Solutions

 $\begin{array}{|c|c|} \hline \hline \end{tabular} \hline \hline \end{tabular} \hline \hline \end{tabular} \hline \hline \end{tabular} \hline \end{tabu$

$$f(x_m) - f(x_n) = f(x_m - x_n) \in U.$$

Q3 <u>Reflexive</u> clear

<u>Symmetric</u> The negation $-: A \rightarrow A$ is continuous by hypothesis, so if $(x_n)_{n=0}^{\infty} \sim (y_n)_{n=0}^{\infty}$ so $(x_n - y_n)_{n=0}^{\infty}$ converges to zero, and an open neighbourhood U of O is given, then since -U is an open neighbourhood of U we may find $N \gg O$ s.t. for $n \gg N$

$$x_n - y_n \in -U$$
hence $y_n - x_n \in U$

which proves $(y_n)_{n=0}^{\infty} \sim (x_n)_{n=0}^{\infty}$.

<u>Transitive</u> Suppose $(x_n)_{n=0}^{\infty} \sim (y_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty} \sim (z_n)_{n=0}^{\infty}$, and let an open neighbourhood U of O be given. Since $+:A \times A \longrightarrow A$ is continuous there exist $V \subseteq A, W \subseteq A, both$ open neighbourhoods of O, such that $V + W \subseteq U$. Let N > O be large enough so that for $n \gg N$ we have $x_n - y_n \in V, y_n - z_n \in W$ and hence

$$z_n - z_n = (x_n - y_n) + (y_n - z_n) \in \vee + W \subseteq U$$

showing $(x_n)_{n=0}^{\infty} \sim (z_n)_{n=0}^{\infty}$.

Heve's some ideas to get you started...

Let
$$(a_1b)_{\mathbb{Q}} := \{q \in \mathbb{Q} \mid a < q < b\}, [a_1b]_{\mathbb{Q}} = \{q \in \mathbb{Q} \mid a \leq q \leq b\}$$

Then $\overline{(a_1b)_{\mathbb{Q}}} = [a_1b]_{\mathbb{Q}}$ and $[a_1b]_{\mathbb{Q}}^2 = (a_1b)_{\mathbb{Q}}. (\overline{(-)} a_{nd}(-)^\circ in \mathbb{Q})$

We fint prove that if (R,+,0) is a real number system that any $x \in R$ is the limit of a Cauchy sequence of the form $(f^{n})_{n=0}^{\infty}$ where $(X_n)_{n=0}^{\infty}$ is a Cauchy sequence in Q.

For n > 0 any integer set $(n := (-\frac{1}{n}, \frac{1}{n})_{\&}$. We want V_n to be the open subject of \mathcal{R} which "is" $(-\frac{1}{n}, \frac{1}{n})$ in the conval \mathbb{R} . So we take V_n to be the interior (in \mathcal{R}) of the closure (in \mathcal{R}) of $f(U_n)$. Here $f: \mathbb{Q} \longrightarrow \mathcal{R}$ is given as part of the data of a real number system.

$$\bigvee_n := \overline{f(U_n)}$$

Now $x + V_n$ is an open neighborhood of x in \mathcal{R} (an addition is continuous) and $f(\mathcal{R}) \cap (x + V_n)$ is nonempty (for otherwise $f(\mathcal{R}) \subseteq (x + V_n)^c$ would be a proper closed subset containing $f(\mathcal{R})$ which is impossible. Choose some $x_n \in \mathcal{R}$ such that $f(x_n) \in x + V_n$. We claim finitly that $(x_n)_{n=0}^{\infty}$ is Cauchy in \mathcal{R} and secondly that $f(x_n) \rightarrow x$ in \mathcal{R} .

Clearly any open neighbourhood of O in Q contains Un for some n.

<u>Claim</u> If $W \subseteq R$ is open then $W \cap f(\emptyset)$ is dense in W (in the subspace topology).

<u>Claim</u> Any open neighborhood W of O in R contains Vn for some n.

Q5

(i) is clear,

(ii) If $U \leq V'$ then $s(V) \leq s(U')$ so $s(U \cap V) \leq s(U) \cap s(V)$ is immediate. For the revene inclusion suppose an equivalence class in A^c belongs to $s(U) \cap s(V)$. Then every cauchy sequence in this equivalence class is stably in U, and stably in V. Let $(x_n)_{n=0}^{\infty}$ be a Cauchy sequence in this equivalence class, and let $N_1 > O$ be such that $\forall n \geq N$, $x_n \in U$, and let $N_2 \geq O$ be such that $\forall n \geq N_2 \geq n \in V$. Then for $n \geq \max\{N_1, N_2\}$, $x \in U \cap V$, so $(x_n)_{n=0}^{\infty}$ is stably in U $\cap V$.

Q6