Tutorial 7 : Dual spaces

Dualvector spaces and the duals of linear maps will be central objects of study in the remain der of the couve, and this tutorial prepares the ground with some of the basics. Thwughout k is a field and vector spaces are over k, not necessarily finite-dimensional.

Def Given vector spaces V, W the set

$$
\operatorname{Lin}(V, w):=\{f: V \rightarrow W \mid f \text { is linear }\}
$$

is a vector space with the "pointwise" operations defined for $f, g \in \operatorname{Lin}(V, W)$ and $\lambda \in \mathbb{R}$ by

- $(f+g)(v)=f(v)+g(v)$
- $(-f)(v)=-f(v)$
- $O(v)=O_{w}$. $(1 . e . O \in \operatorname{Lin}(v, w))$
- $(\lambda f)(v)=\lambda \cdot f(v)$.

Def n The clual space V^{*} of a vector space V is $V^{*}:=\operatorname{Lin}(V, k)$. We often refer to vectors $\mu \in V^{*}$ as functionals.

Clearly if U, V, W are vector spaces and $f: U \rightarrow V, g: V \rightarrow W$ are linear then the functions given below are also linear:

$$
\begin{array}{ll}
\operatorname{Lin}(u, v) \xrightarrow{g \circ(-)} \operatorname{Lin}(u, w) & h \longmapsto g \circ h \\
\operatorname{Lin}(v, w) \longrightarrow \operatorname{Lin}(u, w) & h \longmapsto h \circ f
\end{array}
$$

Def ${ }^{n}$ If $f: U \rightarrow V$ is linear then the linear transformation

$$
\begin{aligned}
& V^{*}=\operatorname{Lin}(V, k) \longrightarrow \operatorname{Lin}(V, k)=U^{*} \\
& h \longmapsto h \circ f
\end{aligned}
$$

is denoted $f^{*}: V^{*} \longrightarrow U^{*}$.

Q1 Pere that $\left(1_{u}\right)^{*}=1_{U^{*}}$ and if $f: U \rightarrow V, g: V \rightarrow W$ are linear then $f^{*} \circ g^{*}=(g \circ f)^{*}$ as linearmaps $W^{*} \longrightarrow U^{*}$. We say the dual is a functorial operation. Conclude that if f is an isomouphism then so is f^{*}.

Q2 Prove that $(f+g)^{*}=f^{*}+g^{*}$ and $(\lambda f)^{*}=\lambda \cdot f^{*}$ so that taking the dual is a linear map $(-)^{*}: \operatorname{Lin}(V, W) \longrightarrow \operatorname{Lin}\left(W^{*}, V^{*}\right)$.

Given $A \in M_{m, n}(k)$ let $M_{A}: k^{n} \rightarrow k^{m}$ be $M_{A}(x)=A x$. Then there is an isomouphism of vector spaces

$$
\begin{aligned}
& M_{m, n}(k) \cong \\
& \mathscr{L}\left(k^{n}, k^{m}\right) \\
& A \longmapsto M_{A}
\end{aligned}
$$

Suppose that V is finite-dimensional and that $\beta=\left(v_{1}, \ldots, v_{n}\right)$ is a sequence of vectors in V. Then β is an orclered basis if and only if

$$
c_{\beta}: k^{n} \longrightarrow V, \quad c_{\beta}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{i=1}^{n} \lambda_{i} V_{i}
$$

is an isomowhism of vector spaces (it is always a well-clefined linear map).

If W is another finite-dimensional vector space with ordered basis $\zeta=\left(\omega_{1}, \ldots, \omega_{m}\right)$ then given a linear transformation $F: V \rightarrow W$ there is a unique matrix A such that the following diagram commutes:

$$
\begin{array}{rl}
k^{n} \xrightarrow{M_{A}} & k^{m} \\
c_{\beta} \mid \cong & \cong{ }_{C} \tag{*}\\
V & \\
F & W
\end{array}
$$

We call A the matrix of F with respect to β, C. Some common notation:

- Given $v \in V$ we write $[v]_{\beta}:=C_{\beta}^{-1}(v)$ (similarly $\left.[w] \varepsilon\right)$.
- We write $[F]_{\beta}^{G}$ for A. We may calculate from (*) that the it column of this matrix is

$$
\begin{aligned}
\left(C_{\varphi}^{-1} \circ F \circ C_{\beta}\right)\left(e_{i}\right) & =\left(C_{\varphi}^{-1} \circ F\right)\left(v_{i}\right) \\
& =C_{\zeta}^{-1}\left(F\left(v_{i}\right)\right) \\
& =\left[F\left(v_{i}\right)\right] \varphi .
\end{aligned}
$$

Q3 Use the diagram ($*$) to show that if $G: W \rightarrow U$ is another linear transformation and P is an orcleved basis for U then

$$
[G]_{\zeta}^{\mathcal{D}} \circ[F]_{\beta}^{\zeta}=[G \circ F]_{\beta}^{8}
$$

Next we obsewe that a familiar matrix operation, the transpose, is "really" about clual spaces, in the following sense.

Definition If V is a vector space, a function $B: V \times V \longrightarrow \mathbb{R}$ is bilinear if
(i) $B\left(x+x^{\prime}, y\right)=B(x, y)+B\left(x^{\prime}, y\right) \quad \forall x, x^{\prime}, y \in V$
(ii) $B\left(x, y+y^{\prime}\right)=B(x, y)+B\left(x, y^{\prime}\right) \quad \forall x, y, y^{\prime} \in V$
(iii) $B(\lambda x, y)=B(x, \lambda y)=\lambda B(x, y) \quad \forall x, y \in V \quad \forall \lambda \in \mathbb{R}$.

We say B is symmetric if $B(x, y)=B(y, x)$ for all $x, y \in V$.

Q4 Pro that there is a bijection between bilinear forms on V and linear maps $V \longrightarrow V^{*}$ where V^{*} denotes the dual space, where the linear map f_{B} associated to B is $f_{B}(x)(y)=B(x, y)$.

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { bilinear pairings } \\
V \times V \longrightarrow k
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { linear maps } \\
V \longrightarrow V^{*}
\end{array}\right\} \\
B \longmapsto B(v,-)\}
\end{gathered}
$$

Q5 Suppose V is finite-climensional. A symmetric bilinear form B on V is called nondegenerate if f_{B} is an isomophism $V \stackrel{\cong}{\leftrightarrows} V^{*}$. Write down the definition of nondegeneracy purely in terms of pairs (x, y) for which $B(x, y)=0$.

Example The paining $B: k^{n} \times k^{n} \longrightarrow k, B(\underline{a}, \underline{b})=\sum_{i=1}^{n} a_{i} b_{i}$ is nondegenerate, and the associated isomonphism is

$$
\begin{aligned}
& k^{n} \xrightarrow{\longrightarrow}\left(k^{n}\right)^{*} \\
& e_{i} \longmapsto e_{i}^{*}
\end{aligned}
$$

where $e_{i}^{*}(\underline{a})=a_{i}$. In particular $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ must be a basis for $\left(k^{n}\right)^{*}$, called the clual basis.

Def n Let $\backslash /$ be a finite-dimensional vector space with ordered basis $\beta=\left(v_{1}, \ldots, v_{n}\right)$. The dual basis is $\beta^{*}=\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ for V^{*} is

$$
V_{i}^{*}(u)=e_{i}^{*}\left([u]_{\beta}\right)
$$

which reads off the coefficient of x_{i} in the expansion of u w.r.t. β.
Q6 Prove β^{*} is a basis for V^{*}.
Q7 Suppose V, W, β, ζ, F, A are as in (*) on p. (3). Prove that

commutes, and hence $\left[F^{*}\right]_{\zeta^{*}}^{\beta^{*}}=\left([F]_{\beta}^{\varepsilon}\right)^{\top}$, so that taking the transpose means taking the dual of a linear trans formation.

Solutions

Q6 Note that v_{i}^{*} is the linear map

$$
V \xrightarrow{c_{\beta}^{-1}} k^{n} \xrightarrow{e_{i}^{*}} k
$$

so that there is a well-defined linearmap $C_{\beta^{*}}: k^{n} \longrightarrow V^{*}$ sending e_{i} to v_{i}^{*}, and we just need to show this is an isomorphism. But this follows from commutativity of

which we can verify on the basis e_{1}, \ldots, en by obsewing that

$$
\begin{aligned}
\left(C_{\beta}\right)^{*} C_{\beta^{*}}\left(e_{i}\right)\left(e_{j}\right) & =C_{\beta}^{*}\left(v_{i}^{*}\right)\left(e_{j}\right) \\
& =\left[v_{i}^{*} \circ c_{\beta}\right]\left(e_{j}\right) \\
& =\left[e_{i}^{*} \circ C_{\beta}^{-1} \circ c_{\beta}\right]\left(e_{j}\right) \\
& =e_{i}^{*}\left(e_{j}\right)=\delta_{i j}
\end{aligned}
$$

Hence $\left(C_{\beta}\right)^{*} C_{\beta^{*}}\left(e_{i}\right)=e_{i}^{*}$, as claimed.

Q7 To check that

commutes, it suffices to check on a basis vector e_{i}, but

$$
\left(F^{*} \circ C_{6^{*}}\right)\left(e_{i}\right)=F^{*}\left(\omega_{i}^{*}\right)=\omega_{i}^{*} \circ F \in V^{*}
$$

and

$$
\begin{aligned}
\left(C_{\beta^{*}} \circ M_{A^{\top}}\right)\left(e_{i}\right) & =C_{\beta^{*}}\left(A^{\top} e_{i}\right) \\
& =\sum_{j=1}^{n}\left(A^{\top} e_{i}\right)_{j} v_{j}^{*} \\
& =\sum_{n=1}^{n} A_{i j} v_{j}^{*}
\end{aligned}
$$

To compare these vector in V^{*} it suffices to evaluate on the basis β, where they agree since

$$
\begin{aligned}
& \left(w_{i}^{*} \circ F\right)\left(v_{a}\right)=\omega_{i}^{*}\left(F v_{a}\right)=A_{i a} \\
& \left(\sum_{j=1}^{n} A_{i j} v_{j}^{*}\right)\left(v_{a}\right)=A_{i a}
\end{aligned}
$$

