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1041 since f is uniformly continuous ( see Ex .
16 - O and its solution ) we may

given E > O find 870 such that Ix - y KS ⇒ lfx - fy ICE . Choose

N an integer with N 7 b and divide I = Cai b) into N equally
sized sub intervals Jy .  - -

,
JN So that  if  my C- Ji for some i then

I x - y I s I Ji I = b < g
Thole that the Ji  are

not all closed since we

need to avoid overlaps ,

so  e . g . take

so
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and let g be the piece - wise constant function taking the values pi  on Ji

and h the function taking the values qi on Ji
.
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Now we want to argue pi
- gi E E

.

It  is tempting ( but wrong ) to say :

well pi
 = fx for some x E Ji and go

- = fy for some y E Ji so since Ix - y k t

we have I pi - 9 it = If  x - Fy K E
. This is wrong because Ji is net necessarily

compact ,
so we cannot apply the Extreme Value Theorem

.
But it's ok we

can argue directly : for any a , y E Ji we have Ifx - fy Ice so

fxc f y t E

pi  = sup fx ⇐ fy t E for any y E Ji
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Hence pi - 9 i E E and so

Jef - I f E Sit
,

E - b = e. Cb - a )

which completes the proof - D


