Tutorial 8 : Higher-order ODEs via fixed points

This tutorial walks you through the generalisation of Lecture 15 to <u>systems</u> of ODEs and thus to higher-order ODEs. This amounts to a solution of $E \times LIS - 1$, LIS - 2 of the lecture notes. But fint, recall the original setup: we have an ODE g'(x) = h(x, g(x)), an initial value $g(x_0) = y_0$, and we set up a contraction mapping

$$f(\mathcal{G})(\mathbf{x}) = \mathcal{G}_{\mathbf{x}} + \int_{\mathbf{x}_{\mathbf{x}}}^{\mathbf{x}} h(t, \mathcal{G}(t)) dt$$

on some space of functions. Suppose \int is <u>not</u> a solution. Then the "error" up to some point x is (assuming \int is continuously differentiable and $\int (x_0) = y_0$)

$$E(\mathcal{I})(\mathbf{x}) = \int_{\mathbf{x}_{o}}^{\mathbf{x}} (\mathcal{I}'(t) - h(t, \mathcal{I}(t))) dt$$
$$= \mathcal{I}(\mathbf{x}) - \mathcal{I}(\mathbf{x}_{o}) - \int_{\mathbf{x}_{o}}^{\mathbf{x}} h(t, \mathcal{I}(t)) dt$$
$$= \mathcal{I}(\mathbf{x}) - f(\mathcal{I})(\mathbf{x})$$

24/5/19

updated 25/9/19

That is, $E(\mathcal{Y}) = \mathcal{J} - f(\mathcal{Y})$. As we iterate using f, say $\mathcal{J}_0, \mathcal{J}_1, \dots$ with $\mathcal{J}_n = f^n(\mathcal{J}_0)$, this enor can be written as

$$\sup\{|E(f_n)(x)||x \in I\} = d_{\infty}(f_n, f(f_n)) = d_{\infty}(f_n, f_{n+1})$$

and it is easy to check by induction that $d\infty(f_n, f_{n+1}) \in \lambda^n d\infty(f_o, f_1)$. Thus the <u>error decreases exponentially fast with n</u>. However it decreases from an initial value $d\infty(f_o, f_1)$ that depends on $I = \{z_o - b, z_o + b\}$ vince if $f_o \equiv f_o$ we have $d\infty(f_o, f_1) = \sup\{\int_{x_o}^x h(t, y_o) dt \{f(x_o + b)\} dt \}$. So there is a priori some tradeoff between convergence and the size of I.

Systems of ODEs.

Consider a system of n first-order ODEs, where the Si (x) are real-valued

$$\begin{array}{ll} f_{1}'(x) = h_{1}(x, f_{1}(x), \dots, f_{n}(x)) & f_{1}(x_{o}) = y_{1}^{o} \\ f_{2}'(x) = h_{2}(x, f_{1}(x), \dots, f_{n}(x)) & f_{2}(x_{o}) = y_{2}^{o} \\ \vdots & \vdots \\ f_{n}'(x) = h_{n}(x, f_{1}(x), \dots, f_{n}(x)) & f_{n}(x_{o}) = y_{n}^{o} \end{array}$$

Let $\underline{h}: U \longrightarrow \mathbb{R}^n$ be continuous where $U \subseteq \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1}$ is open, then a <u>solution</u> of the above IVP on an interval $I \subseteq \mathbb{R}$ containing x_0 is a function $\underline{f}: I \longrightarrow \mathbb{R}^n$ (whose components are the $f_i(x)$) which is continuously differentiable (meaning each $f_i(x)$ is so) with the property that as functions (where $\underline{f}'(x) = (f'_i(x), ..., f'_n(x))$)

$$\underline{\mathcal{Y}}' = \underline{h} \circ \langle l, \underline{\mathcal{Y}} \rangle, \quad \underline{\mathcal{Y}}(\pi_{\circ}) = \underline{\mathcal{Y}}^{\circ} = (\mathcal{Y}^{\circ}_{l}, \ldots, \mathcal{Y}^{\circ}_{n}).$$

Suppose <> O exists with

$$\left\| \underline{h}(x, \underline{u}) - \underline{h}(x, \underline{v}) \right\| \leq d \left\| \underline{u} - \underline{v} \right\| \quad \forall (x, \underline{u}), (x, \underline{v}) \in U$$

with $||-||: \mathbb{R}^n \to \mathbb{R}$ given by $||\underline{y}|| = \sum_{i=1}^n |y_i|$. Also assume that $(x_0, \underline{y}^o) \in U$.

QI) <u>Prove</u> that there exists $\delta > 0$ such that the TVP has a unique solution on the interval $[x_0 - \delta, x_0 + \delta]$.

Z

<u>Higher-order ODEs</u>

Consider an order n ODE for a single real-valued function J, in explicit form

$$\mathcal{J}^{(n)}(\mathbf{x}) = h(\mathbf{x}, \mathcal{J}(\mathbf{x}), \mathcal{J}'(\mathbf{x}), \dots, \mathcal{J}^{(n-1)}(\mathbf{x})) \tag{(*)}$$

with initial values $\mathcal{Y}(x_0) = \mathcal{Y}_0, \mathcal{Y}'(x_0) = \mathcal{Y}_0^{(1)}, \dots, \mathcal{Y}_0^{(n-1)}(x_0) = \mathcal{Y}_0^{(n-1)}$. A <u>solution</u> of (*) is a function $\mathcal{Y}(x)$ which is n-times writinuously differentiable satisfying (*) and having the specified initial values. Here $h: U \longrightarrow \mathbb{R}$ is a continuous function defined on an open set $U \subseteq \mathbb{R}^n$ containing the point $(\mathcal{H}_0, \mathcal{Y}_0, \dots, \mathcal{Y}_0^{(n-1)})$.

Associated to this higher-order ODE is the system of n first-order ODEs

In the framework of the previous page, with coordinates $x, u_{o,...,u_{n-1}}$ on \mathbb{R}^{n+1} , we have functions $h_{o,...,h_{n-1}}: U \longrightarrow \mathbb{R}$ where $h_i = u_{i+1}$ for $0 \le i \le n-2$ and $h_{n-1} = h$. The initial point is $(x_{o}, y_{o}, ..., y_{o}^{(n-1)})$.

Q2 For any interval
$$I \subseteq \mathbb{R}$$
 prove there is a bijection between solutions
 f of \mathfrak{E} on I and solutions $f = (\gamma_0, ..., \gamma_{n-1})$ of \mathfrak{E} on I .

Q3 Solve the IVP $\mathcal{J}'' = -\mathcal{Y}$, $\mathcal{Y}(o) = 0$, $\mathcal{Y}'(o) = 1$.