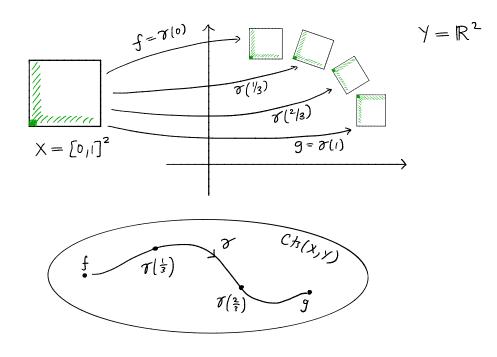
Tutorial 6 2020

In this tutorial we are going to play with the concept of <u>homotopy</u> as a way of learning how to use the adjunction property in practice. Let X, Y be locally compact Hausdorff.

<u>Def</u>ⁿ Continuous functions $f, g: X \longrightarrow Y$ are <u>homotopic</u> if there is a puth $\mathcal{T}: [0,1] \longrightarrow Ct_{\mathcal{T}}(X,Y)$ with $\mathcal{T}(0) = f$ and $\mathcal{T}(1) = g$. In this case we write $f \simeq g$.



QI Prove that if $X = \{*\}$ then $ev_* : Cts(\{*\}, Y) \longrightarrow Y$ is a homeomorphism, and making this identification notice that two points $y, y' \in Y$ are homotopic (viewed as maps $\{*\} \longrightarrow Y$) iff. They are connected by a path in Y.

Q2 Rove that if X, Y, Z are locally compact Hausdorff and $f, g: X \longrightarrow Y$ are homotopic then

(i) if $h: Y \longrightarrow Z$ is continuous $h \circ f \simeq h \circ g$. (ii) if $h: X \longrightarrow Y$ is continuous $f \circ h \simeq g \circ h$. Note Ex L12-10 relates the above definition of homotopy to the more standard one.

Q3 Prove that
$$\simeq$$
 is an equivalence relation on Cts (X, Y).

Q4 Prove that if $Y \subseteq \mathbb{R}^n$ is convex (i.e. whenever $x, y \in Y$ then also $(1-t)x + ty \in Y$ for any $t \in [0, 1]$) then any two continuous maps $f, g : X \longrightarrow Y$ are homotop^{ic}.

Solutions

Q1

The evaluation map is a composite

$$C + (\{*\}, \forall) \cong C + (\{*\}, \forall) \times \{*\} \longrightarrow \forall$$

of continuous functions, hence continuous. We have a continuous function (the projection)

$$\forall x \{*\} \longrightarrow \forall F(y,*) = y$$

and hence under \mathcal{Y} : $Cts(\mathcal{Y} \times \{ \star \}, \mathcal{Y}) \longrightarrow Cts(\mathcal{Y}, Cts(\{ \star \}, \mathcal{Y}))$ this maps to continuous $\mathcal{Y}(F)$: $\mathcal{Y} \longrightarrow Cts(\{ \star \}, \mathcal{Y})$ defined by

$$\Psi(F)(y)(*) = F(y,*) = y$$

Since ex* and Y(F) are both continuous and mutually inverse we are done.

Q2

Suppose
$$f \simeq g$$
 so there is $\mathcal{T}: [0,1] \longrightarrow Ct_3(X,Y)$ with $\mathcal{T}(0) = f$
and $\mathcal{T}(1) = g$. Let $h: Y \longrightarrow Z$ be given. By Lemma L12-1 the
following comparite is continuous

$$Ct_{3}(Y,Z) \times Ct_{3}(X,Y) \xrightarrow{c} Ct_{3}(X,Z)$$

$$\uparrow \quad \iota_{h} \times \mathcal{T}$$

$$\{*\} \times [0,1]$$

$$(12$$

$$[0,1]$$

where $l_h: \{t\} \longrightarrow Ct_s(Y,Z)$ is $l_h(t) = h$. Since this composite sends 0 to hof and 1 to hog we are done.

Reflexivity If $f \in (t_s(X,Y)$ then $T: [0, 1] \longrightarrow Ct_s(X,Y)$ defined by $\mathcal{T}(t) = f$ for all $t \in [0, 1]$ is continuous since it is a composite

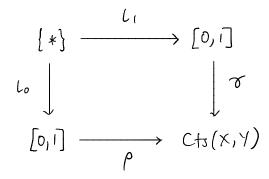
$$[0,i] \longrightarrow \{*\} \longrightarrow Ct_{\mathfrak{I}}(X,Y)$$

of continuous maps.

Symmetry If $f \simeq g$ then let \mathcal{T} be a path from $f \neq g$ and define \mathcal{T}^{rev} to be $[0,1] \xrightarrow{1-t} [0,1] \xrightarrow{0} (t_1(X,Y))$

This is continuous and sends $\mathcal{O} \mapsto g$, $| \mapsto f$ so $g \simeq f$.

Transitivity Suppose $f \simeq g$ and $q \simeq h$ and suppose \mathcal{T} is a path from f to g and ρ is a path from g to k. So $\mathcal{T}, \rho : [0, 1] \longrightarrow Ct_3(X, Y)$ and $\mathcal{T}(1) = g = \rho(0)$. That is, the diagram



commutes. By the universal property of the pushout there is a continuous map

$$Q: [0, i] \amalg_{\{*\}} [0, i] \longrightarrow Ctr(X, Y)$$

restricting on the first factor to \mathcal{T} and on the second factor to p. Pre-composing \mathcal{L} with $[0,1] \perp_{\{*\}} [0,1] \cong [0,1]$ gives a continuous map $[0,1] \longrightarrow Ctr(X,Y)$ sending O to $\sigma(0) = f$ and 1 to $\rho(1) = h$, so $f \simeq h$.

Q3

Q4 Let $f,g \in Ct_{\mathcal{F}}(X,Y)$ be given. The path \mathcal{T} from f to g is

$$\mathcal{J}(t)(\alpha) = (1-t)f(\alpha) + tg(\alpha).$$

Since \forall is convex $\mathcal{T}(t)$ is a well-defined function $X \longrightarrow Y$ and clearly $\mathcal{T}(0) = f$, $\mathcal{T}(1) = g$, so it remains to show $\mathcal{T}(t)$ is continuous for all $t \in [0,1]$ and that $\mathcal{T}: [0,1] \longrightarrow Ct_{S}(X,Y)$ is continuous. Observe that

$$\begin{bmatrix} 0,1 \end{bmatrix} \times X \xrightarrow{\begin{pmatrix} 1-t \\ t \end{pmatrix}} \times id_{X} \\ \begin{bmatrix} 0,1 \end{bmatrix} \times \begin{bmatrix} 0,1 \end{bmatrix} \times \begin{bmatrix} 0,1 \end{bmatrix} \times X \\ (t,x) & (t-t,t,x) & \downarrow id \times id \times \begin{pmatrix} f \\ g \end{pmatrix} \\ & \begin{bmatrix} 0,1 \end{bmatrix} \times \begin{bmatrix} 0,1 \end{bmatrix} \times Y \times Y \\ (t-t,t,f \times,g \times) & 112 \\ & \begin{bmatrix} 0,1 \end{bmatrix} \times Y \times \begin{bmatrix} 0,1 \end{bmatrix} \times Y \\ (t-t,f \times,t,g \times) & \downarrow inclusion \\ & (R \times R^{n}) \times (R \times R^{n}) \\ & \downarrow (scalar-mult)^{2} \\ & ((t-t)f \times,tg \times) & R^{n} \times R^{n} \\ & \downarrow add \\ & (1-t)f \times + tg \times & R^{n} \\ & \downarrow add \\ \end{array}$$

is continuous (here we use that scalar multiplication and addition on Rⁿ are continuous, i.e. that Rⁿ is a <u>topological vector space</u>) and hence by the adjunction property

 $[0,1] \longrightarrow Ct_{\mathfrak{I}}(\mathfrak{X},\mathfrak{Y}), \quad t \longmapsto \{\mathfrak{X} \longmapsto (1-t)f(\mathfrak{X}) + tg(\mathfrak{X})\}$

is writinuous, which is what we needed to show.