated at V' is just the co-
product Ll A where A, = A. 0

vED(V. V')

Next we discuss the Kan extension in a slightly more general situation
than that covered by Proposition 5.3. Let U = 23d be the discrete sub-
category of 23, and let I : 23d-+ 23 be the embedding. Note that [`23d, 21]
may be interpreted as the product category [] [lv, 21] = r[ 21V, where

VEYJ VEA

21v is just a copy of W. We denote objects in [23d, 21] therefore by {Av}.
Note also that I*: [23. 21] [23d' 21] is the functor given by

(I* T)v = (I* T) V= T- I(V)= TV

where T : 23-). 21; in other words,

I*T={TV}.
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Corollary 5.4. The Kan extension 1: [13d,21]-->[S3,21] is given by

(I {Av}) V' = u (Kv Av) V' = H U (Av),,
VE43 VE'D VE'D(V,V')

where (As.) = Av, with the obvious values on morphisms.

This follows easily from the following lemma.

Lemma 5.5. Let F, : be a left adjoint of G.:
Z has coproducts. Define G: Z- f (Ei by GD = {GiD}. Then

F : fl (i-* Z. defined by F { Ci} = L[ Fi Ci. is a left adjoins to G.
i i

Proof. T)(F{Ci}, D) = Z(JJFi Ci, D) = r[ D(F, C. D) = f CEi(Ci, G,D)
/ i

=(r[ lEi) ({ Ci}, {Gi D}) = (f ail ({Ci}, GD). 0

Plainly, Corollary 5.4 follows immediately from Lemma 5.5 and
Proposition 5.3. 0

Going back to the general case, let J : Ll->'21 be a functor and let 21
be an abelian category with colimits. Then (see Exercise II. 9.6) [U, 21]
and [23.21] are abelian categories and. moreover. the Kan extension
J : [21, 91]-> [23, 21] exists. Since J is defined as a left adjoint (to J*) it
preserves epimorphisms, cokernels and coproducts; in particular, J is
right exact. Denoting by 91 the class of all epimorphisms in [U, 21], we
make the following definition.

Definition. Let T: U-21 be a functor. We define the (absolute)
homology H*(J, T) of J with coefficients in T as the left g1-satellite of the
Kan extension J evaluated at T

T) = T, n=0,1,.... (5.11)

We may also, for convenience, refer to this type of homology as
J-homology. By definition T) is a functor from 23 into 21, and
H0(J, T) = J T. Next we take up the question of the existence of
J-homology. We shall apply Theorem 4.1 to show that, if 21 has enough
projectives, then so does [U, 21]; that is to say, the class cfi of all epi-
morphisms in [Li, 91] is projective. By Theorem 3.2 the satellite of J
may then be computed via 91'-projective resolutions in [U, 21]. To this
end consider I: }ld-*U and the Kan extension I : [Lld, 21]- [2I, 21].
By Theorem 5.1 1 exists, and its form is given by Corollary 5.4. Since
[Lid, 21] may be identified with the category fl 91v, where 91v is a copy

UEU

of 21, it is clear that I*: [L1, 2t]' [Lid, 21] is faithful. By Theorem 4.1 the
adjoint pair I -I I* may then be used to transfer projective classes from
[Lld, 91] to [U, 21]. Clearly, if 9i denotes the class of all epimorphisms in
[Lid, 21], (I*)-1 (91) is the class 91 of all epimorphisms in [Li, 21]. Now
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since 2i has enough projectives, the category Al 21] has enough pro-
jectives, and 91 is a projective class. By Theorem 4.1 it follows that the
class 9; is projective. We therefore have

Theorem 5.6.
If

21 has enough projectives then the J-homology

H. (J, -) : [21, 21] -* [23, 21]

exists. It may he computed as the left Pi-derived functor of the Kan
extension,

T) _ (Ln' J) T, n=0,1'.... 0 (5.12)

We remark the Theorem 4.1 and Corollary 5.4 yield the form of the
projectives. A functor S: is, by the last part of Theorem 4.1,
c1-projective if and only if it is a direct summand of a functor I {Pu} for
{Pu} a projective in [Ud, 21]. But this, of course, simply means that each
Pu is projective in 91. Thus, by Corollary 5.4, the functor S is ,91-projective
if and only if it is a direct summand of a functor S : U-+21 of the form

S(U') = H H (Pu),, ,
ucu VEA(U,u)

where (Pu)g, = Pu is a projective object in 21.

Corollary 5.7. Let 0-+ T'-+ T"-->0 be a sequence of functors in
[U, 21] which is 91-exact. Then there is a long exact sequence of functors
in [23, 21],

... T')-H,,(J, T)--'.H,,(J, T")-'Hn-1(J, T')-' .... 0 (5.13)

We remark that the above definitions and development may be dual-
ized by replacing 21 by 21°PP to yield cohomology. The reader should con-
scientiously carry out at least part of this dualization process, since it
differs from that employed in Chapter IV in describing derived functors
of covariant and contravariant functors in that, here, it is the codomain
category 21 of our functor T which is replaced by its opposite 21°PP.

Our approach has used the existence of enough projectives in the
category 21. However, instead of defining the homology using the class
e1 in [U, 21] it is possible to define a (relative) homology as the left
satellite with respect to the class 90' of all epimorphisms in [U, 91] which
are objectwise split, meaning that the evaluation at any U in U is a split
epimorphism in 21. It is then plain that eo is just (I*)-1(90) where 490
denotes the class of all epimorphisms in [?{d, 21] which are objectwise
split. We can then define a relative homology,

T) _ (S." j) T, n = 0,1, ... (5.14)

as the left satellite of the Kan extension with respect to the class 4o.
Since the class &0 is clearly projective in Al 21], we may compute the
relative homology as the left eo-derived functor of the Kan extension.
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This definition clearly works even if 21 lacks enough projectives. More-
over it follows from Proposition 5.8 below that if 21 has enough pro-
jectives and exact coproducts then the relative and the absolute homology
coincide. An abelian category is said to have exact coproducts if co-
products of short exact sequences are short exact - equivalently, if
coproducts of monomorphisms are monomorphisms.

Proposition 5.8. Let 21 have enough projectives and exact coproducts.
If R e [U, 21] is an go-projective functor, then J) R = 0 for n> A.

Proof: Clearly every functor Ud->91 is eo-projective. Thus, since
J) is additive and 2i has exact coproducts, it is enough, by Theorem

4.1 and Corollary 5.4, to prove the assertion for R = KUAU : U-.21 where
A = AU is an arbitrary object in W. Now choose a projective resolution

pa

of A in W. Then, since coproducts are exact in 91,

KUP:... _,KUpo

is an e1-projective resolution of R. Since trivially

KJUP (5.14)

the complex J(KUP) is again acyclic, whence the assertion follows. 0
We have the immediate collorary (see Exercise 4.3).

Theorem 5.9. Let 91 be an abelian category with enough projectives
and exact coproducts. Let U and 23 be small categories and let J : U- 23,
T : U--> 21 be functors. Then

T) = T). 0

Exercises:

5.1. Justify the statement that if 23(J U, V) is empty for some V and all U, then
JT(V) is just the initial object in W.

5.2. Formulate the concept of the right Kan extension.
5.3. Give an example where J : U--+$ is an embedding but JT does not extend T.
5.4. A category (1 is said to be cofiltering if it is small and connected and if it enjoys

the following two properties:
(i) given A, B in (£, there exists C in Z and morphisms a : A--+ C, fl: B--+C in C;

(ii) given X Yin (1:, there exists 0: Y-+Z in ( with 9rp = OW.

A functor K : from the cofiltering category ( to the cofiltering category
t is said to be cofinal if it enjoys the following two properties:
(i) given B in Z, there exists A in l and w : B-. KA in Z;

(ii) given B,IKA in t, there exists 0: in (f with (KB) (p = (KB) W.
W
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Prove that, if T: T-.21 is a functor from the cofiltering category Z to the
category 21 with colimits and if K : (- I is a cofinal functor from the co-
filtering category 6 to T, then lim T =1im T K. (You should make the nature
of this equality quite precise.)

5.5. Prove Proposition 5.3 directly.
5.6. Prove that, under the hypotheses of Proposition 5.8, the connected sequences

of functors {Lf' J} and {Ln°J} are equivalent.
[Further exercises on the material of this section are incorporated into the
exercises at the end of Section 6.]

6. Applications: Homology of Small Categories, Spectral Sequences

We now specialize the situation described in the previous section. Let
23 = 1, the category with one object and only one morphism, and let
J : U-. 8 be the obvious functor. Thus, for T : tX-- 2t, we define H (U, T)
by

T), n>_0, (6.1)

and call it the homology of the small category U with coefficients in T.
We will immediately give an example. Let U = G where G is a group

regarded as a category with one object, let 23 = Ud =1, and let J be the
obvious functor. Take 21= 2tb the category of abelian groups. The functor
T : may then be identified with the G-module A= T(1). so that
[U. 21] = 931G. The category [23.21] = 21 is just the category of abelian
groups. The functor J* : [23.21]- [U, 2t] associates with an abelian
group A the trivial G-module A. The Kan extension J is left adjoint
to J*, hence it is the functor -G : [U, 21]-- [23, 21] associating with
a G-module M the abelian group MG. Since the class K1 in [U, 21] is
just the class of all epimorphisms in 2G, we have

ri>_0, (6.2)

where A = T(1), so that group homology is exhibited as a special case
of the homology of small categories. Moreover the long exact sequence
(5.13) is transformed under the identification (6.2) into the exact coef-
ficient sequence in the homology of groups.

We next consider the situation

where J, I are two functors between small categories. The Grothendieck
spectral sequence may then be applied to yield (see Theorem VIII. 9.3).

Theorem 6.1. Let J : I : 23-.2B be two functors between small
categories, and let 2t be an abelian category with colimits and enough
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projectives. Then there is a spectral sequence
EP,q=HP(1'Hq-P(J, -)).Hq(IJ, - ). (6.3)

Proof. We

onlyl

have to show that projectives in [U, 21] are trans-
formed by J into I-acyclic objects in [23, 21]. Since J is additive it is
enough to check this claim on functors R = KuPu : U-+ W. But then
J(KuPu)=KauPu (by 5.14) which is not only I-acyclic in [23,21], but
even projective. 0

We give the following application of Theorem 6.1. Let U = G, where
G is a group regarded as a category with just one object, let 23 = Q be
a quotient group of G, and let 0 = 1. I, J are the obvious functors. Let
2T be the category of abelian groups. Theorem 6.1 then yields the spectral
sequence

EI,q=HP(Q,Hq-P(J, -))-Hq(G, -). (6.4)

In order to discuss H*(J, -) in this special case, we note that [23.21] may
be identified with the category !1JtQ of Q-modules. If M is in 9JtQ. J*M
is M regarded as a G-module. It then follows that for M' in M G,

JM' =7LQ ©c M', since J is left adjoint to P. We thus obtain

Hr(J, -)=TorG(7LQ, -)=H,.(N, -), r 0,

as functors to 9J1Q, where N is the normal subgroup of G with GIN = Q.
The spectral sequence (6.4) is thus just the Lyndon-Hochschild-Serre
spectral sequence for the homology of groups.

We would like to remark that the procedures described in this section
are really much more general than our limited tools allow us to show.
Since we did not want to get involved in set-theoretical questions, we
have had to suppose that both U and 23 are small categories. However,
one can show that under certain hypotheses the theory still makes sense
when U and 23 are not small. We mention some examples of this kind.

(a) Let U be the full subcategory of VA consisting of free A-modules.
Let 23 = SJJ1A, and let J be the obvious functor. Thus J* : [23, 21]-* [U, 2C]
is just the restriction. It may be shown that for every additive functor
T:U-'21

AP, T) = L T. n>0.

where denotes the usual n" left derived functor of T : U-±21.
(b) Let U be the full subcategory of (h, the category of groups, con-

sisting of all free groups. Let 23 = and let 21 be the category of abelian
groups. Again, J : U-- 23 is the obvious functor. Let RA : U-+ 21 be the
functor which assigns, to the free group F, the abelian group

IFQx FA= Fan©A,
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for A a fixed abelian group. It may then be show that

Hf(J,RA)G=Ha+t(G,A), n>_1,

Ho(J.RA)G=Gab®A.

Thus we obtain, essentially, the homology of G with trivial coefficients.
However, more generally, we may obtain the homology of G with coef-
ficients in an arbitrary G-module A, by taking for U the category of free
groups over G, for 23 the category of all groups over G, and for J : U->'23
the functor induced by the imbedding. Then we may define a functor
TA : U-> 9I by

TA(F-4G) = IF(DFA

where A is regarded as an F-module via f. One obtains

Ha(J, TA)1G=H,,+t(G, A), n> 1 ,

Ho(J, TA) 1G=IGOxGA.

Proceeding analogously, it is now possible to define homology theories
in any category 21 once a subcategory U (called the category of models)
and a base functor are specified. This is of significant value in categories
where it is not possible (as it is for groups and Lie algebras over a field)
to define an appropriate homology theory as an ordinary derived functor.
As an example, we mention finally the case of commutative K-algebras,
where K is a field.

(c) Let 23' be the category of commutative K-algebras. Consider the
category 23 =23'/V of commutative K-algebras over the K-algebra V
Let U be the full subcategory of free commutative (i.e., polynomial)
K-algebras over V, and let J : U- 23 be the obvious embedding. Then

H,,(J, Diff(-, A))

defines a good homology theory for commutative K-algebras. Here A
is a V-module and the abelian group Diff(U- V, A) is defined as follows.
Let M be the kernel of the map m : U x®K U--* U induced by the multi-
plication in U. Then Diff(U-L V, A) = M/M2 ®UA where A is regarded
as a U-module via f.

Exercises:

6.1. State a "Lyndon-Hochschild-Serre" spectral sequence for the homology of
small categories.

6.2. Let 21 be an abelian category and let U, 23 be small additive categories. Denote
by [U, 21]+ the full subcategory of [U, 21] consisting of all additive functors.
Given an additive functor J : define the additive Kan extension .J+ as
a left adjoint to

J*: [23, `I]+ [U, `t]+
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Along the lines of the proof of Theorem 5.1, prove the existence of J+ in
case 21 has colimits. Prove an analog of Proposition 5.2.

6.3. In the setting of Exercise 6.2 define an additive J-homology by

-)=(S.g'J+): 21-+21, n>0.

Show the existence of this homology if 21 has enough projectives.
6.4. Let U = A be an augmented algebra over the commutative ring K regarded

as an additive category with a single object. Set 23 = K, and let J : A- K be
the augmentation. What is H Q. T) for T: an additive functor, i.e.,
a A-module? (H (J, T) is then called the n" homology group of A with
coefficients in the A-module T.) What is H (J, T) when (a) U=ZG, the
groupring of G, K = Z; (b) K is a field and U = Ug, the universal envelope of
the K-Lie algebra g? Dualize.

6.5. State a spectral sequence theorem for the homology of augmented algebras.
Identify the spectral sequence in the special cases referred to in Exercise 6.4.
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