Solution to Q2 The empty set does not contain ∞ and is open in $X = \phi \in J_X$. The set \tilde{X} contains ∞ but $\tilde{X} = \phi^{c} \perp \{\infty\}$ and ϕ is compact (told you we would have to care about this). Suppose $\{U_i\}_{i \in I}$ is an indexed family of open sets in \tilde{X} , then let $J = \{i \in I \mid \infty \in U_i\}$ and write $(J^c = I \setminus J)$

$$\bigcup_{i \in I} U_i = \bigcup_{j \in J} U_j \cup \bigcup_{j \in J} U_j$$

For $j \in J$ let $K_j \subseteq X$ be compact with $U_j = K_j \cap \mathcal{I} \{\infty\}$. Then, observing that U_j is open in X for $j \in J^c$, (we may assume $J \neq \phi$, otherwise it is clear)

$$\begin{split} \bigcup_{j\in J} \bigcup_{j\in J^{c}} \bigcup_{j\in J^{c}} \bigcup_{j\in J^{c}} K_{j}^{c} \cup \{\infty\} \cup \bigcup_{j\in J^{c}} \bigcup_{j} U_{j}^{c} \\ &= \left(\bigcup_{j\in J} K_{j}^{c} \cup \bigcup_{j\in J^{c}} \bigcup_{j} \bigcup_{j} \bigcup_{j\in J^{c}} U_{j}^{c} \right) \cup \{\infty\} \\ &= \left(\bigcap_{j\in J} K_{j} \cap \bigcap_{j\in J^{c}} \bigcup_{j} \bigcup_{j} \bigcup_{j} U_{j}^{c} \right)^{c} \cup \{\infty\}. \end{split}$$

But each $K_j \subseteq X$ is compact hence closed, so $\bigcap_{j \in J} K_j \cap \bigcap_{j \in J} U_j^{c}$ is a closed subspace of a compact space K_{jo} (pick $j_{o} \in J$, and note that if $J = \emptyset$ there is nothing to prove) hence compact, so we are done: $U_{j \in J} U_j^{c}$ is open.

Solution to Q3 Let $\{U_i\}_{i \in I}$ be an open cover of \widetilde{X} , and suppose $\infty \in U_{i_0}$. Then $V_{i_0} = K^{C} \amalg \{\infty\}$ for some compact $K \subseteq X$. The open sets $\{U_i\}_{i \in I}$ cover K, so let $J \subseteq I$ be finite with $K \subseteq U_{j \in J} U_j$. Then we have

$$\widetilde{X} = X \cup \{\infty\}$$
$$= K \cup K^{c} \cup \{\infty\}$$
$$= K \cup U_{\partial_{\sigma}}$$
$$\subseteq \left(\bigcup_{j \in J} U_{j}\right) \cup U_{\lambda_{\sigma}}$$

so $J \cup \{i_0\}$ is a finite subcover. To prove \widehat{X} is Hausdorff, it sufficients consider $x \in X$, and observe that since X is locally compact there exists $x \in U \subseteq K$ with U open, K compact, but then $x \in U$ and $\infty \in K^{c} \amalg \{\infty\}$ are disjoint open neighbourhoods of x, ∞ in \widehat{X} . \Box

Solution to Q4 The map $X \xrightarrow{f} \tilde{X}$ is clearly continuous, since if $K \subseteq X$ is compact then K is closed hence K^{c} is open. It is a bijection onto its image, and a homeomorphism since if $U \subseteq X$ is open then f(U) is open by definition. \Box

Solution to Q4 Let $f: X \longrightarrow \mathbb{R}$ continuous be given. The data of F is just some real number $\lambda := F(\infty)$, and the fact that F is continuous is equivalent to the constraint that for all $\varepsilon > 0$ the set

$$F^{-1} B_{\varepsilon}(\lambda) \subseteq \widetilde{X}$$

is open. But this is equivalent to compactness of the set $\{x \in X \mid |f(x) - \lambda| \ge \varepsilon\}$. So we have our characterisation :

a continuous function $f: X \longrightarrow IR$ extends to \widetilde{X} if and only if there exists $\mathcal{N} \in \mathbb{R}$ such that $f - \mathcal{N}$ vanishes at infinity, by which we mean that for all $\varepsilon > 0$ the set $\{x \in X \mid |f(x) - \mathcal{N}| \ge \varepsilon\}$ is compact.

