Tutorial 9 : Integration

except we clo not allow emply intervals.

In all cases we define the length of I to be |I| := b - a (possibly zero). A <u>partition</u> of an interval I will mean a <u>finite</u> set P whose elements are pairwise disjoint intervals contained in I, whose union is all of I.

Example
$$P_1 = \{ [0, \frac{1}{3}), [\frac{1}{3}, 1] \}, P_2 = \{ [0, \frac{1}{2}), [\frac{1}{2}, 1] \}$$
 are partitions of $[0, \frac{1}{2}]$.

Given partitions P, P2 of I we write $P_1 \leq P_2$ (not \leq) if for every $x \in P_1$ there exists $y \in P_2$ with $x \in Y$. This is a partial order on the set of partitions of I, and moreover given partitions P, B

$$P, \Lambda P_2 := \{ J \cap K \mid J \in P_1, K \in P_2 \text{ and } J \cap K \neq \phi \}$$

is another partition of I with the property that $P_1 \land P_2 \leq P_2$. for $i \in \{1,2\}$ and if Q is another partition with $Q \leq P_1$, $Q \leq P_2$ then $Q \leq P_1 \land P_2$

$$\mathbb{Q}$$
 Rove \leq is a partial order on the set of partitions of \mathcal{I} .

Q2] Given a partition P of I prove that $|I| = \sum_{x \in P} |x|$. (Hint: argue the statement for all pairs (I, P) by induction on the size of P).

updated 5/10

<u>Def</u> Given an interval I with partition P, a function $f: I \rightarrow \mathbb{R}$ is <u>piecewise constant with respect to</u> P if for all $J \in P$, the function $f|_J: J \rightarrow \mathbb{R}$ is a constant function. A function $f: I \rightarrow \mathbb{R}$ is <u>piecewise constant</u> if it is piecewise constant with respect to <u>some</u> partition P of I.

 $\boxed{43}$ Rove of $f: I \longrightarrow \mathbb{R}$ is piecewise constant with respect to partitions $\mathcal{P}_{i_1}\mathcal{R}$ then

$$\sum_{J \in \mathcal{P}_{I}} a_{J} |J| = \sum_{K \in \mathcal{P}_{L}} b_{K} |K| \qquad (k)$$

where for $J \in P$, we have $f|_J \equiv a_J$ and for $K \in P_Z$, $f|_K \equiv b_X$ for constants a_J , $b_K \in IR$. This common value (*) which is independent of the partition we denote by $p \cdot c \cdot \int_I f$. (Hint: use $P, \wedge P_Z$ to reduce to the case $P_i \subseteq P_Z$).

<u> Def^n </u> Let $f: I \longrightarrow IR$ be a bounded function on an interval I. The <u>upper Riemann</u> <u>integral</u> is the real number

$$\overline{\int_{\mathbf{I}} f} := \inf \{ p.c. \int_{\mathbf{I}} g \mid g \text{ is piecewise constant on } \mathbf{I} \text{ and} \\ \text{for all } x \in \mathbf{I}, \text{ we have } g(x) \geqslant f(x) \}$$

while the lower Riemann integral is the real number

$$\int_{I} f := \sup \{ p.c. \int_{I} g \mid g \text{ is piecewise constant on } I \text{ and} \\ \text{for all } x \in I, \text{ we have } g(x) \leq f(x) \} \}$$

If
$$\overline{J}_{I}f = \underline{\int}_{I}f$$
 we say f is Riemann integrable and define
 $\int_{I}f := \overline{\int}_{I}f = \underline{\int}_{I}f.$

<u>Theorem</u> Any continuous function $f: [a, b] \rightarrow \mathbb{R}$ is Riemann integrable.

[Q4] Prove the theorem

Long hint: aim to show that for any $\varepsilon > 0$ (with $I = [q_1 b]$)

$$\overline{\int}_{\mathfrak{I}} f - \underline{\int}_{\mathfrak{I}} f \leqslant \varepsilon(b-a)$$

To do this, pwcluu a partition $J_{1,...,}$ J_n of [a,b] (whose elements and length both depend on \mathcal{E}) and constants $p_{1,...,}p_{n_1}q_{1,...,}q_n$ such that

$$\int_{T} f \leq \sum_{i=1}^{n} p_{i} |J_{i}| \int_{T} f \geq \sum_{i=1}^{n} q_{i} |J_{i}|$$

so that $\int_{I} f - \int_{I} f \leq \sum_{i=1}^{n} (p_i - q_i) |J_i|.$

Then use that a writinuous function f on [a, b] is <u>uniformly</u> continuous, i.e. $\forall \epsilon > 0 \exists \delta > 0 \forall x_1 y \in [a, b](|x-y| < \delta \implies |f x - fy| < \epsilon)$. This is an easy consequence of compactness.]

 $\overline{[05]}$ Prove that if $f: [a,b] \rightarrow \mathbb{R}$ is continuous and a < c < b then

$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f.$$

<u>Def</u> A continuous function $f: X \longrightarrow \mathbb{R}$ is <u>compactly supported</u> if there is $K \subseteq X$ compact such that if $x \notin K$ then f(x) = O.

 $\frac{\overline{QG}}{\overline{R}} \quad \text{Rove that if } f:\mathbb{R} \longrightarrow \mathbb{R} \text{ is compactly supported, and } [a,b] \text{ is such that} \\ f \text{ is zero outside } [a,b], \text{ then } \int_{\mathbb{C}^{a},b]} f \text{ is independent of } a,b, \text{ and } we call \\ \text{this invariant quantity the } \frac{Riemann \text{ integral of } f}{\overline{R}}.$

Intonial 8 solutions

Q3

Given an interval I, partition P of I and $f: I \longrightarrow R$ piece-wise constant with respect to P, we write

$$p.c.\int_{\mathcal{I},\mathcal{P}} f := \sum_{J \in \mathcal{P}} q_J |J| \qquad f|_J \equiv q_J$$

Suppose for $R \leq R_2$ with f piece-wise constant w.r.t. R (hence also R) we could prove that

$$p.c. \int_{I, P_1} f = p.c. \int_{I, P_2} f. \qquad (*)$$

Men for any pair P_i, P_2 we know $P_i \land P_2$ is a partition and $P_i \land P_2 \leq P_i$ for $i \in \{1, 2\}$ so

$$p.c. \int_{I, P_i} f = p.c. \int_{I, P_i \wedge P_2} f = p.c. \int_{I, P_i} f.$$

So it suffices to prove (*). Given $J \in P_2$ let $P_i^T = \{K \in P_i \mid K \in J\}$. This is a partition of the interval J, and moreoversince $K \in J$ we have $f|_K \equiv a_J$ for all $K \in P_i^T$ (where a_J is the constant value of f on J). Hence, writing be for the constant value of f on any $K \in P_i$,

$$p.c. \int_{I, P_{1}} f = \sum_{K \in P_{1}} b_{K} |K| = \sum_{J \in P_{2}} b_{K} |K|$$

$$= \sum_{J \in P_{2}} a_{J} |K| = \sum_{J \in P_{2}} a_{J} \left(\sum_{K \in P_{1}^{J}} |K| \right)$$

$$K \in P_{1}^{J}$$

$$(Q_{2}) = \sum_{J \in P_{2}} a_{J} |J| = p.c. \int_{I, P_{2}} f.$$

since f is uniformly continuous (see Ex. 16-0 and its solution) we may given $\varepsilon > 0$ find $\varepsilon > 0$ such that $|x-y| < \varepsilon \Rightarrow |fx-fy| < \varepsilon$. Choose N an integer with $N > \frac{b-\alpha}{\delta}$ and divide $I = [\alpha_1 b]$ into N equally sized subintervals $J_1, ..., J_N$ so that if $z_1 y \in J_{\varepsilon}$ for some ε then

$$|x - y| \leq |J_{i'}| = \frac{b - a}{N} < \delta$$
Note that the Ji are
not all closed sine we
need to avoid overlaps,
so e.g. take

$$[a, a + \frac{b - a}{N}],$$

$$p_{i} = \sup\{f_{x} \mid x \in J_{i'}\}$$

$$[a + \frac{b - a}{N}, a + 2\frac{b - a}{N}],$$

$$[b - (\frac{b - a}{N}, b]]$$

and let g be the piece-wise constant function taking the values p_i on T_i and h the function taking the values q_i on T_i . Then $f \leq g$ and $h \leq f$ so

$$\overline{\int_{I} f} \leq \sum_{i=1}^{n} Pi |J_{i}|, \quad \int_{I} f \geq \sum_{i=1}^{N} qi |J_{i}|.$$

$$\therefore \quad \overline{\int_{I} f} - \int_{I} f \leq \sum_{i=1}^{N} (Pi - qi) \frac{b-a}{N}$$

Now we want to argue $p_i - q_i \le \varepsilon$. It is tempting (but wrong) to say: well $p_i = fx$ for some $x \in T_i$ and $q_i = fy$ for some $y \in T_i$ so since |x-y| < dwe have $|p_i - q_i| = |fx - fy| < \varepsilon$. This is wrong because T_i is not necessarily compact, so we cannot apply the Extreme Value Theorem. But it's DK we can argue clivectly: for any $x, y \in T_i$ we have $|fx - fy| < \varepsilon$ so

$$f_{x} < f_{y} + \varepsilon$$

$$p_{i} = \sup_{x \in \mathcal{I}_{i}} f_{x} \leq f_{y} + \varepsilon \qquad \text{for any } y \in \mathcal{I}_{i}$$

$$f_{i} = \inf_{y \in \mathcal{I}_{i}} f_{y} + \varepsilon = q\varepsilon + \varepsilon.$$

Q4

Hence pi-qi < < and so

$$\overline{\int}_{I} f - \underline{\int}_{I} f \leq \sum_{i=1}^{N} \varepsilon \cdot \frac{b-\alpha}{N} = \varepsilon \cdot (b-\alpha)$$

which completes the proof - D