The following is taken from T. Tao's "Analysis" Vol. 1 Ch. 11. Asublet $I \subseteq \mathbb{R}$ is an interval if there exist $a \leq b$ with I equal to one of the following sets:

[a,b], (a,b], [a,b), (a,b).

In all cases we define the length of I to be |I| := b - a (possibly zero). A <u>partition</u> of an interval I will mean a <u>finite</u> set P whose elements are pairwise disjoint intervals contained in I, whose union is all of I.

Example $P_1 = \{ [0, \frac{1}{3}), [\frac{1}{3}, 1] \}, P_2 = \{ [0, \frac{1}{2}), [\frac{1}{2}, 1] \}$ are partitions of $[0, \frac{1}{2}]$.

Given partitions R, R of I we write $R \leq R_2$ (not \subseteq) if for every $x \in R$, there exists $y \in R_2$ with $x \subseteq Y$. This is a partial order on the set of partitions of I, and moreover given partitions R, R.

P, AP2 = { JAK | JEP, KEP2 and JAK + 4 }

is another partition of I with the property that $P_1 \land P_2 \leq P_2$. for $i \in \{1,2\}$ and if Q is another partition with $Q \leq P_1$, $Q \leq P_2$ then $Q \leq P_1 \land P_2$

 $\boxed{\mathbb{QI}}$ have \leq is a partial order on the set of partitions of \mathbb{I} .

[Q2] Given a partition P of I prove that $|I| = \sum_{x \in P} |x|$. (*Hint*: argue the statement for all pairs (I, P) by induction on the size of P).

Def Given an interval I with partition
$$P$$
, a function $f: I \rightarrow \mathbb{R}$ is
piecewise constant with respect to P if for all $J \in P$, the function
 $f|_J: J \rightarrow \mathbb{R}$ is a constant function. A function $f: I \rightarrow \mathbb{R}$
is piecewise constant if it is piecewise constant with respect to some
partition $P \circ f I$.

 $\boxed{(Q3)}$ Rove of $f: I \longrightarrow \mathbb{R}$ is piecewise constant with respect to partitions $\mathcal{P}_{i_1}\mathcal{R}$ then

$$\sum_{J \in \mathcal{P}_{I}} a_{J} |J| = \sum_{K \in \mathcal{P}_{L}} b_{K} |K| \qquad (k)$$

where for $J \in P$, we have $f|_J \equiv a_J$ and for $K \in P_Z$, $f|_K \equiv b_K$ for constants a_J , $b_K \in IR$. This common value (*) which is independent of the partition we denote by $p \cdot c \cdot \int_I f$. (Hint: use $P, \wedge P_Z$ to reduce to the case $P_i \subseteq P_Z$).

<u>Def</u>ⁿ Let $f: I \rightarrow \mathbb{R}$ be a bounded function on an interval I. The <u>upper Riemann</u> integral is the real number

$$\int_{I} f := \inf \{ p.c. \int_{I} g \mid g \text{ is piecewise constant on } I \text{ and} \\ \text{for all } x \in I, \text{ we have } g(x) \geqslant f(x) \}$$

while the lower Riemann integral is the real number

$$\int_{I} f := \sup \{ p.c. \int_{I} g \mid g \text{ is piecewise constant on } I \text{ and}$$
for all $x \in I$, we have $g(x) \leq f(x) \}$

If $\overline{\int_{I}}f = \underline{\int_{I}}f$ we say f is <u>Riemann integrable</u> and define

$$\int_{\mathbf{I}} \mathbf{f} := \int_{\mathbf{I}} \mathbf{f} = \underline{\int}_{\mathbf{I}} \mathbf{f}.$$

<u>Theorem</u> Any continuous function $f: [a,b] \rightarrow \mathbb{R}$ is Riemann integrable.

3