Sol^P 1 Let $Q := \operatorname{Im}(\overline{\Phi})$, so that the question is, does $\overline{\Phi}$ verticet to a homeomorphism $\operatorname{Cts}([0, 1], Y) \cong Q$? We show that for any interval $K \subseteq [0, 1]$ and open $U \subseteq Y$ which is not a <u>connected component</u> of Y (that is, for which there exists point $y \in Y \setminus U$ connected by a path to an element of U) that $\overline{\Phi}(S(K, U)) \subseteq Q$ is not open, so the answer is NO.

Note S(K,U) is nonempty: the constant function $f:[o,I] \rightarrow Y$ sending everything to any chosen fixed $u \in U$ lies in S(K,U). Supposing $\Xi(S(K,U))$ were open we would find an open neighborhood T in $TI_{x \in [o,I]} Y$ such that , for which there exists yey\U and a path from u to y.

We may assume T is taken from the standard basis, i.e. there is $J \subseteq [0, 1]$ finile and open sets $U_x \subseteq Y$ for all $x \in [0, 1]$ such that $U_x = Y$ unless $x \in J$, and $T = \prod_{x \in [0, 1]} U_x$. Write $T = \{a_1, \dots, q_n\}$ so that we have

 $\overline{\Phi}^{-1}(T) = \{ g: [0,1] \rightarrow \forall \text{ wontinuous } | g(a_i) \in U_{a_i} \text{ for } | \leq i \leq n \}$ Note that $f \in \overline{\Phi}^{-1}(T)$ so $u \in U \cap U_{a_1} \cap \cdots \cap U_{a_n}$.

Now $\overline{\Phi}^{-1}(T) \subseteq S(K,U)$ means that whenever $g: [0, \overline{J} \longrightarrow Y$ is continuous and satisfies $g(a_i) \in U_{a_i}$ for $1 \leq i \leq n$ (as shown) it must follow that $g(K) \subseteq U$.

Let $y \in Y \setminus U$ be wonnected to $u \in U$ by a path h, and let h be the inverse path (i.e. $h'(\lambda) = h(1-\lambda)$). Let $g : [0,1] \longrightarrow Y$ be the path described informally as follows: pick a subinterval $Z \subseteq K \setminus \{a_1, ..., a_n\}$ not containing any a_i , and let g be constant at u for $x \notin Z$, and on Zit traverses h and then h^{-1} (so it makes an "excussion" to y in between the $a_{1,...,a_n}$). Then $g(a_i) = u \in Ua_i$ so $g \in \Phi^{-1}(T)$ but clearly $g(K) \notin U$ since g(z) = y for some $z \in Z$. This contradiction shows $\Phi(S(K, U))$ is not open in Q - D