Tutorial 9: Integration

/ nonempty

The following is taken from T. Tao's "Analysis" Vol. 1 Ch. 11. A subjet $I \subseteq \mathbb{R}$ is an interval if there exist $a \le b$ with I equal to one of the following sets:

In all cones we define the <u>length</u> of I to be |I| := b - a (possibly zero). A <u>partition</u> of an interval I will mean a <u>finite</u> set P whose elements are pairwise disjoint intervals contained in I, whose union is all of I.

Example
$$P_1 = \{ [0, \frac{1}{3}), [\frac{1}{3}, 1] \}$$
, $P_2 = \{ [0, \frac{1}{2}), [\frac{1}{2}, 1] \}$ are partitions of $[0, \frac{1}{3}]$.

Given partitions P_1 , P_2 of I we write $P_1 \leq P_2$ (not \subseteq) if for every $x \in P_1$. There exists $y \in P_2$ with $x \subseteq y$. This is a partial order on the set of partitions of I, and moreover given partitions P_1 , P_2

is another partition of I with the property that $P_1 \land P_2 \leq P_2$ for $i \in \{1/2\}$ and if Q is another partition with $Q \leq P_1$, $Q \leq P_2$ then $Q \leq P_1 \land P_2$

- $\mathbb{Q}\mathbb{I}$ have \leq is a partial order on the set of partitions of \mathbb{I} .
- Q2 Given a partition P of I prove that $|I| = \sum_{x \in P} |x|$. (Hint: argue the statement for all pairs (I, P) by induction on the size of P).

- Def Given an interval I with partition P, a function $f:I \to \mathbb{R}$ is piecewise constant with respect to P if for all $J \in P$, the function $f:J \to \mathbb{R}$ is a constant function. A function $f:I \to \mathbb{R}$ is piecewise constant if it is piecewise constant with respect to some partition P of I.
- Rove if $f: I \rightarrow \mathbb{R}$ is piecewise constant with respect to partitions P_1 & then

$$\sum_{J \in \mathcal{P}_{l}} a_{J} |J| = \sum_{K \in \mathcal{P}_{L}} b_{K} |K| \qquad (4)$$

where for $J \in P$, we have $f|_{J} = a_{J}$ and for $K \in \mathbb{Z}$, $f|_{K} = b_{K}$ for constants a_{J} , $b_{K} \in \mathbb{R}$. This common value (*) which is independent of the partition we denote by $p.c.J_{I}f$. (Hint: use $P, \Lambda P_{2}$ to reduce to the case $P_{1} \subseteq P_{2}$).

<u>Def</u> Let $f: I \rightarrow IR$ be a bounded function on an interval I. The <u>upper Riemann</u> integral is the real number

$$\overline{\int}_{I}f := \inf\{p.c.\int_{I}g \mid g \text{ is piecewise constant on } I \text{ and } for all } x \in I, \text{ we have } g(x) \geqslant f(x) \}$$

while the lower Riemann integral is the real number

$$\int_{\mathbb{I}} f := \sup \left\{ p.c. \int_{\mathbb{I}} g \mid g \text{ is piecewise constant on } \mathbb{I} \text{ and } \right.$$

$$\text{for all } x \in \mathbb{I}, \text{ we have } g(x) \leq f(x) \right\}.$$

If $\int_{\mathbb{I}} f = \int_{\mathbb{I}} f$ we say f is <u>Riemann integrable</u> and define

$$\int_{\mathcal{I}} f := \int_{\mathcal{I}} f = \underline{\int_{\mathcal{I}}} f.$$

Theorem Any continuous function $f: [a,b] \rightarrow \mathbb{R}$ is Riemann integrable.

104) Prove the theorem

Long hint: aim to show that for any $\varepsilon > 0$ (with I = [9,6])

$$\overline{\int}_{\mathtt{I}} f - \underline{\int}_{\mathtt{I}} f \leqslant \varepsilon(b-a).$$

To do this, pwcluu a partition Jin..., In of [a,b] (whose elements and length both depend on E) and constants py..., pn,9,...,9n such that

$$\overline{\int_{\tau}} f \leq \sum_{i=1}^{n} p_{i} |J_{i}|, \qquad \underline{\int_{\tau}} f \geqslant \sum_{i=1}^{n} q_{i} |J_{i}|$$

so that
$$\overline{\int}_{I}f - \underline{\int}_{I}f \leq \sum_{i=1}^{n} (p_{i} - q_{i})|J_{i}|$$
.

Then use that a writinuous function f on [a,b] is <u>uniformly</u> writinuous, i.e. $\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in [a,b] (|x-y| < \delta \Rightarrow |f \times -fy| < \varepsilon)$. This is an easy writeguence of compactness.

[05] Prove that if $f: [a,b] \rightarrow \mathbb{R}$ is continuous and a < c < b then

$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f.$$

[06] Prove that the function

$$\int_{[a,b]} (-) : Ct_{3}([a,b],\mathbb{R}) \longrightarrow \mathbb{R}$$

is linear.