Tutovial 8 solutions

[Q3] Given an interval I, partition P of I and $f: I \longrightarrow R$ piece-wise constant with respect to P, we write

$$p.c.\int_{I,P} f := \sum_{J \in P} q_J |J| \qquad f|_J = q_J$$

Suppose for $R \leq R_2$ with f piece-wise constant w.r.t. R_2 (hence also R) we could prove that

$$p.C. \int_{I, P_1} f = p.C. \int_{I, P_2} f. \qquad (*)$$

Men for any pair P_1, P_2 we know $P_1 \land P_2$ is a partition and $P_1 \land P_2 \leq P_1$: for $i \in \{1, 2\}$ so

$$p.c. \int_{I, P_i} f = p.c. \int_{I, P_i \wedge P_2} f = p.c. \int_{I, P_i} f.$$

So it suffices to prove (*). Given $J \in P_2$ let $P_i^{J} = \{K \in P_i \mid K \in J\}$. This is a partition of the interval J, and moreoversince $K \in J$ we have $f|_K \equiv a_J$ for all $K \in P_i^{J}$ (where a_J is the constant value of f on J). Hence, writing be for the constant value of f on any $K \in P_i$,

$$p.c. \int_{I, P_{i}} f = \sum_{K \in P_{i}} b_{K} |K| = \sum_{\substack{J \in P_{i} \\ K \in P_{i}}} b_{K} |K|$$

$$= \sum_{\substack{J \in \mathcal{P}_{1} \\ k \in \mathcal{P}_{1}^{J}}} a_{J} |k| = \sum_{\substack{J \in \mathcal{P}_{2} \\ k \in \mathcal{P}_{1}^{J}}} a_{J} \left(\sum_{\substack{K \in \mathcal{P}_{1}^{J} \\ k \in \mathcal{P}_{1}^{J}}} |k| \right)$$

$$\stackrel{(Q2)}{=} \sum_{\substack{J \in \mathcal{P}_{2} \\ J \in \mathcal{P}_{2}}} a_{J} |J| = p \cdot c \cdot \int_{I, \mathcal{P}_{2}} f.$$

Q4 Since f is uniformly writinuous (see Ex. 16-0 and its solution) we may given ≥>0 find ≤>0 such that |x-y|< S ⇒ 1fx-fy|< E. Choore N an integer with N > b-a S and divide I = [a1b] into N equally sized subintervals J1,..., JN so that if x/y ∈ J; for some if then

$$|x - y| \leq |J_i| = \frac{b - \alpha}{N} < \delta$$
Note that the Ji are
not all closed sine we
need to avoid overlaps,
so e.g. take
 $[a, a + \frac{b - \alpha}{N}],$
 $p_i = \sup\{f_x \mid x \in J_i\}$
 $[a + \frac{b - \alpha}{N}, a + 2\frac{b - \alpha}{N}], ...$
 $q_i = \inf\{g_x \mid x \in J_i\}$
 $[b - (\frac{b - \alpha}{N}, b]]$

and let g be the piece-wise constant function taking the values p_i on T_i and h the function taking the values q_i on T_i . Then $f \leq g$ and $h \leq f$ so

$$\int_{\mathbf{I}} \mathbf{f} \leq \sum_{i=1}^{N} P_i |J_i|, \quad \int_{\mathbf{I}} \mathbf{f} \geq \sum_{i=1}^{N} q_i |J_i|.$$

$$\therefore \quad \int_{\mathbf{I}} \mathbf{f} - \int_{\mathbf{I}} \mathbf{f} \leq \sum_{i=1}^{N} \left(\mathbf{p}_{i} - \mathbf{q}_{i} \right) \frac{\mathbf{b} - \mathbf{a}}{N}$$

Now we want to argue $p_i - q_i \le \varepsilon$. It is tempting (but wrong) to say: well $p_i = fx$ for some $x \in T_i$ and $q_i = fy$ for some $y \in T_i$ so since |x-y| < dwe have $|p_i - q_i| = |fx - fy| < \varepsilon$. This is wrong because T_i is not necessarily compact, so we cannot apply the Extreme Value Theorem. But it's DK we can argue directly: for any $x, y \in T_i$ we have $|fx - fy| < \varepsilon$ so

$$f_{x} < f_{y} + \varepsilon$$

$$p_{i} = \sup_{x \in J_{i}} f_{x} \leq f_{y} + \varepsilon \qquad \text{for any } y \in J_{i}$$

$$f_{x} = p_{i} \leq \inf_{y \in J_{i}} f_{y} + \varepsilon = q_{i} + \varepsilon.$$

Hence $p_i - q_i \leq \varepsilon$ and so
$\int_{T} f - \int_{T} f \leq \sum_{i=1}^{N} \mathcal{E} \cdot \frac{b-\alpha}{N} = \mathcal{E} \cdot (b-\alpha)$
which completes the pool - D